Как найти угол четырехугольника вписанного в трапецию

Четырехугольники, вписанные в окружность. Теорема Птолемея

Вписанные четырёхугольники и их свойства

Определение 1 . Окружностью, описанной около четырёхугольника, называют окружность, проходящую через все вершины четырёхугольника (рис.1). В этом случае четырёхугольник называют четырёхугольником, вписанным в окружность, или вписанным четырёхугольником .

Теорема 1 . Если четырёхугольник вписан в окружность, то суммы величин его противоположных углов равны 180° .

Доказательство . Угол ABC является вписанным углом, опирающимся на дугу ADC (рис.1). Поэтому величина угла ABC равна половине угловой величины дуги ADC . Угол ADC является вписанным углом, опирающимся на дугу ABC . Поэтому величина угла ADC равна половине угловой величины дуги ABC . Отсюда вытекает, что сумма величин углов ABC и ADC равна половине угловой величины дуги, совпадающей со всей окружностью, т.е. равна 180° .

Если рассмотреть углы BCD и BAD , то рассуждение будет аналогичным.

Теорема 1 доказана.

Теорема 2 (Обратная к теореме 1) . Если у четырёхугольника суммы величин его противоположных углов равны 180°, то около этого четырёхугольника можно описать окружность.

Доказательство . Докажем теорему 2 методом «от противного». С этой целью рассмотрим окружность, проходящую через вершины A , B и С четырёхугольника, и предположим, что эта окружность не проходит через вершину D . Приведём это предположение к противоречию. Рассмотрим сначала случай, когда точка D лежит внутри круга (рис.2).

Продолжим отрезок CD за точку D до пересечения с окружностью в точке E , и соединим отрезком точку E с точкой A (рис.2). Поскольку четырёхугольник ABCE вписан в окружность, то в силу теоремы 1 сумма величин углов ABC и AEC равна 180° . При этом сумма величин углов ABC и ADC так же равна 180° по условию теоремы 2. Отсюда вытекает, что угол ADC равен углу AEC . Возникает противоречие, поскольку угол ADC является внешним углом треугольника ADE и, конечно же, его величина больше, чем величина угла AEC , не смежного с ним.

Случай, когда точка D оказывается лежащей вне круга, рассматривается аналогично.

Теорема 2 доказана.

Перечисленные в следующей таблице свойства вписанных четырёхугольников непосредственно вытекают из теорем 1 и 2.

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Фигура Рисунок Свойство
Окружность, описанная около параллелограмма Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:


где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Окружность, описанная около параллелограмма
Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.
Окружность, описанная около ромба
Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.
Окружность, описанная около трапеции
Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.
Окружность, описанная около дельтоида
Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.
Произвольный вписанный четырёхугольник
Окружность, описанная около параллелограмма

Окружность можно описать около параллелограмма тогда и только тогда, когда параллелограмм является прямоугольником.

Окружность, описанная около ромба

Окружность можно описать около ромба тогда и только тогда, когда ромб является квадратом.

Окружность, описанная около трапеции

Окружность можно описать около трапеции тогда и только тогда, когда трапеция является равнобедренной трапецией.

Окружность, описанная около дельтоида

Окружность можно описать около дельтоида тогда и только тогда, когда дельтоид состоит из двух одинаковых прямоугольных треугольников.

Произвольный вписанный четырёхугольник

Площадь произвольного вписанного четырёхугольника можно найти по формуле Брахмагупты:

где a, b, c, d – длины сторон четырёхугольника,
а p – полупериметр, т.е.

Теорема Птолемея

Теорема Птолемея . Произведение диагоналей вписанного четырёхугольника равно сумме произведений противоположных сторон.

Доказательство . Рассмотрим произвольный четырёхугольник ABCD , вписанный в окружность (рис.3).

Докажем, что справедливо равенство:

Для этого выберем на диагонали AC точку E так, чтобы угол ABD был равен углу CBE (рис. 4).

Заметим, что треугольник ABD подобен треугольнику BCE . Действительно, у этих треугольников по два равных угла: угол ABD равен углу CBE (по построению точки E ), угол ADB равен углу ACB (эти углы являются вписанными углами, опирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

откуда вытекает равенство:

(1)

Заметим, что треугольник ABE подобен треугольнику BCD . Действительно, у этих треугольников по два равных угла: угол ABE равен углу DBC (углы ABD и EBC равны по построению, угол DBE – общий), угол BAC равен углу BDC (эти углы являются вписанными углами, пирающимися на одну и ту же дугу). Следовательно, справедлива пропорция:

Трапеция. Свойства трапеции

Трапеция – четырехугольник, у которого только одна пара сторон параллельна (а другая пара сторон не параллельна).

Параллельные стороны трапеции называются основаниями. Другие две — боковые стороны .
Если боковые стороны равны, трапеция называется равнобедренной .

Трапеция, у которой есть прямые углы при боковой стороне, называется прямоугольной .

Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции .

Свойства трапеции

1. Средняя линия трапеции параллельна основаниям и равна их полусумме.

2. Биссектриса любого угла трапеции отсекает на её основании (или продолжении) отрезок, равный боковой стороне.

3. Треугольники и , образованные отрезками диагоналей и основаниями трапеции, подобны.

Коэффициент подобия –

Отношение площадей этих треугольников есть .

4. Треугольники и , образованные отрезками диагоналей и боковыми сторонами трапеции, имеют одинаковую площадь.

5. В трапецию можно вписать окружность, если сумма оснований трапеции равна сумме её боковых сторон.

6. Отрезок, соединяющий середины диагоналей, равен полуразности оснований и лежит на средней линии.

7. Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.

8. Если сумма углов при любом основании трапеции равна 90°, то отрезок, соединяющий середины оснований, равен их полуразности.

Свойства и признаки равнобедренной трапеции

1. В равнобедренной трапеции углы при любом основании равны.

2. В равнобедренной трапеции длины диагоналей равны.

3. Если трапецию можно вписать в окружность, то трапеция – равнобедренная.

4. Около равнобедренной трапеции можно описать окружность.

5. Если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.

Вписанная окружность

Если в трапецию вписана окружность с радиусом и она делит боковую сторону точкой касания на два отрезка — и , то

Площадь

или где – средняя линия

Смотрите хорошую подборку задач с трапецией (входят в ГИА и часть В ЕГЭ) здесь и здесь.

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Трапеция. Формулы, признаки и свойства трапеции

Параллельные стороны называются основами трапеции, а две другие боковыми сторонами

Так же, трапецией называется четырехугольник, у которого одна пара противоположных сторон параллельна, и стороны не равны между собой.

  • Основы трапеции – параллельные стороны
  • Боковые стороны – две другие стороны
  • Средняя линия – отрезок, соединяющий середины боковых сторон.
  • Равнобедренная трапеция – трапеция, у которой боковые стороны равны
  • Прямоугольная трапеция – трапеция, у которой одна из боковых сторон перпендикулярна основам

Основные свойства трапеции

AK = KB, AM = MC, BN = ND, CL = LD

3. Средняя линия трапеции параллельна основаниям и равна их полусумме:

BC : AD = OC : AO = OB : DO

d 1 2 + d 2 2 = 2 a b + c 2 + d 2

Сторона трапеции

Формулы определения длин сторон трапеции:

a = b + h · ( ctg α + ctg β )

b = a – h · ( ctg α + ctg β )

a = b + c· cos α + d· cos β

b = a – c· cos α – d· cos β

4. Формулы боковых сторон через высоту и углы при нижнем основании:

Средняя линия трапеции

Формулы определения длины средней линии трапеции:

1. Формула определения длины средней линии через длины оснований:

2. Формула определения длины средней линии через площадь и высоту:

Высота трапеции

Формулы определения длины высоты трапеции:

h = c· sin α = d· sin β

2. Формула высоты через диагонали и углы между ними:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
a + b a + b

3. Формула высоты через диагонали, углы между ними и среднюю линию:

h = sin γ · d 1 d 2 = sin δ · d 1 d 2
2 m 2 m

4. Формула высоты трапеции через площадь и длины оснований:

5. Формула высоты трапеции через площадь и длину средней линии:

Диагонали трапеции

Формулы определения длины диагоналей трапеции:

d 1 = √ a 2 + d 2 – 2 ad· cos β

d 2 = √ a 2 + c 2 – 2 ac· cos β

2. Формулы диагоналей через четыре стороны:

d 1 = d 2 + ab – a ( d 2 – c 2 )
a – b
d 2 = c 2 + ab – a ( c 2 – d 2 )
a – b

d 1 = √ h 2 + ( a – h · ctg β ) 2 = √ h 2 + ( b + h · ctg α ) 2

d 2 = √ h 2 + ( a – h · ctg α ) 2 = √ h 2 + ( b + h · ctg β ) 2

d 1 = √ c 2 + d 2 + 2 ab – d 2 2

d 2 = √ c 2 + d 2 + 2 ab – d 1 2

Площадь трапеции

Формулы определения площади трапеции:

1. Формула площади через основания и высоту:

3. Формула площади через диагонали и угол между ними:

S = d 1 d 2 · sin γ = d 1 d 2 · sin δ
2 2

4. Формула площади через четыре стороны:

S = a + b c 2 – ( ( a – b ) 2 + c 2 – d 2 ) 2
2 2( a – b )

5. Формула Герона для трапеции

S = a + b √ ( p – a )( p – b )( p – a – c )( p – a – d )
| a – b |

где

p = a + b + c + d – полупериметр трапеции.
2

Периметр трапеции

Формула определения периметра трапеции:

1. Формула периметра через основания:

Окружность описанная вокруг трапеции

Формула определения радиуса описанной вокруг трапеции окружности:

1. Формула радиуса через стороны и диагональ:

R = a·c·d 1
4√ p ( p – a )( p – c )( p – d 1)

где

a – большее основание

Окружность вписанная в трапецию

Формула определения радиуса вписанной в трапецию окружности

1. Формула радиуса вписанной окружности через высоту:

Другие отрезки разносторонней трапеции

Формулы определения длин отрезков проходящих через трапецию:

1. Формула определения длин отрезков проходящих через трапецию:

KM = NL = b KN = ML = a TO = OQ = a · b
2 2 a + b

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/trapezium/

[/spoiler]

Посмотри, углы ( displaystyle alpha ) и ( displaystyle beta ) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами ( displaystyle varphi ) и ( displaystyle psi )? Они вроде бы тоже противоположные?

Можно ли вместо углов ( displaystyle alpha ) и ( displaystyle beta ) взять углы ( displaystyle varphi ) и ( displaystyle psi )?

Конечно, можно!

Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет ( displaystyle 180{}^circ ).

Оставшиеся два угла тогда сами собой тоже дадут в сумме ( displaystyle 180{}^circ ). Не веришь? Давай убедимся.

Смотри:

Пусть ( displaystyle alpha +beta =180{}^circ ). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, ( displaystyle 360{}^circ ).

То есть ( displaystyle alpha +beta +varphi +psi =360{}^circ ) — всегда! ( displaystyle 180{}^circ )

Но ( displaystyle alpha +beta =180{}^circ ), →( displaystyle varphi +psi =360{}^circ -180{}^circ =180{}^circ).

Волшебство прямо!

Так что запомни крепко-накрепко:

Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )

и наоборот:

Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник вписанный.

Доказательство смотри чуть дальше.

А пока давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна ( displaystyle 180{}^circ ).

Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?

Вписанный четырехугольникэто четырехугольник, все вершины которого лежат на одной окружности.

Центр окружности, описанной около четырехугольника — точка пересечения серединных перпендикуляров, проведенных к сторонам четырехугольника.

Признаки вписанного четырехугольника

Для того, чтобы четырехугольник был вписанным, необходимо и достаточно, чтобы выполнялось одно из следующих равенств:

Специальные случаи

Любые квадраты, прямоугольники, равнобедренные трапеции можно вписать в окружность.

Свойства вписанного четырехугольника

  • Произведение диагоналей вписанного четырехугольника равняется сумме произведений его противолежащих сторон.
  • Диагонали вписанного четырехугольника относятся как суммы, произведений сторон, сходящихся в концах диагоналей.
  • Диагонали вписанного четырехугольника разбивают его на две пары подобных треугольников.
  • Сумма квадратов противолежащих сторон четырехугольника равна квадрату диаметра описанной окружности.
  • Сумма противолежащих углов четырехугольника равна 180^{circ}.

Использование свойств и признаков вписанного четырехугольника при решении геометрических задач.

Задача 1. Высоты BE и CD остроугольного треугольника ABC пересекаются в точке  F. Докажите, что angle AFE= angle  ACB .

Решение. Рассмотрим четырехугольник ADFE.

angle ADF+angle AEF=90^{circ}+90^{circ}=180^{circ}.

Следовательно, вокруг четырехугольника ADFE можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle ADE=angle AFE.

Рассмотрим четырехугольник CEDB.

angle BEC=angle CDB=90^{circ}.

Следовательно, вокруг четырехугольника CEDB можно описать окружность и по свойству вписанного четырехугольника angle ECB+angle EDB =180^{circ}.

 angle EDB +angle ADE = 180^{circ} — свойство смежных углов.

Следовательно, angle ECB+180^{circ}-angle ADE =180^{circ}.

    [angle ECB =angle ADE]

    [angle ECB =angle AFE]

ч.т.д.

Задача 2. В остроугольном треугольнике  проведены высоты AD и CE. На них из точек E и D опущены перпендикуляры EF  и DG соответственно. Докажите, что прямые FG и AC параллельны.

Решение. Рассмотрим четырехугольник EDGF.

angle EFD=angle EGD=90^{circ}.

Следовательно, вокруг четырехугольника EDGF можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle DFG=angle DEC.

Рассмотрим четырехугольник AEDC.

angle AEC=angle ADC=90^{circ}.

Следовательно, вокруг четырехугольника AEDC можно описать окружность и по свойству вписанных углов, опирающихся на одну дугу angle DAC=angle DEC.

    [angle DFG=angle DEC=angle DAC]

angle DFG=angle DAC — соответственные углы, образованные при пересечении прямых FG и AC секущей AD.

Следовательно, прямые FG и AC параллельны.

ч.т.д.

Содержание:

Четырёхугольник – это фигура, которая состоит из четырёх точек и четырёх последовательно соединяющих их отрезков. При этом, никакие три из указанных точек не должны быть расположены на одной прямой, а соединяющие их отрезки не должны пересекаться. Данные точки называются вершинами четырёхугольника, а соединяющие их отрезки – сторонами четырёхугольника.

Четырехугольник - виды и свойства с примерами решения

Вершины, являющиеся концами одной стороны четырёхугольника, называются соседними, а вершины, не принадлежащие одной стороне – противолежащими. Стороны, имеющие общую вершину, называются соседними сторонами, а не имеющие общих вершин – противолежащими сторонами. Отрезки, соединяющие противолежащие вершины, называются диагоналями четырёхугольника. Точки, принадлежащие четырёхугольнику, делят плоскость q на два множества, которые образуют две области – внутреннюю и внешнюю.

Четырехугольник - виды и свойства с примерами решения

Четырёхугольник называется выпуклым, если все точки, принадлежащие внутренней области, находятся в одной полуплоскости от линии, содержащей любую сторону четырёхугольника, если эти точки находятся в разных полуплоскостях, то четырёхугольник называется невыпуклым (вогнутым).

Четырехугольник - виды и свойства с примерами решения

Если соединить любые две точки внутренней области выпуклого многоугольника, то отрезок, соединяющий эти точки, целиком находится во внутренней области четырёхугольника.

Диагонали выпуклого четырёхугольника находятся во внутренней области. У невыпуклого четырёхугольника одна из диагоналей находится во внешней области. Каждая из двух диагоналей выпуклого четырёхугольника делит его на два треугольника.

Четырехугольник - виды и свойства с примерами решения

Внутренние и внешние углы четырехугольника

Угол, смежный любому углу выпуклого четырёхугольника, называется внешним углом. Из любой вершины четырёхугольника можно провести два внешних угла, которые являются вертикальными углами и соответственно равны друг другу. Поэтому, говоря о внешнем угле четырёхугольника, мы будем иметь в виду, один из них. На рисунке для внутренних углов Четырехугольник - виды и свойства с примерами решения углы Четырехугольник - виды и свойства с примерами решения являются внешними.

Четырехугольник - виды и свойства с примерами решения

Каждый внутренний угол выпуклого четырёхугольника меньше Четырехугольник - виды и свойства с примерами решения Градусная мера внутреннего угла невыпуклого четырёхугольника может быть больше Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Сумма внутренних углов выпуклого четырёхугольника

Теорема. Сумма внутренних углов выпуклого четырёхугольника равна Четырехугольник - виды и свойства с примерами решения Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Докажите теорему, основываясь на том, что сумма внутренних углов треугольника равна Четырехугольник - виды и свойства с примерами решения Доказательство представьте в виде двухстолбчатой таблицы.

Сумма внешних углов выпуклого четырёхугольника

Теорема. Сумма внешних углов выпуклого четырёхугольника равна Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Докажите теорему, опираясь на то, что внешний и внутренний угол, при каждой вершине являются смежными углами.

Параллелограмм

Параллелограмм и его свойства

Параллелограммом называется четырёхугольник, у которого противоположные стороны попарно параллельны. Четырехугольник - виды и свойства с примерами решения

Теорема 1. Противоположные стороны параллелограмма конгруэнтны. Четырехугольник - виды и свойства с примерами решения

Теорема 2. Противоположные углы параллелограмма конгруэнтны. Четырехугольник - виды и свойства с примерами решения

Теорема 3. Сумма углов, прилежащих к одной стороне параллелограмма равна Четырехугольник - виды и свойства с примерами решения Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Теорема 4. Диагонали параллелограмма пересекаются и делятся точкой пересечения пополам. Четырехугольник - виды и свойства с примерами решения

Теорема 5. Диагонали параллелограмма делят его на два конгруэнтных треугольника. Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Признаки параллелограмма

Теорема 1. Четырёхугольник у которого две противоположные стороны конгруэнтный параллельны есть параллелограмм.

Теорема 2. Четырёхугольник с попарно конгруэнтными сторонами есть параллелограмм.

Теорема 3. Если диагонали четырёхугольника пересекаются и в точке пересечения делятся по полам, то этот четырёхугольник есть параллелограмм.

Прямоугольник

Параллелограмм, все углы которого прямые, называется прямоугольником.

Все свойства параллелограмма относятся к прямоугольнику.

Наряду с этим прямоугольник имеет следующее свойство:

Теорема. Диагонали прямоугольника конгруэнтны. Четырехугольник - виды и свойства с примерами решения

Признак прямоугольника

Параллелограмм, у которого диагонали конгруэнтны есть прямоугольник.

Четырехугольник - виды и свойства с примерами решения

Ромб и квадрат

Свойства ромба

Параллелограмм, у которого все стороны конгруэнтны, называется ромбом. Все свойства параллелограмма относятся к ромбу. Наряду с этим, ромб обладает следующими свойствами:

Теорема 1. Диагонали ромба являются биссектрисами его углов и пересекаются под прямым утлом. Четырехугольник - виды и свойства с примерами решения

Теорема 2. (Обратная георема). Параллелограмм, у которого диагонали перпендикулярны, есть ромб. Если Четырехугольник - виды и свойства с примерами решения то параллелограмм Четырехугольник - виды и свойства с примерами решения является ромбом.

Четырехугольник - виды и свойства с примерами решения

Доказательство теоремы 1.

Дано: Четырехугольник - виды и свойства с примерами решения ромб.

Докажите, что Четырехугольник - виды и свойства с примерами решения

Доказательство (словестное): По определению ромба Четырехугольник - виды и свойства с примерами решения При этом, так как ромб является параллелограммом, а диагонали параллелограмма делятся точкой пересечения пополам, тогда можно записать, что Четырехугольник - виды и свойства с примерами решения равнобедренный. Медиана Четырехугольник - виды и свойства с примерами решения (так как Четырехугольник - виды и свойства с примерами решения), является также и биссектрисой и высотой. Т.е. Четырехугольник - виды и свойства с примерами решения Так как Четырехугольник - виды и свойства с примерами решения является прямым углом, то Четырехугольник - виды и свойства с примерами решения. Аналогичным образом можно доказать, что Четырехугольник - виды и свойства с примерами решения

Если четырёхугольник является ромбом или квадратом, то справедливы следующие утверждения.

Ромб:

  • 1. Все свойства параллелограмма действительны для ромба.
  • 2. Все стороны конгруэнтны.
  • 3. Диагонали взаимно перпендикулярны.
  • 4. Диагонали ромба делят его углы пополам.

Квадрат:

  • 1. Все свойства прямоугольника и ромба действительны для квадрата.
  • 2. Все углы прямые.
  • 3. Все стороны конгруэнтны.
  • 4. Диагонали равны, взаимно перпендикулярны, делятся точкой пересечения пополам, являются биссектрисами углов квадрата.

Четырехугольник - виды и свойства с примерами решения

Трапеция

Четырёхугольник, у которого только две стороны параллельны, называется трапецией.

Параллельные стороны трапеции называются основаниями, не параллельные стороны называются боковыми сторонами.

Четырехугольник - виды и свойства с примерами решения

Трапеция, у которой боковые стороны равны называется равнобедренной трапецией.

Трапеция, у которой одна из боковых сторон перпендикулярна основанию называется прямоугольной трапецией.

Теорема 1. В равнобедренной трапеции углы, прилежащие к основанию конгруэнтны. Четырехугольник - виды и свойства с примерами решения

Теорема 2. Диагонали равнобедренной трапеции конгруэнтны. Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

План доказательства теоремы 2

Дано: Четырехугольник - виды и свойства с примерами решения равнобедренная трапеция. Четырехугольник - виды и свойства с примерами решения

Докажите: Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Средняя линия треугольника

Теорема Фалеса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне конгруэнтные отрезки, то они отсекают конгруэнтные отрезки и на другой его стороне. Если Четырехугольник - виды и свойства с примерами решения тогда Четырехугольник - виды и свойства с примерами решения Запишите в тетради доказательство теоремы, заполнив пропущенные строки.

Доказательство: через точку Четырехугольник - виды и свойства с примерами решения проведем параллельную прямую к прямой Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Если в условии теоремы Фалеса, вместо угла взять две произвольные прямые, то результат не изменится.

Исследование: 1) В треугольнике Четырехугольник - виды и свойства с примерами решения через точку Четырехугольник - виды и свойства с примерами решения – середину стороны Четырехугольник - виды и свойства с примерами решения проведите прямую параллельную Четырехугольник - виды и свойства с примерами решения Какая фигура получилась? Является ли Четырехугольник - виды и свойства с примерами решения трапецией? Измерьте и сравните основания полученной трапеции. 2) Измерьте и сравните длины отрезков Четырехугольник - виды и свойства с примерами решения Можно ли утверждать, что Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Определение: Отрезок, соединяющий середины двух сторон треугольника называется средней линией этого треугольника. Теорема. Средняя линия, соединяющая середины двух сторон треугольника, параллельна третьей стороне и равна ее половине Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Доказательство. Пусть дан треугольник Четырехугольник - виды и свойства с примерами решения и его средняя линия Четырехугольник - виды и свойства с примерами решения Проведём через точку Четырехугольник - виды и свойства с примерами решения прямую параллельную стороне Четырехугольник - виды и свойства с примерами решения По теореме Фалеса, она проходит через середину стороны Четырехугольник - виды и свойства с примерами решения т.е. совпадает со средней линией Четырехугольник - виды и свойства с примерами решения Т.е. средняя линия Четырехугольник - виды и свойства с примерами решения параллельна стороне Четырехугольник - виды и свойства с примерами решения Теперь проведём среднюю линию Четырехугольник - виды и свойства с примерами решения Т.к. Четырехугольник - виды и свойства с примерами решения то четырёхугольник Четырехугольник - виды и свойства с примерами решения является параллелограммом. По свойству параллелограмма Четырехугольник - виды и свойства с примерами решения По теореме Фалеса Четырехугольник - виды и свойства с примерами решения Тогда Четырехугольник - виды и свойства с примерами решения Теорема доказана.

Средняя линия трапеции

Средней линией трапеции называется отрезок, соединяющим середины боковых сторон трапеции.

Четырехугольник - виды и свойства с примерами решения

Теорема. Средняя линия трапеции параллельна основаниям и равна их полусумме.

Четырехугольник - виды и свойства с примерами решения

Доказательство: Через точку Четырехугольник - виды и свойства с примерами решения и точку Четырехугольник - виды и свойства с примерами решения середину Четырехугольник - виды и свойства с примерами решения проведём прямую и обозначим точку пересечения со стороной Четырехугольник - виды и свойства с примерами решения через Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Координаты середины отрезка

Исследование: Начертите числовую ось. Постройте окружность с центром в точке Четырехугольник - виды и свойства с примерами решения радиусом 3 единицы. Вычислите значение выражения Четырехугольник - виды и свойства с примерами решения Есть ли связь между значением данного выражения и координатой точки Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Координаты середины отрезка

1) Пусть на числовой оси заданы точки Четырехугольник - виды и свойства с примерами решения и Четырехугольник - виды и свойства с примерами решения и точка Четырехугольник - виды и свойства с примерами решения которая является серединой отрезка Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения то Четырехугольник - виды и свойства с примерами решения а отсюда следует, что Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

2) По теореме Фалеса, если точка Четырехугольник - виды и свойства с примерами решения является серединой отрезка Четырехугольник - виды и свойства с примерами решения то на оси абсцисс точка Четырехугольник - виды и свойства с примерами решения является соответственно координатой середины отрезка концы которого находятся в точках Четырехугольник - виды и свойства с примерами решения и Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

3) Координаты середины отрезка Четырехугольник - виды и свойства с примерами решения с концами Четырехугольник - виды и свойства с примерами решения и Четырехугольник - виды и свойства с примерами решения точки Четырехугольник - виды и свойства с примерами решения находятся так:

Четырехугольник - виды и свойства с примерами решения

Убедитесь, что данная формула верна в случае, если отрезок Четырехугольник - виды и свойства с примерами решения параллелен одной из осей координат.

Теорема Пифагора

В этом разделе вы научитесь:

  • различать рациональные и иррациональные числа;
  • упрощать выражения, содержащие квадратные корни;
  • решать задания на извлечение квадратного корня;
  • основам теоремы Пифагора;
  • решать практические задачи, применяя теорему Пифагора.

При решении таких задач как вычисления силы шторма на море, скорости автомобиля при аварии, определения места приземления при прыжке с парашютом часто приходится проводить вычисления с числами, стоящими под знаком корня.

Теорема Пифагора очень часто используется при решении геометрических задач.

Имя Пифагора ассоциируется с прямоугольным треугольником и соотношением между его сторонами. Греческий учёный Пифагор, живший в VI веке до нашей эры, является основателем школы, в которой преподавались музыка, гимнастика, философия и геометрия. Ученики школы называли себя Пифагорейцами. Они провозглашали гармонию музыки и чисел в природе и не верили в существование иррациональных чисел.

Практическая работа:

Шаг 1. Вырежьте из картона два одинаковых квадрата.

Шаг 2. На стороне одного из них отметьте отрезки Четырехугольник - виды и свойства с примерами решения как показано на рисунке и разрежьте его на два квадрата и два прямоугольника.

Четырехугольник - виды и свойства с примерами решения

Шаг 3. Полученные фигуры расположите, как показано на рисунке.

Четырехугольник - виды и свойства с примерами решения

Шаг 4. На сторонах другого квадрата отметьте отрезки Четырехугольник - виды и свойства с примерами решения как показано на рисунке и отрежьте четыре прямоугольных треугольника.

Четырехугольник - виды и свойства с примерами решения

Шаг 5. Что вы можете сказать о конгруэнтности данных треугольников? К какому виду относится оставшаяся фигура, после того, как вы отрезали треугольники и убрали их? Чему равен каждый внутренний угол данного четырёхугольника?

Шаг 6. Расположите полученные фигуры, как показано на рисунке.

Четырехугольник - виды и свойства с примерами решения

Шаг 7. Сравните результаты, которые вы получили на 3 и 6 шагах. К какому выводу вы пришли?

Теорема Пифагора:

В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов. Четырехугольник - виды и свойства с примерами решения

Если рассмотреть площади квадратов, построенных на сторонах прямоугольного треугольника, то теорему Пифагора можно перефразировать так: в прямоугольном треугольнике площадь квадрата, построенного на гипотенузе, равна сумме площадей квадратов, построенных на катетах: Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Если в прямоугольном треугольнике заданы две стороны, то третью сторону можно найти по теореме Пифагора.

Пример:

Найдём длину катета на рисунке:

Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Историческая справка: Пифагор родился в 569 году до нашей эры на острове Самос в Греции. В истории его имя увековечено теоремой, которая называется теоремой Пифагора. Она известна своей простотой и практическим значением. Об этой теореме знали ещё задолго до Пифагора. Однако, из письменных источников следует, что впервые её доказал именно Пифагор. Помимо оригинального доказательства теоремы самим Пифагором, известны также доказательстве» Эвклида, Леонардо да Винчи, Президента Америки Джеймса Гарфилда. В 1940 году широкой публике была представлена книга, где приводилось 370 доказательств теоремы. На рисунке вы видите статую, возведённую в честь Пифагора на его родине на острове Самос.

Обратная теорема:

Если квадрат одной из сторон треугольника равен сумме квадратов двух других сторон, то такой треугольник является прямоугольным треугольником. Если Четырехугольник - виды и свойства с примерами решения то, Четырехугольник - виды и свойства с примерами решения – прямоугольный.

Четырехугольник - виды и свойства с примерами решения

Прямоугольные треугольники, которых выражаются натуральными числами, называются Пифагоровыми треугольниками. Самый распространённый прямоугольный треугольник имеет стороны 3; 4; 5. Древние египтяне повсеместно пользовались этим треугольником для измерений. Такой треугольник называется Египетским треугольником. Треугольники со сторонами 5,12,13; 8,15,17; 7,24,25,… также являются треугольниками Пифагора. А эти числа называются Пифагоровыми тройками. Если числа Четырехугольник - виды и свойства с примерами решения являются Пифагоровыми тройками, то и числа Четырехугольник - виды и свойства с примерами решения также являются Пифагоровыми тройками.

Справочный материал по четырёхугольнику

Обозначим четыре точки, например А, В, С, D, из которых никакие три не лежат на одной прямой. Последовательно соединим их непересекающимися отрезками АВ, ВС, CD, DA. Получим четырёхугольник ABCD.

Четырехугольник - виды и свойства с примерами решения (рис. 1).

Точки А, В, С, D – вершины четырёхугольника, отрезки АВ, ВС, CD, DA – его стороны. Углы DAB, ABC, BCD, CDA – это углы четырёхугольника. Их также обозначают одной буквой –Четырехугольник - виды и свойства с примерами решения Четырехугольник - виды и свойства с примерами решения

Вершины, стороны и углы четырёхугольника называют его элементами. ? | Почему фигуры, изображённые на рисунках 2 и 3, не являются четырёхугольниками?

У фигуры на рисунке 2 отрезки АС и BD пересекаются, а у фигуры на рисунке 3 точки A, D, С лежат на одной прямой. Четырехугольник - виды и свойства с примерами решения

Четырёхугольник обозначают, последовательно записывая его вершины, начиная с любой из них. Например, четырёхугольник на рисунке 4 можно обозначить так: ABCD, или BCDA, или CDAB и т. д. Но для данного четырёхугольника запись, например, ADBC либо CDBA – неверна.

Две вершины, два угла или две стороны четырёхугольника могут быть либо соседними, либо противоположными. Например, в четырёхугольнике ABCD (рис. 4) вершины А и D, ZA и ZD, стороны AD и АВ – соседние, а вершины А и С, Четырехугольник - виды и свойства с примерами решения, стороны AD и ВС – противоположные.

Отрезки, соединяющие противоположные вершины четырёхугольника, называются его диагоналями. На рис. 4 отрезки АС и BD – диагонали четырёхугольника ABCD.

Четырёхугольники бывают выпуклыми и невыпуклыми.

Если четырёхугольник лежит по одну сторону от каждой прямой, соединяющей две его соседние вершины, то он выпуклый. На рисунке 5 четырёхугольник выпуклый, а на рисунке б – невыпуклый, поскольку он не лежит по одну сторону от прямой, проходящей через вершины М и N.

Четырехугольник - виды и свойства с примерами решения

Мы будем изучать лишь выпуклые четырёхугольники. Сумма длин всех сторон четырёхугольника называется его периметром. Периметр обозначают буквой Р.

Записать, что периметр четырёхугольника ABCD равен 40 см, можно так: Четырехугольник - виды и свойства с примерами решения=40 cm

Пример:

Докажите, что каждая сторона четырёхугольника меньше суммы трёх других его сторон.

Решение:

Диагональ АС четырёхугольника ABCD делит его на два треугольника ABC и ADC (рис. 7). В Четырехугольник - виды и свойства с примерами решения+ CD (по неравенству треугольника). Тогда Четырехугольник - виды и свойства с примерами решения. Аналогично АВ< ВС+ CD + AD, BC

Четырехугольник - виды и свойства с примерами решения

Может ли четырёхугольник иметь стороны: 1 см, 2 см, 3 см, 6 см? Не может, так как наибольшая сторона равна сумме трёх других.

Для того чтобы определить, можно ли из четырёх отрезков а, Ь, с, d построить четырёхугольник, проверьте, является ли наибольший из четырёх отрезков меньше, чем сумма трёх других.

Начертите произвольный четырёхугольник и измерьте транспортиром его углы. Чему равна их сумма?

Теорема (о сумме углов четырёхугольника).

Сумма углов четырёхугольника равна 360е.

Дано: четырёхугольник ABCD (рис. 8).

Доказать; Четырехугольник - виды и свойства с примерами решения

Доказательство. Диагональ АС четырёхугольника ABCD разделяет его на два треугольника ABC и ACD. Сумма углов четырёхугольника равна сумме всех углов этих треугольников, то есть Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Могут ли в четырёхугольнике все углы быть острыми? Нет, поскольку тогда сумма этих углов будет меньше 360°.

Угол, смежный с углом четырёхугольника, называют внешним углом четырёхугольника.

На рисунке 9 Четырехугольник - виды и свойства с примерами решения – внешний угол четырёхугольника при вершине D.

Четырехугольник - виды и свойства с примерами решения

1. У вас может возникнуть вопрос: Чем отличаются выпуклые и невыпуклые четырёхугольники?

Диагонали выпуклого четырёхугольника ABCD (рис. 10) пересекаются, и каждая из них разделяет его на два треугольника. А диагонали невыпуклого четырёхугольника MNKP (рис. 11) не пересекаются, и только одна из них разбивает его на два треугольника.

Каждый угол выпуклого четырёхугольника меньше 180°. Если четырёхугольник невыпуклый, то один из его углов больше 180°.

Понятие «внешний угол» относится только к выпуклым четырёхугольникам. Посмотрите на рисунок 11. В невыпуклом четырёхугольнике MNKP угол N больше 180°. А понятие внешнего угла на углы, которые больше 180е, не распространяется, ведь согласно определению – это угол, смежный с углом четырёхугольника.

2. В отличие от треугольника четырёхугольник – фигура нежёсткая. Если взять четыре планки и соединить их шарнирами, то форму полученного четырёхугольника можно изменять (рис. 12).

3. Термин «диагональ» происходит от греческого слова diagonios, что означает «идущий от угла к углу». Этот термин стал общепринятым лишь в XVIII веке. Четырехугольник - виды и свойства с примерами решения

Параллелограмм и его свойства

Если пару параллельных прямых пересечём другой парой параллельных прямых, то получим четырёхугольник, в котором противоположные стороны попарно параллельны. В четырёхугольнике ABCD (рис. 28) AD || ВС и АВ || DC.

Четырехугольник - виды и свойства с примерами решения

Четырёхугольник, в котором противоположные стороны попарно параллельны, называется параллелограммом.

Высотой параллелограмма называется перпендикуляр, проведённый из любой точки одной стороны к параллельной ей стороне (либо её продолжению).

На рисунке 29 отрезки ВМ и BN – высоты параллелограмма ABCD. Четырехугольник - виды и свойства с примерами решения

Теорема (свойство сторон и углов параллелограмма).

В параллелограмме: 1) противоположные стороны равны; 2) противоположные углы равны.

Четырехугольник - виды и свойства с примерами решения

Дано: ABCD – параллелограмм (рис. 30).

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. Проведём диагональ AC. Четырехугольник - виды и свойства с примерами решения по стороне и прилежащим к ней углам. При этом АС — общая сторона, Четырехугольник - виды и свойства с примерами решения– внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей AC, Четырехугольник - виды и свойства с примерами решения также, как внутренние накрест лежащие углы при параллельных прямых >45 и DC и секущей АС. Из равенства треугольников ABC и CD А следует: 1) АВ = DC, ВС = AD 2) Четырехугольник - виды и свойства с примерами решения. Углы А и С параллелограмма равны как суммы равных углов.

Может ли в параллелограмме быть только один острый угол? Не может, так как, согласно доказанной теореме, таких углов два.

Пример №1

Сумма углов, прилежащих к одной стороне параллелограмма, равна 180°. Докажите это.

Четырехугольник - виды и свойства с примерами решения

Решение:

Четырехугольник - виды и свойства с примерами решения (рис. 31) по свойству внутренних односторонних углов при параллельных прямых ВС и AD и секущей АВ. Аналогично Четырехугольник - виды и свойства с примерами решения (АВ CD, ВС-секущая), Четырехугольник - виды и свойства с примерами решения (ВС || AD, CD – секущая), Четырехугольник - виды и свойства с примерами решения (АВ || CD, AD- секущая).

Теорема (свойство диагоналей параллелограмма).

Диагонали параллелограмма точкой их пересечения делятся пополам.

Дано: ABCD — параллелограмм (рис. 32), АС и BD — диагонали, О — точка пересечения диагоналей. Доказать: АО = ОС, ВО = OD.

Четырехугольник - виды и свойства с примерами решения

Доказательство. Четырехугольник - виды и свойства с примерами решения по стороне А и прилежащим к ней углам. Из них ВС = AD как противоположные стороны параллелограмма, Четырехугольник - виды и свойства с примерами решения как внутренние накрест лежащие углы при параллельных прямых ВС и AD и секущей BD, (BC || AD, АС— секущая). Из равенства треугольников AOD и СОВ следует: АО = ОС, ВО = OD.

Для того чтобы доказать равенство отрезков (углов) в параллелограмме, докажите равенство треугольников, соответствующими элементами которых являются эти отрезки (углы).

Свойства параллелограмма приведены в таблице 3.Четырехугольник - виды и свойства с примерами решения

1. Возникает вопрос: Сколько данных необходимо для построения параллелограмма ?Таких данных должно быть три, среди которых — не более одного из его углов (один угол параллелограмма определяет остальные углы).

2. Название «параллелограмм» (parallelogrammon) происходит от сочетания греческих слов: «параллелос» — идущий рядом и «грамма» — линия.

Этот термин впервые упоминается в «Началах» Евклида (III в. до н. э.). Сначала вместо термина «параллелограмм» древнегреческий учёный использовал словосочетание «образованная параллельными линиями площадь» (часть плоскости, ограниченная двумя парами параллельных прямых).

Признаки параллелограмма

Решaя задачи, иногда требуется установить, что данный четырёхугольник – параллелограмм. Для этого используют признаки параллелограмма.

Теорема (признак параллелограмма).

Если противоположные стороны четырёхугольника попарнo равны, то такой четырёхугольник – параллелограмм.

Четырехугольник - виды и свойства с примерами решения

Дано: ABCD — четырёхугольник (рис. 52), АВ = DC, ВС = AD.

Доказать: ABCD— параллелограмм.

Доказательство. Проведём диагональ BD (рис. 52). Четырехугольник - виды и свойства с примерами решения по трём сторонам. У них BD— общая сторона, АВ = DC и ВС = AD по условию. Из равенства треугольников следует: Четырехугольник - виды и свойства с примерами решенияЧетырехугольник - виды и свойства с примерами решения Углы CBD и ADB— внутренние накрест лежащие при прямых ВС и AD и секущей BD. Поэтому ВС || AD. Углы ABD и СОВ также внутренние накрест лежащие при прямых АВ и DC и секущей BD. Поэтому АВ || DC. Так как в четырёхугольнике ABCD ВС ||AD и АВ ||DC, то, по определению, этот четырёхугольник — параллелограмм.

Можно ли считать четырёхугольник параллелограммом, если в нём две противоположные стороны равны, а две другие – параллельны?

Нет, нельзя. На рисунке 53 АВ = CD, ВС || AD, но четырёхугольник ABCD – не параллелограмм. Четырехугольник - виды и свойства с примерами решения

Теорема (признак параллелограмма).

Если в четырёхугольнике две противоположные стороны равны и параллельны, то такой четырёхугольник – параллелограмм.

Дано: ABCD — четырёхугольник (рис. 54), и АВ = DC, АВ || DC.

Четырехугольник - виды и свойства с примерами решения

Доказать: ABCD — параллелограмм.

Доказательство. Проведём диагональ АС (рис. 54). Четырехугольник - виды и свойства с примерами решения по двум сторонам и углу между ними. У них АС — общая сторона, АВ = DC по условию, Четырехугольник - виды и свойства с примерами решения как внутренние накрест лежащие углы при параллельных прямых АВ и DC и секущей АС. Из равенства треугольников следует: Четырехугольник - виды и свойства с примерами решения Но углы DAC и ВС А — внутренние накрест лежащие при прямых ВС и AD и секущей АС. Поэтому ВС || AD. Поскольку в четырёхугольнике ABCD AD || БС(по доказанному) и АВ || DC (по условию), то, по определению, этот четырёхугольник — параллелограмм.

Пример №2 (признак параллелограмма).

Если диагонали четырёхугольника делятся точкой их пересечения пополам, то такой четырёхугольник — параллелограмм. Докажите это.

Четырехугольник - виды и свойства с примерами решения

Решение:

Пусть ABCD—данный четырёхугольник, О — точка пересечения его диагоналей и ВО= OD, АО= ОС (рис. 55). Докажем, что ABCD — параллелограмм. Четырехугольник - виды и свойства с примерами решения по двум сторонам и углу между ними. У них ВО = OD, АО = ОС по условию, Четырехугольник - виды и свойства с примерами решения как вертикальные. Из равенства треугольников следует: ВС= AD и Четырехугольник - виды и свойства с примерами решения Но углы ОВС и ODA — внутренние накрест лежащие при прямых BCuADh секущей BD. Поэтому BC\AD.

Поскольку в четырёхугольнике ABCD ВС= AD и ВС || AD, то, согласно доказанному признаку, этот четырёхугольник – параллелограмм.

Чтобы установить, что четырёхугольник – параллелограмм, докажите, что в нём:

  1. либо противоположные стороны попарно параллельны (определение параллелограмма),
  2. либо противоположные стороны попарно равны (признак),
  3. либо две противоположные стороны равны и параллельны (признак),
  4. либо диагонали делятся точкой их пересечения пополам (признак).

Вам уже знакомы понятия «необходимо», «достаточно», «необходимо и достаточно». В таблице 5 рассмотрите пары утверждений А и В и выясните смысл этих понятий.

Четырехугольник - виды и свойства с примерами решения

Обратите внимание, что утверждения «Л достаточно для в» и «А необходимо для В» — взаимно обратные. Их можно объединить и сформулировать следующим образом.

Для того чтобы четырехугольник был параллелограммом, необходимо и достаточно, чтобы его противоположные стороны были попарно равны.

Иногда вместо «необходимое и достаточное условие» говорят «необходимый и достаточный признак», а чаще — просто «признак». Поэтому теоремы этого параграфа называем «признаками параллелограмма».

Прямоугольник

Параллелограммы, как и –у треугольники, можно разделить на виды. Прямоугольник – один из видов параллелограмма. На рисунке 73 вы видите параллелограмм ABCD являющийся прямоугольником. Дайте определение прямоугольнику и сравните его с приведённым в учебнике. Четырехугольник - виды и свойства с примерами решения

Параллелограмм, у которого все углы прямые, называется прямоугольником.

Поскольку прямоугольник – частный вид параллелограмма, то ему присущи все свойства параллелограмма:

  1. противоположные стороны равны;
  2. противоположные углы равны;
  3. диагонали делятся точкой их пересечения пополам.

Кроме этих свойств прямоугольник имеет ещё и особое свойство.

Дано: ABCD — прямоугольник, АС и BD — диагонали (рис. 74).

Четырехугольник - виды и свойства с примерами решения

Доказать: АС = BD.

Доказательство. Прямоугольные треугольники ACDw DBA равны по двум катетам. При этом AD — общий катет, а катеты АВ и DC равны как противоположные стороны параллелограмма. Из равенства треугольников следует: АС = BD.

Свойства прямоугольника приведены в таблице 8.

Четырехугольник - виды и свойства с примерами решения Можно ли утверждать, что параллелограмм, в котором диагонали равны, является прямоугольником? Да, но это нужно доказать.

Пример №3 (признак прямоугольника).

Если диагонали параллелограмма равны, то такой параллелограмм — прямоугольник. Докажите это.

Решение:

Пусть ABCD — параллелограмм, в котором АС = BD (рис. в табл. 8). Докажем, что Четырехугольник - виды и свойства с примерами решения. Четырехугольник - виды и свойства с примерами решения по трём сторонам. У них AD — общая сторона, АС = BD по условию, АВ = DC — как противоположные стороны параллелограмма. Из этого следует, что Четырехугольник - виды и свойства с примерами решения. Поскольку в параллелограмме противоположные углы равны, то: Четырехугольник - виды и свойства с примерами решения. По свойству углов четырёхугольника, Четырехугольник - виды и свойства с примерами решения

Следовательно, Четырехугольник - виды и свойства с примерами решения: 4 = 90°, то есть параллелограмм ABCD — прямоугольник.

Для того чтобы установить, что данный параллелограмм – прямоугольник, докажите, что у него: либо все его углы прямые (определение прямоугольника), либо диагонали равны (признак).

Можно ли утверждать, что четырёхугольник, в котором диагонали равны, – это прямоугольник? Нет, нельзя (см. рис. 75). Необходимо проверить, выполняется ли один из признаков параллелограмма. Например, делятся ли диагонали точкой их пересечения пополам.

Четырехугольник - виды и свойства с примерами решения

Возникает вопрос: Можно ли сформулировать другие определения прямоугольника ?

В младших классах прямоугольником называли четырёхугольник, все углы в котором прямые. Теперь мы определили прямоугольник как частный вид параллелограмма. Возможны и такие определения прямоугольника: параллелограмм, в котором все углы равны (действительно, сумма углов параллелограмма составляет 360°, тогда каждый из них равен 90°); параллелограмм, в котором есть прямой угол (действительно, в параллелограмме сумма смежных углов составляет 180е, а противоположные углы равны. Если один из его углов прямой, то и три остальные — прямые). Эти определения прямоугольника эквивалентны.

Следовательно, существуют разные определения одного и того же понятия.

Ромб. Квадрат

Могут ли в параллелограмме все стороны быть равными? Да, могут. На рисунке 94 в параллелограмме ABCD АВ = ВС = = CD = AD. Это ещё один вид параллелограмма – ромб.

Четырехугольник - виды и свойства с примерами решения

Параллелограмм, у которого все стороны равны, называется ромбом.

Можно ли утверждать, что параллелограмм является ромбом, если две его смежные стороны равны? Да, можно. Равенство всех сторон такого параллелограмма следует из свойства: противоположные стороны параллелограмма равны.

Теорема (свойства диагоналей ромба). Диагонали ромба взаимно перпендикулярны. Диагонали ромба делят его углы пополам.

Четырехугольник - виды и свойства с примерами решения

Дано: ABCD – ромб (рис. 95), О— точка пересечения диагоналей АС и BD.

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. Согласно определению ромба АВ = ВС, поэтому треугольник ABC— равнобедренный. Так как ромб ABCD— параллелограмм, то АО — ОС. Отсюда ВО— медиана равнобедренного треугольника ABC, следовательно, высота и биссектриса этого треугольника. Поэтому Четырехугольник - виды и свойства с примерами решения. Четырехугольник - виды и свойства с примерами решения

Аналогично доказываем, что диагональ BD делит пополам угол D, а диагональ АС— углы А и С ромба ABCD.

Свойства ромба приведены в таблице 10. Таблица 1 О

Четырехугольник - виды и свойства с примерами решения

Пример №4 (признак ромба)

Докажите, что параллелограмм, диагонали которого взаимно перпендикулярны, является ромбом.

Решение:

Пусть ABCD — данный параллелограмм, в котором Четырехугольник - виды и свойства с примерами решения(рис. 96). Докажем, что ABCD— ромб. Четырехугольник - виды и свойства с примерами решения по двум сторонами и углу между ними.

Четырехугольник - виды и свойства с примерами решения

Так как ромб – это частный вид параллелограмма, то он имеет все свойства параллелограмма (назовите их). Кроме того, ромб обладает особыми свойствами. У них сторона АО — общая, OB = OD по свойству диагоналей параллелограмма, Четырехугольник - виды и свойства с примерами решения по условию. Из равенства треугольников следует: АВ = AD. Тогда АВ = CD и AD = ВС по свойству противоположных сторон параллелограмма. Итак, все стороны параллелограмма равны, поэтому он является ромбом.

Для того чтобы установить, что данный параллелограмм – ромб, докажите, что в нем:

  • либо все стороны равны (определение ромба),
  • либо диагонали взаимно перпендикулярны (признак).

Прямоугольник, в котором все стороны равны, называется квадратом.

На рисунке 97 вы видите квадрат ABCD.

Четырехугольник - виды и свойства с примерами решения

Существуют и другие определения квадрата: ромб, в котором все углы прямые, называется квадратом; прямоугольник, в котором все стороны равны, называется квадратом; параллелограмм, в котором все стороны равны и все углы прямые, называется квадратом. Следовательно, квадрат имеет все свойства параллелограмма, прямоугольника и ромба. Перечислим свойства квадрата.

  1. Противоположные стороны и противоположные углы квадрата равны. Диагонали квадрата в точке пересечения делятся пополам (свойства параллелограмма).
  2. Диагонали квадрата равны (свойство прямоугольника).
  3. Диагонали квадрата взаимно перпендикулярны и делят его углы пополам (свойства ромба).

Квадрат является частным видом и ромба, и прямоугольника, и параллелограмма. Ромб и прямоугольник – это частные виды параллелограмма. Соотношение между видами параллелограммов показано на Четырехугольник - виды и свойства с примерами решения

1. Рассмотрите таблицу классификации параллелограммов по соседним углам и смежным сторонам. Предложите собственную классификацию изученных видов параллелограмма.

Таблица 1 1

Четырехугольник - виды и свойства с примерами решения

2. Кроме параллелограммов есть ещё один вид четырёхугольников — дельтоид. Эту фигуру получим, если два равнобедренных треугольника ABC и ADCc равными основаниями АС приложить друг к другу так, как показано на рисунке 99.

Четырехугольник - виды и свойства с примерами решения

Свойства дельтоида следуют из свойств равнобедренного треугольника. Например, диагонали взаимно перпендикулярны, одна из них делит углы пополам и другую диагональ — пополам. Сформулируйте, пользуясь рисунком, другие свойства дельтоида. Если равнобедренные треугольники, из которых образован дельтоид, равны, то такой дельтоид является ромбом. Если равнобедренные треугольники к тому же прямоугольные, то дельтоид является квадратом.

3. Слово «ромб» происходит от греческого rhombos — юла, вращение. Слово «квадрат» происходит от латинского quadratum — четырёхугольник. Квадрат был первым четырёхугольником, который рассматривался в геометрии.

Теорема Фалеса. Средняя линия треугольника

Начертите угол ABC (рис. 117).

Четырехугольник - виды и свойства с примерами решения

Произвольным раствором циркуля отложите на стороне АВ угла равные отрезки Четырехугольник - виды и свойства с примерами решения и Четырехугольник - виды и свойства с примерами решения Проведите с помощью чертёжного угольника и линейки через точки Четырехугольник - виды и свойства с примерами решения параллельные прямые, которые пересекут сторону ВС этого угла в точках Четырехугольник - виды и свойства с примерами решения При помощи циркуля сравните длины отрезков Четырехугольник - виды и свойства с примерами решения Сделайте вывод.

Теорема Фалёса. Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Дано: Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. Проведём через точки Четырехугольник - виды и свойства с примерами решения прямые Четырехугольник - виды и свойства с примерами решения параллельные ВС. Четырехугольник - виды и свойства с примерами решения по стороне и прилежащим к ней углам. У них Четырехугольник - виды и свойства с примерами решения по условию, Четырехугольник - виды и свойства с примерами решения как соответственные углы при параллельных прямых. Из равенства этих треугольников следует, что Четырехугольник - виды и свойства с примерами решения и Четырехугольник - виды и свойства с примерами решения как противоположные стороны параллелограммов Четырехугольник - виды и свойства с примерами решения

Справедлива ли теорема Фалеса, если вместо сторон угла взять две произвольные прямые? Да, справедлива. Параллельные прямые, пересекающие две заданные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой (рис. 119).

Четырехугольник - виды и свойства с примерами решения

Пример №5

Разделите данный отрезок АВ на пять равных частей.

Решение:

Проведём из точки А луч АС, не лежащий на прямой АВ (рис. 120).

Четырехугольник - виды и свойства с примерами решения

Отложим на луче АС пять равных отрезков: АА,Четырехугольник - виды и свойства с примерами решенияПроведём прямую Четырехугольник - виды и свойства с примерами решения. Через точки Четырехугольник - виды и свойства с примерами решения проведём прямые, параллельные прямой Четырехугольник - виды и свойства с примерами решения. По теореме Фалеса, эти прямые делят отрезок АВ на пять равных частей.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

На рисунке 121 отрезок MN – средняя линия Четырехугольник - виды и свойства с примерами решения, так как точки М и N – середины сторон АВ и ВС.

Четырехугольник - виды и свойства с примерами решения

Теорема (свойства средней линии треугольника). Средняя линия треугольника параллельна третьей его стороне и равна её половине.

Дано: Четырехугольник - виды и свойства с примерами решения (рис. 122), AD = BD, СЕ= BE.

Четырехугольник - виды и свойства с примерами решения

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. 1) Пусть DE- средняя линия Четырехугольник - виды и свойства с примерами решения. Проведём через точку D прямую, параллельную АС. Согласно теореме Фалеса, она пересекает отрезок ВС в его середине £, то есть содержит среднюю линию DE. Следовательно DE || АС.

2) Проведём прямую EF|| АВ. По теореме Фалеса, прямая EFделит отрезок 1

АС пополам: Четырехугольник - виды и свойства с примерами решения. По построению, четырёхугольник ADEF- параллелограмм, поэтому DE= AF. Следовательно, Четырехугольник - виды и свойства с примерами решения

Пример №6

Докажите, что середины сторон четырёхугольника являются вершинами параллелограмма.

Решение:

Пусть ABC— данный четырёхугольник и М, N, Р, К — середины его сторон (рис. 123). Докажем, что MNPK — параллелограмм. Проведём диагональ AC. MN— средняя линия ААВС.

Четырехугольник - виды и свойства с примерами решения

Поэтому Четырехугольник - виды и свойства с примерами решения. КР— средняя линия треугольника ADC. Поэтому КР || АС и Четырехугольник - виды и свойства с примерами решения

Получаем: MN || АС и КР || АС, отсюда MN || КРЧетырехугольник - виды и свойства с примерами решения, отсюда MN= КР. Противоположные стороны MN и КР четырёхугольника MNPK равны и параллельны, следовательно, это параллелограмм.

Если по условию задачи даны середины некоторых отрезков, то можно использовать свойства средней линии треугольника.

Древнегреческого учёного Фалеса из Милета (625 — 548 гг. до н. э.) считают одним из семи мудрецов мира. Гений Фалеса нашёл воплощение в разных сферах деятельности. Он занимался инженерным делом, был государственным деятелем, математиком, астрономом. Особой заслугой Фалеса является то, что он ввёл в математику идею доказательства. Учёный доказал, что углы при основании равнобедренного треугольника равны, что диаметр делит окружность на две равные части, что прямой угол можно вписать в полуокружность и т. д. Историки полагают, что именно Фалес начал использовать основные геометрические инструменты — циркуль и линейку. Учёный измерял высоту египетских пирамид по длине их теней, впервые предсказал солнечное затемнение, наблюдавшееся в 585 г. до н. э.

Четырехугольник - виды и свойства с примерами решения

Трапеция

Вы уже знаете, что четырёхугольник с попарно параллельными противоположными сторонами – параллелограмм.

На рисунке 143 изображён четырёхугольник ABCD, две стороны AD и ВС которого параллельны, а две другие – АВ и CD – непараллельны. Такой четырёхугольник – трапеция. Дайте определение трапеции и сравните его с приведённым в учебнике.

Четырехугольник - виды и свойства с примерами решения

Трапецией называется четырёхугольник, в которомдве стороны параллельны, а две другие – непараллельны.

Четырехугольник - виды и свойства с примерами решения

Параллельные стороны трапеции называются её основаниями, а непараллельные – боковыми сторонами. На рисунке 144 AD и ВС – основания трапеции, АВ и CD – боковые стороны.

Могут ли основания трапеции быть равными? Не могут, поскольку тогда получим параллелограмм.

Высотой трапеции называется перпендикуляр, проведённый из любой точки одного основания к другому основанию либо его продолжению (рис. 144).

Трапеция, в которой боковые стороны равны, называется равнобедренной. На рисунке 145 трапеция MNKP – равнобедренная, поскольку MN = КР.

Трапецию, один из углов которой прямой, называют прямоугольной. Трапеция ABCD (рис. 146) – прямоугольная, поскольку Четырехугольник - виды и свойства с примерами решения = 90*.

Средней линией трапеции называется отрезок, соединяющий середины её боковых сторон.

На рисунке 147 отрезок EF – средняя линия трапеции ABCD, так как точки Е и F – середины боковых сторон АВ и CD.

Четырехугольник - виды и свойства с примерами решения

Теорема (свойства средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.

Дано: ABCD – трапеция с основаниями AD и ВС (рис. 148), EF— средняя линия. Доказать: Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Доказательство. Поскольку EF — средняя линия трапеции ABCD, то АЕ= BE, DF= CF. Через точки В и проведём прямую, пересекающую продолжение основания ADb точке Q. Четырехугольник - виды и свойства с примерами решенияno стороне и прилежащим к ней углам. У них CF = FD по условию, Четырехугольник - виды и свойства с примерами решения как вертикальные, Четырехугольник - виды и свойства с примерами решения внутренние накрест лежащие углы при параллельных прямых ВС и АО и секущей CD. Из равенства треугольников следует: BF— F0, то есть средняя линия ЕF трапеции является средней линией треугольника АВО.

1) По свойству средней линии треугольника EF || АО, поэтому EF || AD. Поскольку AD || ВС, то EF\ ВС.

Пример №7 (свойство равнобедренной трапеции).

В равнобедренной трапеции углы при основании равны. Докажите это.

Решение:

Пусть в трапеции ABCD (рис. 149) АВ = CD. Докажем, что углы при основании AD равны.

Четырехугольник - виды и свойства с примерами решения

Проведём СЕ || АВ. Полученный четырёхугольник АВСЕ— параллелограмм, так как его противоположные стороны попарно параллельны. По свойству параллелограмма, АВ = СЕ, а по условию — АВ = CD. Следовательно, С£= CD и Четырехугольник - виды и свойства с примерами решенияравнобедренный. Поэтому Четырехугольник - виды и свойства с примерами решения соответственные углы при параллельных прямых СЕ и АВ и секущей АЁ. Отсюда

Четырехугольник - виды и свойства с примерами решения

Если в условии задачи дана трапеция, то полезно такое дополнительное построение: проведите через вершину трапеции прямую, параллельную боковой стороне (рис. 149 или 150), и используйте свойства полученных параллелограмма и треугольника.

Решите предыдущую задачу, используя рисунок 150. Посмотрите на рисунок 151, где изображены изученные вами

Четырехугольник - виды и свойства с примерами решения

Центральные и вписанные углы

Проведём окружность с центром О и построим угол с вершиной в центре окружности (рис. 182). Получили центральный угол в окружности.

Угол с вершиной в центре окружности называется центральным углом. Четырехугольник - виды и свойства с примерами решения Четырехугольник - виды и свойства с примерами решения

Теорема (о вписанном угле). Вписанный угол измеряется половиной дуги, на которую он опирается.

Дано: Четырехугольник - виды и свойства с примерами решения — вписанный в окружность с центром О (рис. 188 — 190).

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. Рассмотрим три случая расположения центра , окружности относительно сторон данного вписанного угла.

1. Центр окружности лежит на стороне вписанного угла (рис. 188). Проведём отрезок ОД тогда центральный угол АОС является внешним углом Четырехугольник - виды и свойства с примерами решения. По свойству внешнего угла треугольника, Четырехугольник - виды и свойства с примерами решения Четырехугольник - виды и свойства с примерами решения– равнобедренный (ОВ= OA = R). Поэтому Четырехугольник - виды и свойства с примерами решения измеряется дугой АС. Следовательно, вписанный угол ABC измеряется половиной дуги АС.

2. Центр окружности лежит во внутренней области вписанного угла (рис. 189). Проведём луч ВО, тогда данный угол равен сумме двух углов:Четырехугольник - виды и свойства с примерами решения

Из доказанного в первом случае следует, чтоЧетырехугольник - виды и свойства с примерами решения измеряется половиной дуги AD, a Четырехугольник - виды и свойства с примерами решения— половиной дуги DC. Поэтому Четырехугольник - виды и свойства с примерами решения измеряется суммой полудуг AD и DC, то J есть половиной дуги АС.

3. Центр круга лежит во внешней области вписанного угла (рис. 190). Проведём луч ВО, тогда: Четырехугольник - виды и свойства с примерами решения

Четырехугольник - виды и свойства с примерами решения

Следствие 1.

Вписанные углы, опирающиеся на одну и ту же дугу, равны (рис. 191). Действительно, каждый из них измеряется половиной одной и той же дуги.

Следствие 2.

Вписанный угол, опирающийся на диаметр, – прямой (рис. 192). Действительно, такой угол измеряется половиной полуокружности, то есть 180°: 2 = 90°. Четырехугольник - виды и свойства с примерами решения

Равны ли вписанные углы, опирающиеся на равные дуги (рис. 193)? Да, так как каждый из этих углов измеряется половиной равных дуг, градусные меры которых равны.

Пример №8

Хорды окружности АВ и ВС образуют угол 30°. Найдите хорду АС, если диаметр окружности равен 10 см.

Решение:

Проведём диаметр CD и соединим точки A и D (рис. 194). Четырехугольник - виды и свойства с примерами решения как вписанные, опирающиеся на дугу АС (следствие 1). Поэтому Четырехугольник - виды и свойства с примерами решения, так как опирается на диаметр окружности (следствие 2). Тогда в прямоугольном треугольнике ADC катет АС лежит против угла 30° и равен половине гипотенузы CD. Следовательно, Четырехугольник - виды и свойства с примерами решения

Для того чтобы доказать равенство двух углов, покажите, что они являются вписанными в одну окружность и опираются на одну и ту же дугу либо на равные дуги данной окружности.

Рассмотрим геометрическое место точек, которое используется при решении сложных задач на построение.

Пусть АВ — некоторый отрезок прямой а, М— произвольная точка, не лежащая на прямой a, Четырехугольник - виды и свойства с примерами решения (рис. 195). Тогда говорят: из точки М отрезок АВ виден под углом а.

Если описать окружность около Четырехугольник - виды и свойства с примерами решения (рис. 196), то из любой точки дуги АМВ (кроме точек А и В) отрезок АВ виден под углом а (следствие 1 из теоремы о вписанном угле). Поскольку точку можно взять и с другой стороны от прямой а, то существует ещё одна дуга, например ANB(рис. 197), из каждой точки которой (кроме точек А и В) отрезок АВ виден под углом а. Поэтому геометрическим местом точек, из которых отрезок АВ виден под углом а, является фигура, состоящая из двух дуг АМВ и AN В без точек А и В. Чтобы построить одну из двух дуг этого геометрического места точек для острого угла а, необходимо: Четырехугольник - виды и свойства с примерами решения

Вписанные и описанные четырёхугольники

Отметим на окружности четыре точки и соединим их хордами (рис. 222). Получили четырёхугольник, вписанный в окружность. Четырехугольник - виды и свойства с примерами решения

Четырёхугольник, все вершины которого лежат на окружности, называется вписанным в эту окружность, а окружность – описанной около этого четырехугольника.

Отметим на окружности четыре точки и проведём через них отрезки касательных, как показано на рисунке 223. Получили четырёхугольник, описанный около окружности.

Четырехугольник - виды и свойства с примерами решения

Четырёхугольнику все стороны которого касаются окружности, называется описанным около этой окружности, а окружность – вписанной в этот четырёхугольник.

Свойство вписанного четырёхугольника и его признак связаны с углами этого четырёхугольника.

Теорема (свойство углов вписанного четырёхугольника). Сумма противоположных углов вписанного четырёхугольника равна 180″.

Дано: четырёхугольник ABCD, вписанный в окружность (рис. 224).

Четырехугольник - виды и свойства с примерами решения

Доказать: Четырехугольник - виды и свойства с примерами решения

Доказательство. Углы А, В, Си D вписаны в окружность.

Из теоремы о вписанном угле следует: Четырехугольник - виды и свойства с примерами решения

Тогда Четырехугольник - виды и свойства с примерами решения

Сумма всех углов четырёхугольника равна 360°, а сумма углов А и С — 180°. Тогда Четырехугольник - виды и свойства с примерами решения

Около каждого ли четырёхугольника можно описать окружность? В отличие от треугольника не каждый четырёхугольник – вписанный. Приведём признак вписанного четырёхугольника без доказательства.

Теорема (признак вписанного четырёхугольника). Если в четырёхугольнике сумма двух противоположных углов равна 180е, то около такого четырёхугольника можно описать окружность.

Пример №9

Докажите, что около равнобедренной трапеции можно описать окружность.

Решение:

Пусть ABCD — равнобедренная трапеция с основаниями AD и ВС (рис. 225). Четырехугольник - виды и свойства с примерами решения

Докажем, что Четырехугольник - виды и свойства с примерами решения. В любой трапеции сумма углов, прилежащих к одной боковой стороне, равна 180° (следует из свойства параллельных прямых).

Поэтому, Четырехугольник - виды и свойства с примерами решения. По свойству равнобокой трапеции, Четырехугольник - виды и свойства с примерами решения

Тогда Четырехугольник - виды и свойства с примерами решения и, согласно признаку вписанного четырёхугольника, трапеция ABCD— вписанная. Свойство описанного четырёхугольника и его признак связаны со сторонами этого четырёхугольника.

Теорема (свойство сторон описанного четырёхугольника). Суммы противоположных сторон описанного четырёхугольника равны.

Дано: четырёхугольник ABCD, описанный около окружности (рис. 226), Е, F, K и P — точки касания.

Четырехугольник - виды и свойства с примерами решения

Доказать: АВ + CD = ВС + AD.

Доказательство. По свойству касательных, проведённых к окружности из одной точки: АЕ = АР; BE = BF, СК = CF, DK = DP. Сложив почленно эти равенства, получим: АЕ + BE + СК + DK = АР + BF + CF + DP, то есть АВ + CD = ВС + AD.

В каждый ли четырёхугольник можно вписать окружность? В отличие от треугольника, не в каждый четырёхугольник можно вписать окружность. Приведём признак описанного четырёхугольника без доказательства.

Теорема (признак описанного четырёхугольника). Если в четырёхугольнике суммы противоположных сторон равны, то в этот четырёхугольник можно вписать окружность.

Чтобы доказать, что четырёхугольник MNKP (рис. 227) — вписанный, покажите, что: либо ےM + ےK = 180°, либо ےN + ےP= 180°. Чтобы доказать, что четырёхугольник ABCD (рис. 227) — описанный, покажите, что: AB + CD = AD + BC.

1. Кроме окружностей, вписанной и описанной около четырёхугольника, существуют ещё и вневписанные окружности.

Четырехугольник - виды и свойства с примерами решения

Проведём в произвольном четырёхугольнике ABCD биссектрисы внешних углов при вершинах А, В, С и D [рис. 228). Точки их пересечения Четырехугольник - виды и свойства с примерами решения центры четырёх вневписанных окружностей. Каждая из них касается одной стороны четырёхугольника и продолжении двух других его сторон. Вневписанные окружности имеют следующее свойство: их центры являются вершинами четырёхугольника Четырехугольник - виды и свойства с примерами решения вписанного в окружность. Действительно,

Четырехугольник - виды и свойства с примерами решения

Следовательно, четырёхугольник Четырехугольник - виды и свойства с примерами решения— вписанный в окружность.

2. Древнегреческие учёные открыли, кроме уже известных вам, другие интересные свойства вписанных и описанных четырёхугольников. Например.

Теорема Птолемея (II в.). Произведение диагоналей вписанного четырёхугольника равно сумме произведений его противоположных сторон.

Задача Архимеда (III в. до н. э.). Если диагонали вписанного четырёхугольника перпендикулярны, то сумма квадратов четырёх отрезков, на которые делятся диагонали точкой пересечения, равна квадрату диаметра описанной окружности. Позднее (IX — XIII в.) арабские учёные дополнили сведения о вписанных и описанных четырёхугольниках и способах исследования их свойств. Так, одарённый геометр Гасан ибн-Гайтем (умер в 1038 г.) предложил, способ, позволяющий установить, используя лишь циркуль, является ли данный четырёхугольник вписанным. Пусть дан четырёхугольник ABCD(рис. 229).

Четырехугольник - виды и свойства с примерами решения

Продолжим сторону AD за точку D. Проведём дуги равных окружностей с центрами в точках В и D. Если KL = МО, то четырёхугольник ABCD – вписанный, так как ےABC + ےADC = 180° (докажите это). В иных случаях четырёхугольник не является вписанным.

4 | 3. При решении задач иногда рассматриваются окружности, не заданные в условии. На рисунке к задаче сначала находим четырёхугольник, около которого можно описать окружность либо в который можно вписать окружность, а потом используем свойства хорд, диаметров, вписанных углов, углов с вершиной внутри окружности и т. д.

Четырехугольник - виды и свойства с примерами решения

Пример №10

Из произвольной точки М катета ВС прямоугольного треугольника ABC проведён перпендикуляр MD к гипотенузе АВ (рис. 230). Докажем, что ےMAD= ےMCD.

Решение:

Около четырёхугольника ADMC можно описать окружность, так как ےACM+ ےADM= 180°.

Тогда ےMAD= ےMCD— вписанные углы, опирающиеся на одну дугу MD.

  • Площади фигур в геометрии
  • Площади поверхностей геометрических тел
  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар

Здравствуйте, уважаемые читатели. Продолжаем разбор заданий с окружностью. В этой статье рассмотрим две темы, 5 и 6.

1. Центральные и вписанные углы.

2.Касательная, хорда, секущая.

3.Вписанная и описанная окружность (треугольник)

4. Вписанная и описанная окружность (квадрат)

5. Вписанная и описанная окружность (трапеция)

6. Вписанная и описанная окружность (произвольный четырехугольник)

Объединение этих тем возможно из-за одинаковых свойств.

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие не параллельны. Поэтому при решении этих задач пойдем от частного случая к общему.

Задача №1

Условие задачи №1
Условие задачи №1

Решение:

Задачу решим двумя способами:

Способ №1

Четырехугольник называется вписанным в окружность, если все его вершины лежат на окружности.

Запомните!!!

1) В окружность можно вписать только равнобедренную трапецию.

2) Трапеция называется равнобедренной если боковые стороны равны.

3) В равнобедренной трапеции углы при основании равны.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ
Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Способ №2

Запомните!!!! Сумма противоположных углов вписанного четырехугольника в окружность равна 180 градусов.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Задача №2

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Запомните!!!! Если четырехугольник описать около окружности, то суммы противоположных сторон равны.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Подставим значения из задачи, найдем AD

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Задача №3

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Для решение этой задачи, достаточно провести высоту в трапеции. Высота трапеции будет являться диаметром окружности.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Ответ 36

Задача №4

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Эта задача может встретиться как в первой части экзамена, так и во второй части в 23 и 24 задании.

Задача на подобие треугольников.

1) Докажем, что треугольники AKD и ВКС подобны, для этого найдем две пары равных углов.

Чтобы найти пару равных углов, воспользуемся двумя свойствами:

1) Сумма противоположных углов в вписанном четырехугольнике равна 180 градусов.

2) Сумма смежных углов равна 180 градусов

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Вторая пара равных углов, это будет общий угол треугольников AKD и ВКС. Угол К общий.

Теперь все отметив на чертеже:

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Треугольники AKD и ВКС подобны. Теперь составим отношение сходственных сторон.

Чтобы всегда правильно составлять отношения сторон, записывайте названия подобных треугольников так, чтобы вершины равных углов находились на одинаковых позициях.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Теперь составим отношение сходственных сторон:

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Вписанная и описанная окружнасть (четырехугольник). Задание №16 ОГЭ

Добавить комментарий