Синус, косинус, тангенс и котангенс: определения в тригонометрии, примеры, формулы
Тригонометрия – раздел математической науки, в котором изучаются тригонометрические функции и их использование в геометрии. Развитие тригонометрии началось еще во времена античной Греции. Во времена средневековья важный вклад в развитие этой науки внесли ученые Ближнего Востока и Индии.
Данная статья посвящена базовым понятиям и дефинициям тригонометрии. В ней рассмотрены определения основных тригонометрических функций: синуса, косинуса, тангенса и котангенса. Разъяснен и проиллюстрирован их смысл в контексте геометрии.
Синус, косинус, тангенс и котангенс. Определения
Изначально определения тригонометрических функций, аргументом которых является угол, выражались через соотношения сторон прямоугольного треугольника.
Определения тригонометрических функций
Синус угла ( sin α ) – отношение противолежащего этому углу катета к гипотенузе.
Косинус угла ( cos α ) – отношение прилежащего катета к гипотенузе.
Тангенс угла ( t g α ) – отношение противолежащего катета к прилежащему.
Котангенс угла ( c t g α ) – отношение прилежащего катета к противолежащему.
Данные определения даны для острого угла прямоугольного треугольника!
В треугольнике ABC с прямым углом С синус угла А равен отношению катета BC к гипотенузе AB.
Определения синуса, косинуса, тангенса и котангенса позволяют вычислять значения этих функций по известным длинам сторон треугольника.
Область значений синуса и косинуса: от -1 до 1. Иными словами синус и косинус принимают значения от -1 до 1. Область значений тангенса и котангенса – вся числовая прямая, то есть эти функции могут принимать любые значения.
Угол поворота
Определения, данные выше, относятся к острым углам. В тригонометрии вводится понятие угла поворота, величина которого, в отличие от острого угла, не ограничена рамками от 0 до 90 градусов.Угол поворота в градусах или радианах выражается любым действительным числом от – ∞ до + ∞ .
В данном контексте можно дать определение синуса, косинуса, тангенса и котангенса угла произвольной величины. Представим единичную окружность с центром в начале декартовой системы координат.
Начальная точка A с координатами ( 1 , 0 ) поворачивается вокруг центра единичной окружности на некоторый угол α и переходит в точку A 1 . Определение дается через координаты точки A 1 ( x , y ).
Синус (sin) угла поворота
Синус угла поворота α – это ордината точки A 1 ( x , y ). sin α = y
Косинус угла поворота α – это абсцисса точки A 1 ( x , y ). cos α = х
Тангенс угла поворота α – это отношение ординаты точки A 1 ( x , y ) к ее абсциссе. t g α = y x
Котангенс угла поворота α – это отношение абсциссы точки A 1 ( x , y ) к ее ординате. c t g α = x y
Синус и косинус определены для любого угла поворота. Это логично, ведь абсциссу и ординату точки после поворота можно определить при любом угле. Иначе обстоит дело с тангенсом и котангенсом. Тангенс не определен, когда точка после поворота переходит в точку с нулевой абсциссой ( 0 , 1 ) и ( 0 , – 1 ). В таких случаях выражение для тангенса t g α = y x просто не имеет смысла, так как в нем присутствует деление на ноль. Аналогично ситуация с котангенсом. Отличием состоит в том, что котангенс не определен в тех случаях, когда в ноль обращается ордината точки.
Синус и косинус определены для любых углов α .
Тангенс определен для всех углов, кроме α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z )
Котангенс определен для всех углов, кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z )
При решении практических примеров не говорят “синус угла поворота α “. Слова “угол поворота” просто опускают, подразумевая, что из контекста и так понятно, о чем идет речь.
Числа
Как быть с определением синуса, косинуса, тангенса и котангенса числа, а не угла поворота?
Синус, косинус, тангенс, котангенс числа
Синусом, косинусом, тангенсом и котангенсом числа t называется число, которое соответственно равно синусу, косинусу, тангенсу и котангенсу в t радиан.
Например, синус числа 10 π равен синусу угла поворота величиной 10 π рад.
Существует и другой подход к определению синуса, косинуса, тангенса и котангенса числа. Рассмотрим его подробнее.
Любому действительному числу t ставится в соответствие точка на единичной окружности с центром в начале прямоугольной декартовой системы координат. Синус, косинус, тангенс и котангенс определяются через координаты этой точки.
Начальная точка на окружности – точка A c координатами ( 1 , 0 ).
Положительному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Отрицательному числу t соответствует точка, в которую перейдет начальная точка, если будет двигаться по окружности против часовой стрелки и пройдет путь t .
Теперь, когда связь числа и точки на окружности установлена, переходим к определению синуса, косинуса, тангенса и котангенса.
Синус (sin) числа t
Синус числа t – ордината точки единичной окружности, соответствующей числу t. sin t = y
Косинус числа t – абсцисса точки единичной окружности, соответствующей числу t. cos t = x
Тангенс числа t – отношение ординаты к абсциссе точки единичной окружности, соответствующей числу t. t g t = y x = sin t cos t
Последние определения находятся в соответствии и не противоречат определению, данному в начале это пункта. Точка на окружности, соответствующая числу t, совпадает с точкой, в которую переходит начальная точка после поворота на угол t радиан.
Тригонометрические функции углового и числового аргумента
Каждому значению угла α соответствует определенное значение синуса и косинуса этого угла. Также, как всем углам α , отличным от α = 90 ° + 180 ° · k , k ∈ Z ( α = π 2 + π · k , k ∈ Z ) соответствует определенное значение тангенса. Котангенс, как сказано выше, определен для всех α , кроме α = 180 ° · k , k ∈ Z ( α = π · k , k ∈ Z ).
Можно сказать, что sin α , cos α , t g α , c t g α – это функции угла альфа, или функции углового аргумента.
Аналогично можно говорить о синусе, косинусе, тангенсе и котангенсе, как о функциях числового аргумента. Каждому действительному числу t соответствует определенное значение синуса или косинуса числа t. Всем числам, отличным от π 2 + π · k , k ∈ Z соответствует значение тангенса. Котангенс, аналогично, определен для всех чисел, кроме π · k , k ∈ Z.
Основные функции тригонометрии
Синус, косинус, тангенс и котангенс – основные тригонометрические функции.
Из контекста обычно понятно, с каким аргументом тригонометрической функции (угловой аргумент или числовой аргумент) мы имеем дело.
Связь определений sin, cos, tg и ctg из геометрии и тригонометрии
Вернемся к данным в самом начале определениям и углу альфа, лежащему в пределах от 0 до 90 градусов. Тригонометрические определения синуса, косинуса, тангенса и котангенса полностью согласуются с геометрическими определениями, данными с помощью соотношений сторон прямоугольного треугольника. Покажем это.
Возьмем единичную окружность с центром в прямоугольной декартовой системе координат. Повернем начальную точку A ( 1 , 0 ) на угол величиной до 90 градусов и проведем из полученной точки A 1 ( x , y ) перпендикуляр к оси абсцисс. В полученном прямоугольном треугольнике угол A 1 O H равен углу поворота α , длина катета O H равна абсциссе точки A 1 ( x , y ) . Длина катета, противолежащего углу, равна ординате точки A 1 ( x , y ) , а длина гипотенузы равна единице, так как она является радиусом единичной окружности.
В соответствии с определением из геометрии, синус угла α равен отношению противолежащего катета к гипотенузе.
sin α = A 1 H O A 1 = y 1 = y
Значит, определение синуса острого угла в прямоугольном треугольнике через соотношение сторон эквивалентно определению синуса угла поворота α , при альфа лежащем в пределах от 0 до 90 градусов.
Аналогично соответствие определений можно показать для косинуса, тангенса и котангенса.
Геометрия. Урок 1. Тригонометрия
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
Рассмотрим прямоугольный треугольник A B C , угол C равен 90 °:
sin ∠ A = C B A B
cos ∠ A = A C A B
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
sin ∠ B = A C A B
cos ∠ B = B C A B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )
На данной окружности будет три шкалы отсчета – ось x , ось y и сама окружность, на которой мы будем откладывать углы.
Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x , против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A . Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .
Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B ) и на ось игрек (точка C ) .
Отрезок O B является проекцией отрезка O A на ось x , отрезок O C является проекцией отрезка O A на ось y .
Рассмотрим прямоугольный треугольник A O B :
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Поскольку O C A B – прямоугольник, A B = C O .
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Опускаем из точки A перпендикуляры к осям x и y . Точка B в этом случае будет иметь отрицательную координату по оси x . Косинус тупого угла отрицательный .
Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x . (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y .
Координата по оси x – косинус угла , координата по оси y – синус угла .
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный .
Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный .
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
0 °
30 °
45 °
60 °
90 °
sin α
0
1 2
2 2
3 2
1
cos α
1
3 2
2 2
1 2
0
tg α
0
3 3
1
3
нет
ctg α
нет
3
1
3 3
0
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β :
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
Синус угла в обычном треугольнике
Синус (sin) – это одна из прямых тригонометрических функций. Подробнее о ней можно узнать из нашей статьи Что такое синус.
Синус угла в прямоугольном треугольнике
Прежде чем выяснять, как найти синус угла, необходимо определиться с условными обозначениями. Пусть в прямоугольном треугольнике:
- α – острый угол, синус которого нужно найти;
- с – гипотенуза;
- b – прилежащий катет;
- a – противолежащий катет.
Тогда чтобы найти синус острого угла прямоугольного треугольника, достаточно посчитать соотношение длины противолежащего катета к длине гипотенузы: sin(α) = a/c. При этом стоит запомнить, что sin 90° всегда равен 1.
Синус угла в произвольном треугольнике
Находить синус угла в произвольном треугольнике проще всего с использованием теоремы косинусов (cos): квадрат длины любой стороны равен сумме квадратов длин двух других сторон за минусом их удвоенного произведения на косинус угла между ними.
a² = b² + c² – 2*b*c*cos(α)
Из данной формулы можно найти косинус: cos(α) = (b² + c² – a²)/(2*b*c)
А поскольку для одного и того же угла sin(α)² + cos(α)² = 1 и это константа, то можно вывести формулу для определения синуса:
Более детально нахождение синуса угла с использованием косинуса рассмотрено в нашей статье Как найти синус, если известен косинус.
Что такое синус в треугольнике? Как найти синус острого угла в прямоугольном треугольнике?
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
для угла A треугольника ABC
противолежащий катет — это BC.
Соответственно, синус угла A в треугольнике ABC — это
Для угла B треугольника ABC
противолежащим является катет AC.
Соответственно, синус угла B в треугольнике ABC
равен отношению AC к AB:
Таким образом, синус острого угла в прямоугольном треугольнике — это некоторое число, получаемое в результате деления длины противолежащего катета на длину гипотенузы. Длины отрезков выражаются положительными числами, поэтому синус угла треугольника также является положительным числом.
Поскольку длина катета всегда меньше длины гипотенузы, то синус острого угла прямоугольного треугольника — число, меньшее единицы.
Синус любого острого угла прямоугольного треугольника больше нуля, но меньше единицы:
Синус угла треугольника зависит не от длин сторон треугольника, а от отношения этих длин.
1) В треугольнике ABC катет BC=3 см, а гипотенуза AB=5 см.
2) В треугольнике ABC катет BC=21 дм, гипотенуза AB=35 дм.
Длины сторон треугольника изменилось, но отношения длин остались прежними, поэтому и значение синуса угла A не изменилось.
2
Для нахождения синусов углов в произвольном треугольнике, как это ни странно, проще использовать не теорему синусов, а теорему косинусов. Она гласит, что возведенная в квадрат длина любой стороны равна сумме квадратов длин двух других сторон без удвоенного произведения этих длин на косинус угла между ними: А²=В²+С2-2*В*С*cos(α). Из этой теоремы можно вывести формулу для нахождения косинуса: cos(α)=(В²+С²-А²)/(2*В*С) . А поскольку сумма квадратов синуса и косинуса одного и того же угла всегда равна единице, то можно вывести и формулу для нахождения синуса угла α: sin(α)=√(1-(cos(α))²)= √(1-(В²+С²-А²)²/(2*В*С) ²).
[spoiler title=”источники:”]
http://dudom.ru/kompjutery/sinus-ugla-v-obychnom-treugolnike/
[/spoiler]
Лучший ответ
Ясновидящий
Просветленный
(23137)
11 лет назад
это будет = – arcsin(0,8134)=-54,429 градуса, посмотри общее решение уравнения….
Остальные ответы
Mashka (кр)
Искусственный Интеллект
(309885)
11 лет назад
Или 234,42
Андрей Чубарьян
Мастер
(1986)
11 лет назад
просто взять арксинус.. . arcsin(-0.8134) = -54 градуса
Петро Хрiн
Гений
(94970)
11 лет назад
В интервале 180 -360 град. будет два значения угла (234 и306 град.) , соответствующего Sin=-0,8134 плюс период повторения. В общем виде решение имеет вид
(270+/- 36) +/- 360*n
Синус угла. Таблица синусов.
Синус угла через градусы, минуты и секунды
Синус угла через десятичную запись угла
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция – arcsin(y)=x
sin(arcsin(y))=y
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Рассчитать арксинус
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
sin(α) = BC/AB
sin(-α) = -sin(α)
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
sin(α ± 2π) = sin(α)
Пример sin(5π) = sin(4π + π) = sin(π)
Таблица синусов в радианах
sin(0°) = 0sin(π/12) = sin(15°) = 0.2588190451sin(π/6) = sin(30°) = 0.5sin(π/4) = sin(45°) = 0.7071067812sin(π/3) = sin(60°) = 0.8660254038sin(5π/12) = sin(75°) = 0.9659258263sin(π/2) = sin(90°) = 1sin(7π/12) = sin(105°) = 0.9659258263sin(2π/3) = sin(120°) = 0.8660254038sin(3π/4) = sin(135°) = 0.7071067812sin(5π/6) = sin(150°) = 0.5sin(11π/12) = sin(165°) = 0.2588190451sin(π) = sin(180°) = 0sin(13π/12) = sin(195°) = -0.2588190451sin(7π/6) = sin(210°) = -0.5sin(5π/4) = sin(225°) = -0.7071067812sin(4π/3) = sin(240°) = -0.8660254038sin(17π/12) = sin(255°) = -0.9659258263sin(3π/2) = sin(270°) = -1sin(19π/12) = sin(285°) = -0.9659258263sin(5π/3) = sin(300°) = -0.8660254038sin(7π/4) = sin(315°) = -0.7071067812sin(11π/6) = sin(330°) = -0.5sin(23π/12) = sin(345°) = -0.2588190451
Таблица Брадиса синусы
sin(0) = 0 | sin(120) = 0.8660254038 | sin(240) = -0.8660254038 |
sin(1) = 0.01745240644 | sin(121) = 0.8571673007 | sin(241) = -0.8746197071 |
sin(2) = 0.0348994967 | sin(122) = 0.8480480962 | sin(242) = -0.8829475929 |
sin(3) = 0.05233595624 | sin(123) = 0.8386705679 | sin(243) = -0.8910065242 |
sin(4) = 0.06975647374 | sin(124) = 0.8290375726 | sin(244) = -0.8987940463 |
sin(5) = 0.08715574275 | sin(125) = 0.8191520443 | sin(245) = -0.906307787 |
sin(6) = 0.1045284633 | sin(126) = 0.8090169944 | sin(246) = -0.9135454576 |
sin(7) = 0.1218693434 | sin(127) = 0.79863551 | sin(247) = -0.9205048535 |
sin(8) = 0.139173101 | sin(128) = 0.7880107536 | sin(248) = -0.9271838546 |
sin(9) = 0.156434465 | sin(129) = 0.7771459615 | sin(249) = -0.9335804265 |
sin(10) = 0.1736481777 | sin(130) = 0.7660444431 | sin(250) = -0.9396926208 |
sin(11) = 0.1908089954 | sin(131) = 0.7547095802 | sin(251) = -0.9455185756 |
sin(12) = 0.2079116908 | sin(132) = 0.7431448255 | sin(252) = -0.9510565163 |
sin(13) = 0.2249510543 | sin(133) = 0.7313537016 | sin(253) = -0.956304756 |
sin(14) = 0.2419218956 | sin(134) = 0.7193398003 | sin(254) = -0.9612616959 |
sin(15) = 0.2588190451 | sin(135) = 0.7071067812 | sin(255) = -0.9659258263 |
sin(16) = 0.2756373558 | sin(136) = 0.6946583705 | sin(256) = -0.9702957263 |
sin(17) = 0.2923717047 | sin(137) = 0.6819983601 | sin(257) = -0.9743700648 |
sin(18) = 0.3090169944 | sin(138) = 0.6691306064 | sin(258) = -0.9781476007 |
sin(19) = 0.3255681545 | sin(139) = 0.656059029 | sin(259) = -0.9816271834 |
sin(20) = 0.3420201433 | sin(140) = 0.6427876097 | sin(260) = -0.984807753 |
sin(21) = 0.3583679495 | sin(141) = 0.629320391 | sin(261) = -0.9876883406 |
sin(22) = 0.3746065934 | sin(142) = 0.6156614753 | sin(262) = -0.9902680687 |
sin(23) = 0.3907311285 | sin(143) = 0.6018150232 | sin(263) = -0.9925461516 |
sin(24) = 0.4067366431 | sin(144) = 0.5877852523 | sin(264) = -0.9945218954 |
sin(25) = 0.4226182617 | sin(145) = 0.5735764364 | sin(265) = -0.9961946981 |
sin(26) = 0.4383711468 | sin(146) = 0.5591929035 | sin(266) = -0.9975640503 |
sin(27) = 0.4539904997 | sin(147) = 0.544639035 | sin(267) = -0.9986295348 |
sin(28) = 0.4694715628 | sin(148) = 0.5299192642 | sin(268) = -0.999390827 |
sin(29) = 0.4848096202 | sin(149) = 0.5150380749 | sin(269) = -0.9998476952 |
sin(30) = 0.5 | sin(150) = 0.5 | sin(270) = -1 |
sin(31) = 0.5150380749 | sin(151) = 0.4848096202 | sin(271) = -0.9998476952 |
sin(32) = 0.5299192642 | sin(152) = 0.4694715628 | sin(272) = -0.999390827 |
sin(33) = 0.544639035 | sin(153) = 0.4539904997 | sin(273) = -0.9986295348 |
sin(34) = 0.5591929035 | sin(154) = 0.4383711468 | sin(274) = -0.9975640503 |
sin(35) = 0.5735764364 | sin(155) = 0.4226182617 | sin(275) = -0.9961946981 |
sin(36) = 0.5877852523 | sin(156) = 0.4067366431 | sin(276) = -0.9945218954 |
sin(37) = 0.6018150232 | sin(157) = 0.3907311285 | sin(277) = -0.9925461516 |
sin(38) = 0.6156614753 | sin(158) = 0.3746065934 | sin(278) = -0.9902680687 |
sin(39) = 0.629320391 | sin(159) = 0.3583679495 | sin(279) = -0.9876883406 |
sin(40) = 0.6427876097 | sin(160) = 0.3420201433 | sin(280) = -0.984807753 |
sin(41) = 0.656059029 | sin(161) = 0.3255681545 | sin(281) = -0.9816271834 |
sin(42) = 0.6691306064 | sin(162) = 0.3090169944 | sin(282) = -0.9781476007 |
sin(43) = 0.6819983601 | sin(163) = 0.2923717047 | sin(283) = -0.9743700648 |
sin(44) = 0.6946583705 | sin(164) = 0.2756373558 | sin(284) = -0.9702957263 |
sin(45) = 0.7071067812 | sin(165) = 0.2588190451 | sin(285) = -0.9659258263 |
sin(46) = 0.7193398003 | sin(166) = 0.2419218956 | sin(286) = -0.9612616959 |
sin(47) = 0.7313537016 | sin(167) = 0.2249510543 | sin(287) = -0.956304756 |
sin(48) = 0.7431448255 | sin(168) = 0.2079116908 | sin(288) = -0.9510565163 |
sin(49) = 0.7547095802 | sin(169) = 0.1908089954 | sin(289) = -0.9455185756 |
sin(50) = 0.7660444431 | sin(170) = 0.1736481777 | sin(290) = -0.9396926208 |
sin(51) = 0.7771459615 | sin(171) = 0.156434465 | sin(291) = -0.9335804265 |
sin(52) = 0.7880107536 | sin(172) = 0.139173101 | sin(292) = -0.9271838546 |
sin(53) = 0.79863551 | sin(173) = 0.1218693434 | sin(293) = -0.9205048535 |
sin(54) = 0.8090169944 | sin(174) = 0.1045284633 | sin(294) = -0.9135454576 |
sin(55) = 0.8191520443 | sin(175) = 0.08715574275 | sin(295) = -0.906307787 |
sin(56) = 0.8290375726 | sin(176) = 0.06975647374 | sin(296) = -0.8987940463 |
sin(57) = 0.8386705679 | sin(177) = 0.05233595624 | sin(297) = -0.8910065242 |
sin(58) = 0.8480480962 | sin(178) = 0.0348994967 | sin(298) = -0.8829475929 |
sin(59) = 0.8571673007 | sin(179) = 0.01745240644 | sin(299) = -0.8746197071 |
sin(60) = 0.8660254038 | sin(180) = 0 | sin(300) = -0.8660254038 |
sin(61) = 0.8746197071 | sin(181) = -0.01745240644 | sin(301) = -0.8571673007 |
sin(62) = 0.8829475929 | sin(182) = -0.0348994967 | sin(302) = -0.8480480962 |
sin(63) = 0.8910065242 | sin(183) = -0.05233595624 | sin(303) = -0.8386705679 |
sin(64) = 0.8987940463 | sin(184) = -0.06975647374 | sin(304) = -0.8290375726 |
sin(65) = 0.906307787 | sin(185) = -0.08715574275 | sin(305) = -0.8191520443 |
sin(66) = 0.9135454576 | sin(186) = -0.1045284633 | sin(306) = -0.8090169944 |
sin(67) = 0.9205048535 | sin(187) = -0.1218693434 | sin(307) = -0.79863551 |
sin(68) = 0.9271838546 | sin(188) = -0.139173101 | sin(308) = -0.7880107536 |
sin(69) = 0.9335804265 | sin(189) = -0.156434465 | sin(309) = -0.7771459615 |
sin(70) = 0.9396926208 | sin(190) = -0.1736481777 | sin(310) = -0.7660444431 |
sin(71) = 0.9455185756 | sin(191) = -0.1908089954 | sin(311) = -0.7547095802 |
sin(72) = 0.9510565163 | sin(192) = -0.2079116908 | sin(312) = -0.7431448255 |
sin(73) = 0.956304756 | sin(193) = -0.2249510543 | sin(313) = -0.7313537016 |
sin(74) = 0.9612616959 | sin(194) = -0.2419218956 | sin(314) = -0.7193398003 |
sin(75) = 0.9659258263 | sin(195) = -0.2588190451 | sin(315) = -0.7071067812 |
sin(76) = 0.9702957263 | sin(196) = -0.2756373558 | sin(316) = -0.6946583705 |
sin(77) = 0.9743700648 | sin(197) = -0.2923717047 | sin(317) = -0.6819983601 |
sin(78) = 0.9781476007 | sin(198) = -0.3090169944 | sin(318) = -0.6691306064 |
sin(79) = 0.9816271834 | sin(199) = -0.3255681545 | sin(319) = -0.656059029 |
sin(80) = 0.984807753 | sin(200) = -0.3420201433 | sin(320) = -0.6427876097 |
sin(81) = 0.9876883406 | sin(201) = -0.3583679495 | sin(321) = -0.629320391 |
sin(82) = 0.9902680687 | sin(202) = -0.3746065934 | sin(322) = -0.6156614753 |
sin(83) = 0.9925461516 | sin(203) = -0.3907311285 | sin(323) = -0.6018150232 |
sin(84) = 0.9945218954 | sin(204) = -0.4067366431 | sin(324) = -0.5877852523 |
sin(85) = 0.9961946981 | sin(205) = -0.4226182617 | sin(325) = -0.5735764364 |
sin(86) = 0.9975640503 | sin(206) = -0.4383711468 | sin(326) = -0.5591929035 |
sin(87) = 0.9986295348 | sin(207) = -0.4539904997 | sin(327) = -0.544639035 |
sin(88) = 0.999390827 | sin(208) = -0.4694715628 | sin(328) = -0.5299192642 |
sin(89) = 0.9998476952 | sin(209) = -0.4848096202 | sin(329) = -0.5150380749 |
sin(90) = 1 | sin(210) = -0.5 | sin(330) = -0.5 |
sin(91) = 0.9998476952 | sin(211) = -0.5150380749 | sin(331) = -0.4848096202 |
sin(92) = 0.999390827 | sin(212) = -0.5299192642 | sin(332) = -0.4694715628 |
sin(93) = 0.9986295348 | sin(213) = -0.544639035 | sin(333) = -0.4539904997 |
sin(94) = 0.9975640503 | sin(214) = -0.5591929035 | sin(334) = -0.4383711468 |
sin(95) = 0.9961946981 | sin(215) = -0.5735764364 | sin(335) = -0.4226182617 |
sin(96) = 0.9945218954 | sin(216) = -0.5877852523 | sin(336) = -0.4067366431 |
sin(97) = 0.9925461516 | sin(217) = -0.6018150232 | sin(337) = -0.3907311285 |
sin(98) = 0.9902680687 | sin(218) = -0.6156614753 | sin(338) = -0.3746065934 |
sin(99) = 0.9876883406 | sin(219) = -0.629320391 | sin(339) = -0.3583679495 |
sin(100) = 0.984807753 | sin(220) = -0.6427876097 | sin(340) = -0.3420201433 |
sin(101) = 0.9816271834 | sin(221) = -0.656059029 | sin(341) = -0.3255681545 |
sin(102) = 0.9781476007 | sin(222) = -0.6691306064 | sin(342) = -0.3090169944 |
sin(103) = 0.9743700648 | sin(223) = -0.6819983601 | sin(343) = -0.2923717047 |
sin(104) = 0.9702957263 | sin(224) = -0.6946583705 | sin(344) = -0.2756373558 |
sin(105) = 0.9659258263 | sin(225) = -0.7071067812 | sin(345) = -0.2588190451 |
sin(106) = 0.9612616959 | sin(226) = -0.7193398003 | sin(346) = -0.2419218956 |
sin(107) = 0.956304756 | sin(227) = -0.7313537016 | sin(347) = -0.2249510543 |
sin(108) = 0.9510565163 | sin(228) = -0.7431448255 | sin(348) = -0.2079116908 |
sin(109) = 0.9455185756 | sin(229) = -0.7547095802 | sin(349) = -0.1908089954 |
sin(110) = 0.9396926208 | sin(230) = -0.7660444431 | sin(350) = -0.1736481777 |
sin(111) = 0.9335804265 | sin(231) = -0.7771459615 | sin(351) = -0.156434465 |
sin(112) = 0.9271838546 | sin(232) = -0.7880107536 | sin(352) = -0.139173101 |
sin(113) = 0.9205048535 | sin(233) = -0.79863551 | sin(353) = -0.1218693434 |
sin(114) = 0.9135454576 | sin(234) = -0.8090169944 | sin(354) = -0.1045284633 |
sin(115) = 0.906307787 | sin(235) = -0.8191520443 | sin(355) = -0.08715574275 |
sin(116) = 0.8987940463 | sin(236) = -0.8290375726 | sin(356) = -0.06975647374 |
sin(117) = 0.8910065242 | sin(237) = -0.8386705679 | sin(357) = -0.05233595624 |
sin(118) = 0.8829475929 | sin(238) = -0.8480480962 | sin(358) = -0.0348994967 |
sin(119) = 0.8746197071 | sin(239) = -0.8571673007 | sin(359) = -0.01745240644 |
Похожие калькуляторы
Смотрите бесплатные видео-уроки по теме “Тригонометрия” на канале Ёжику Понятно.
Видео-уроки на канале Ёжику Понятно. Подпишись!
Содержание страницы:
- Тригонометрия в прямоугольном треугольнике
- Тригонометрический круг
- Основное тригонометрическое тождество
- Таблица значений тригонометрических функций
- Градусы и радианы
- Формулы приведения
- Теорема синусов
- Расширенная теорема синусов
- Теорема косинусов
- Тригонометрические уравнения (10-11 класс)
- Примеры решений заданий из ОГЭ
Тригонометрия в прямоугольном треугольнике
Рассмотрим прямоугольный треугольник. Для каждого из острых углов найдем прилежащий к нему катет и противолежащий.
Синус угла – отношение противолежащего катета к гипотенузе.
sin α = Противолежащий катет гипотенуза
Косинус угла – отношение прилежащего катета к гипотенузе.
cos α = Прилежащий катет гипотенуза
Тангенс угла – отношение противолежащего катета к прилежащему (или отношение синуса к косинусу).
tg α = Противолежащий катет Прилежащий катет
Котангенс угла – отношение прилежащего катета к противолежащему (или отношение косинуса к синусу).
ctg α = Прилежащий катет Противолежащий катет
Рассмотрим прямоугольный треугольник ABC, угол C равен 90°:
sin ∠ A = C B A B
cos ∠ A = A C A B
tg ∠ A = sin ∠ A cos ∠ A = C B A C
ctg ∠ A = cos ∠ A sin ∠ A = A C C B
sin ∠ B = A C A B
cos ∠ B = B C A B
tg ∠ B = sin ∠ B cos ∠ B = A C C B
ctg ∠ B = cos ∠ B sin ∠ B = C B A C
Тригонометрия: Тригонометрический круг
Тригонометрия на окружности – это довольно интересная абстракция в математике. Если понять основной концепт так называемого “тригонометрического круга”, то вся тригонометрия будет вам подвластна. В описании к видео есть динамическая модель тригонометрического круга.
Тригонометрический круг – это окружность единичного радиуса с центром в начале координат.
Такая окружность пересекает ось х в точках ( − 1 ; 0 ) и ( 1 ; 0 ) , ось y в точках ( 0 ; − 1 ) и ( 0 ; 1 )
На данной окружности будет три шкалы отсчета – ось x, ось y и сама окружность, на которой мы будем откладывать углы.
Углы на тригонометрической окружности откладываются от точки с координатами ( 1 ; 0 ) , – то есть от положительного направления оси x, против часовой стрелки. Пусть эта точка будет называться S (от слова start). Отметим на окружности точку A. Рассмотрим ∠ S O A , обозначим его за α . Это центральный угол, его градусная мера равна дуге, на которую он опирается, то есть ∠ S O A = α = ∪ S A .
Давайте найдем синус и косинус этого угла. До этого синус и косинус мы искали в прямоугольном треугольнике, сейчас будем делать то же самое. Для этого опустим перпендикуляры из точки A на ось x (точка B) и на ось игрек (точка C).
Отрезок OB является проекцией отрезка OA на ось x, отрезок OC является проекцией отрезка OA на ось y.
Рассмотрим прямоугольный треугольник AOB:
cos α = O B O A = O B 1 = O B
sin α = A B O A = A B 1 = A B
Поскольку O C A B – прямоугольник, A B = C O .
Итак, косинус угла – координата точки A по оси x (ось абсцисс), синус угла – координата точки A по оси y (ось ординат).
Давайте рассмотрим еще один случай, когда угол α – тупой, то есть больше 90 ° :
Опускаем из точки A перпендикуляры к осям x и y. Точка B в этом случае будет иметь отрицательную координату по оси x. Косинус тупого угла отрицательный.
Можно дальше крутить точку A по окружности, расположить ее в III или даже в IV четверти, но мы пока не будем этим заниматься, поскольку в курсе 9 класса рассматриваются углы от 0 ° до 180 ° . Поэтому мы будем использовать только ту часть окружности, которая лежит над осью x. (Если вас интересует тригонометрия на полной окружности, смотрите видео на канале). Отметим на этой окружности углы 0 ° , 30 ° , 45 ° , 60 ° , 90 ° , 120 ° , 135 ° , 150 ° , 180 ° . Из каждой точки на окружности, соответствующей углу, опустим перпендикуляры на ось x и на ось y.
Координата по оси x – косинус угла, координата по оси y – синус угла.
Пример:
cos 150 ° = − 3 2
sin 150 ° = 1 2
Ещё одно замечание.
Синус тупого угла – положительная величина, а косинус – отрицательная.
Тангенс – это отношение синуса к косинусу. При делении положительной величины на отрицательную результат отрицательный. Тангенс тупого угла отрицательный.
Котангенс – отношение косинуса к синусу. При делении отрицательной величины на положительную результат отрицательный. Котангенс тупого угла отрицательный.
Основное тригонометрическое тождество
sin 2 α + cos 2 α = 1
Данное тождество – теорема Пифагора в прямоугольном треугольнике O A B :
A B 2 + O B 2 = O A 2
sin 2 α + cos 2 α = R 2
sin 2 α + cos 2 α = 1
Тригонометрия: Таблица значений тригонометрических функций
0° | 30° | 45° | 60° | 90° | |
sinα | 0 | 12 | 22 | 32 | 1 |
cosα | 1 | 32 | 22 | 12 | 0 |
tgα | 0 | 33 | 1 | 3 | нет |
ctgα | нет | 3 | 1 | 33 | 0 |
Тригонометрия: градусы и радианы
Как перевести градусы в радианы, а радианы в градусы? Как и когда возникла градусная мера угла? Что такое радианы и радианная мера угла? Ищите ответы в этом видео!
Тригонометрия: Формулы приведения
Тригонометрия на окружности имеет некоторые закономерности. Если внимательно рассмотреть данный рисунок,
можно заметить, что:
sin 180 ° = sin ( 180 ° − 0 ° ) = sin 0 °
sin 150 ° = sin ( 180 ° − 30 ° ) = sin 30 °
sin 135 ° = sin ( 180 ° − 45 ° ) = sin 45 °
sin 120 ° = sin ( 180 ° − 60 ° ) = sin 60 °
cos 180 ° = cos ( 180 ° − 0 ° ) = − cos 0 °
cos 150 ° = cos ( 180 ° − 30 ° ) = − cos 30 °
cos 135 ° = cos ( 180 ° − 45 ° ) = − cos 45 °
cos 120 ° = cos ( 180 ° − 60 ° ) = − cos 60 °
Рассмотрим тупой угол β:
Для произвольного тупого угла β = 180 ° − α всегда будут справедливы следующие равенства:
sin ( 180 ° − α ) = sin α
cos ( 180 ° − α ) = − cos α
tg ( 180 ° − α ) = − tg α
ctg ( 180 ° − α ) = − ctg α
Тригонометрия: Теорема синусов
В произвольном треугольнике стороны пропорциональны синусам противолежащих углов.
a sin ∠ A = b sin ∠ B = c sin ∠ C
Тригонометрия: Расширенная теорема синусов
Отношение стороны к синусу противолежащего угла равно двум радиусам описанной вокруг данного треугольника окружности.
a sin ∠ A = b sin ∠ B = c sin ∠ C = 2 R
Тригонометрия: Теорема косинусов
Квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
a 2 = b 2 + c 2 − 2 b c ⋅ cos ∠ A
b 2 = a 2 + c 2 − 2 a c ⋅ cos ∠ B
c 2 = a 2 + b 2 − 2 a b ⋅ cos ∠ C
Примеры решений заданий из ОГЭ
Модуль геометрия: задания, связанные с тригонометрией.
Скачать домашнее задание к уроку 1.
Тригонометрия: Тригонометрические уравнения
Это тема 10-11 классов.
Из серии видео ниже вы узнаете, как решать простейшие тригонометрические уравнения, что такое обратные тригонометрические функции, зачем они нужны и как их использовать. Если вы поймёте эти базовые темы, то вскоре сможете без проблем решать любые тригонометрические уравнения любого уровня сложности!
В данной таблице приведены значения синусов и косинусов для углов от 0 до 359 градусов. Но если Вам нужно рассчитать значения тригонометрических функций
для более точных углов (с минутами и секундами) или углов больше 360 градусов или углов с отрицательными значениями (например 8° 5′ 53″
или -1775° 15′ 22″ ), то можно воспользоваться тригонометрическим калькулятором.
Таблица углов от 0 до 179 градусов
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
---|---|---|
0 | 0 | 1 |
1 | 0.01745241 | 0.9998477 |
2 | 0.0348995 | 0.99939083 |
3 | 0.05233596 | 0.99862953 |
4 | 0.06975647 | 0.99756405 |
5 | 0.08715574 | 0.9961947 |
6 | 0.10452846 | 0.9945219 |
7 | 0.12186934 | 0.99254615 |
8 | 0.1391731 | 0.99026807 |
9 | 0.15643447 | 0.98768834 |
10 | 0.17364818 | 0.98480775 |
11 | 0.190809 | 0.98162718 |
12 | 0.20791169 | 0.9781476 |
13 | 0.22495105 | 0.97437006 |
14 | 0.2419219 | 0.97029573 |
15 | 0.25881905 | 0.96592583 |
16 | 0.27563736 | 0.9612617 |
17 | 0.2923717 | 0.95630476 |
18 | 0.30901699 | 0.95105652 |
19 | 0.32556815 | 0.94551858 |
20 | 0.34202014 | 0.93969262 |
21 | 0.35836795 | 0.93358043 |
22 | 0.37460659 | 0.92718385 |
23 | 0.39073113 | 0.92050485 |
24 | 0.40673664 | 0.91354546 |
25 | 0.42261826 | 0.90630779 |
26 | 0.43837115 | 0.89879405 |
27 | 0.4539905 | 0.89100652 |
28 | 0.46947156 | 0.88294759 |
29 | 0.48480962 | 0.87461971 |
30 | 0.5 | 0.8660254 |
31 | 0.51503807 | 0.8571673 |
32 | 0.52991926 | 0.8480481 |
33 | 0.54463904 | 0.83867057 |
34 | 0.5591929 | 0.82903757 |
35 | 0.57357644 | 0.81915204 |
36 | 0.58778525 | 0.80901699 |
37 | 0.60181502 | 0.79863551 |
38 | 0.61566148 | 0.78801075 |
39 | 0.62932039 | 0.77714596 |
40 | 0.64278761 | 0.76604444 |
41 | 0.65605903 | 0.75470958 |
42 | 0.66913061 | 0.74314483 |
43 | 0.68199836 | 0.7313537 |
44 | 0.69465837 | 0.7193398 |
45 | 0.70710678 | 0.70710678 |
46 | 0.7193398 | 0.69465837 |
47 | 0.7313537 | 0.68199836 |
48 | 0.74314483 | 0.66913061 |
49 | 0.75470958 | 0.65605903 |
50 | 0.76604444 | 0.64278761 |
51 | 0.77714596 | 0.62932039 |
52 | 0.78801075 | 0.61566148 |
53 | 0.79863551 | 0.60181502 |
54 | 0.80901699 | 0.58778525 |
55 | 0.81915204 | 0.57357644 |
56 | 0.82903757 | 0.5591929 |
57 | 0.83867057 | 0.54463904 |
58 | 0.8480481 | 0.52991926 |
59 | 0.8571673 | 0.51503807 |
60 | 0.8660254 | 0.5 |
61 | 0.87461971 | 0.48480962 |
62 | 0.88294759 | 0.46947156 |
63 | 0.89100652 | 0.4539905 |
64 | 0.89879405 | 0.43837115 |
65 | 0.90630779 | 0.42261826 |
66 | 0.91354546 | 0.40673664 |
67 | 0.92050485 | 0.39073113 |
68 | 0.92718385 | 0.37460659 |
69 | 0.93358043 | 0.35836795 |
70 | 0.93969262 | 0.34202014 |
71 | 0.94551858 | 0.32556815 |
72 | 0.95105652 | 0.30901699 |
73 | 0.95630476 | 0.2923717 |
74 | 0.9612617 | 0.27563736 |
75 | 0.96592583 | 0.25881905 |
76 | 0.97029573 | 0.2419219 |
77 | 0.97437006 | 0.22495105 |
78 | 0.9781476 | 0.20791169 |
79 | 0.98162718 | 0.190809 |
80 | 0.98480775 | 0.17364818 |
81 | 0.98768834 | 0.15643447 |
82 | 0.99026807 | 0.1391731 |
83 | 0.99254615 | 0.12186934 |
84 | 0.9945219 | 0.10452846 |
85 | 0.9961947 | 0.08715574 |
86 | 0.99756405 | 0.06975647 |
87 | 0.99862953 | 0.05233596 |
88 | 0.99939083 | 0.0348995 |
89 | 0.9998477 | 0.01745241 |
90 | 1 | 0 |
91 | 0.9998477 | -0.01745241 |
92 | 0.99939083 | -0.0348995 |
93 | 0.99862953 | -0.05233596 |
94 | 0.99756405 | -0.06975647 |
95 | 0.9961947 | -0.08715574 |
96 | 0.9945219 | -0.10452846 |
97 | 0.99254615 | -0.12186934 |
98 | 0.99026807 | -0.1391731 |
99 | 0.98768834 | -0.15643447 |
100 | 0.98480775 | -0.17364818 |
101 | 0.98162718 | -0.190809 |
102 | 0.9781476 | -0.20791169 |
103 | 0.97437006 | -0.22495105 |
104 | 0.97029573 | -0.2419219 |
105 | 0.96592583 | -0.25881905 |
106 | 0.9612617 | -0.27563736 |
107 | 0.95630476 | -0.2923717 |
108 | 0.95105652 | -0.30901699 |
109 | 0.94551858 | -0.32556815 |
110 | 0.93969262 | -0.34202014 |
111 | 0.93358043 | -0.35836795 |
112 | 0.92718385 | -0.37460659 |
113 | 0.92050485 | -0.39073113 |
114 | 0.91354546 | -0.40673664 |
115 | 0.90630779 | -0.42261826 |
116 | 0.89879405 | -0.43837115 |
117 | 0.89100652 | -0.4539905 |
118 | 0.88294759 | -0.46947156 |
119 | 0.87461971 | -0.48480962 |
120 | 0.8660254 | -0.5 |
121 | 0.8571673 | -0.51503807 |
122 | 0.8480481 | -0.52991926 |
123 | 0.83867057 | -0.54463904 |
124 | 0.82903757 | -0.5591929 |
125 | 0.81915204 | -0.57357644 |
126 | 0.80901699 | -0.58778525 |
127 | 0.79863551 | -0.60181502 |
128 | 0.78801075 | -0.61566148 |
129 | 0.77714596 | -0.62932039 |
130 | 0.76604444 | -0.64278761 |
131 | 0.75470958 | -0.65605903 |
132 | 0.74314483 | -0.66913061 |
133 | 0.7313537 | -0.68199836 |
134 | 0.7193398 | -0.69465837 |
135 | 0.70710678 | -0.70710678 |
136 | 0.69465837 | -0.7193398 |
137 | 0.68199836 | -0.7313537 |
138 | 0.66913061 | -0.74314483 |
139 | 0.65605903 | -0.75470958 |
140 | 0.64278761 | -0.76604444 |
141 | 0.62932039 | -0.77714596 |
142 | 0.61566148 | -0.78801075 |
143 | 0.60181502 | -0.79863551 |
144 | 0.58778525 | -0.80901699 |
145 | 0.57357644 | -0.81915204 |
146 | 0.5591929 | -0.82903757 |
147 | 0.54463904 | -0.83867057 |
148 | 0.52991926 | -0.8480481 |
149 | 0.51503807 | -0.8571673 |
150 | 0.5 | -0.8660254 |
151 | 0.48480962 | -0.87461971 |
152 | 0.46947156 | -0.88294759 |
153 | 0.4539905 | -0.89100652 |
154 | 0.43837115 | -0.89879405 |
155 | 0.42261826 | -0.90630779 |
156 | 0.40673664 | -0.91354546 |
157 | 0.39073113 | -0.92050485 |
158 | 0.37460659 | -0.92718385 |
159 | 0.35836795 | -0.93358043 |
160 | 0.34202014 | -0.93969262 |
161 | 0.32556815 | -0.94551858 |
162 | 0.30901699 | -0.95105652 |
163 | 0.2923717 | -0.95630476 |
164 | 0.27563736 | -0.9612617 |
165 | 0.25881905 | -0.96592583 |
166 | 0.2419219 | -0.97029573 |
167 | 0.22495105 | -0.97437006 |
168 | 0.20791169 | -0.9781476 |
169 | 0.190809 | -0.98162718 |
170 | 0.17364818 | -0.98480775 |
171 | 0.15643447 | -0.98768834 |
172 | 0.1391731 | -0.99026807 |
173 | 0.12186934 | -0.99254615 |
174 | 0.10452846 | -0.9945219 |
175 | 0.08715574 | -0.9961947 |
176 | 0.06975647 | -0.99756405 |
177 | 0.05233596 | -0.99862953 |
178 | 0.0348995 | -0.99939083 |
179 | 0.01745241 | -0.9998477 |
Таблица углов от 180 до 359 градусов
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
---|---|---|
180 | 0 | -1 |
181 | -0.01745241 | -0.9998477 |
182 | -0.0348995 | -0.99939083 |
183 | -0.05233596 | -0.99862953 |
184 | -0.06975647 | -0.99756405 |
185 | -0.08715574 | -0.9961947 |
186 | -0.10452846 | -0.9945219 |
187 | -0.12186934 | -0.99254615 |
188 | -0.1391731 | -0.99026807 |
189 | -0.15643447 | -0.98768834 |
190 | -0.17364818 | -0.98480775 |
191 | -0.190809 | -0.98162718 |
192 | -0.20791169 | -0.9781476 |
193 | -0.22495105 | -0.97437006 |
194 | -0.2419219 | -0.97029573 |
195 | -0.25881905 | -0.96592583 |
196 | -0.27563736 | -0.9612617 |
197 | -0.2923717 | -0.95630476 |
198 | -0.30901699 | -0.95105652 |
199 | -0.32556815 | -0.94551858 |
200 | -0.34202014 | -0.93969262 |
201 | -0.35836795 | -0.93358043 |
202 | -0.37460659 | -0.92718385 |
203 | -0.39073113 | -0.92050485 |
204 | -0.40673664 | -0.91354546 |
205 | -0.42261826 | -0.90630779 |
206 | -0.43837115 | -0.89879405 |
207 | -0.4539905 | -0.89100652 |
208 | -0.46947156 | -0.88294759 |
209 | -0.48480962 | -0.87461971 |
210 | -0.5 | -0.8660254 |
211 | -0.51503807 | -0.8571673 |
212 | -0.52991926 | -0.8480481 |
213 | -0.54463904 | -0.83867057 |
214 | -0.5591929 | -0.82903757 |
215 | -0.57357644 | -0.81915204 |
216 | -0.58778525 | -0.80901699 |
217 | -0.60181502 | -0.79863551 |
218 | -0.61566148 | -0.78801075 |
219 | -0.62932039 | -0.77714596 |
220 | -0.64278761 | -0.76604444 |
221 | -0.65605903 | -0.75470958 |
222 | -0.66913061 | -0.74314483 |
223 | -0.68199836 | -0.7313537 |
224 | -0.69465837 | -0.7193398 |
225 | -0.70710678 | -0.70710678 |
226 | -0.7193398 | -0.69465837 |
227 | -0.7313537 | -0.68199836 |
228 | -0.74314483 | -0.66913061 |
229 | -0.75470958 | -0.65605903 |
230 | -0.76604444 | -0.64278761 |
231 | -0.77714596 | -0.62932039 |
232 | -0.78801075 | -0.61566148 |
233 | -0.79863551 | -0.60181502 |
234 | -0.80901699 | -0.58778525 |
235 | -0.81915204 | -0.57357644 |
236 | -0.82903757 | -0.5591929 |
237 | -0.83867057 | -0.54463904 |
238 | -0.8480481 | -0.52991926 |
239 | -0.8571673 | -0.51503807 |
240 | -0.8660254 | -0.5 |
241 | -0.87461971 | -0.48480962 |
242 | -0.88294759 | -0.46947156 |
243 | -0.89100652 | -0.4539905 |
244 | -0.89879405 | -0.43837115 |
245 | -0.90630779 | -0.42261826 |
246 | -0.91354546 | -0.40673664 |
247 | -0.92050485 | -0.39073113 |
248 | -0.92718385 | -0.37460659 |
249 | -0.93358043 | -0.35836795 |
250 | -0.93969262 | -0.34202014 |
251 | -0.94551858 | -0.32556815 |
252 | -0.95105652 | -0.30901699 |
253 | -0.95630476 | -0.2923717 |
254 | -0.9612617 | -0.27563736 |
255 | -0.96592583 | -0.25881905 |
256 | -0.97029573 | -0.2419219 |
257 | -0.97437006 | -0.22495105 |
258 | -0.9781476 | -0.20791169 |
259 | -0.98162718 | -0.190809 |
260 | -0.98480775 | -0.17364818 |
261 | -0.98768834 | -0.15643447 |
262 | -0.99026807 | -0.1391731 |
263 | -0.99254615 | -0.12186934 |
264 | -0.9945219 | -0.10452846 |
265 | -0.9961947 | -0.08715574 |
266 | -0.99756405 | -0.06975647 |
267 | -0.99862953 | -0.05233596 |
268 | -0.99939083 | -0.0348995 |
269 | -0.9998477 | -0.01745241 |
270 | -1 | 0 |
271 | -0.9998477 | 0.01745241 |
272 | -0.99939083 | 0.0348995 |
273 | -0.99862953 | 0.05233596 |
274 | -0.99756405 | 0.06975647 |
275 | -0.9961947 | 0.08715574 |
276 | -0.9945219 | 0.10452846 |
277 | -0.99254615 | 0.12186934 |
278 | -0.99026807 | 0.1391731 |
279 | -0.98768834 | 0.15643447 |
280 | -0.98480775 | 0.17364818 |
281 | -0.98162718 | 0.190809 |
282 | -0.9781476 | 0.20791169 |
283 | -0.97437006 | 0.22495105 |
284 | -0.97029573 | 0.2419219 |
285 | -0.96592583 | 0.25881905 |
286 | -0.9612617 | 0.27563736 |
287 | -0.95630476 | 0.2923717 |
288 | -0.95105652 | 0.30901699 |
289 | -0.94551858 | 0.32556815 |
290 | -0.93969262 | 0.34202014 |
291 | -0.93358043 | 0.35836795 |
292 | -0.92718385 | 0.37460659 |
293 | -0.92050485 | 0.39073113 |
294 | -0.91354546 | 0.40673664 |
295 | -0.90630779 | 0.42261826 |
296 | -0.89879405 | 0.43837115 |
297 | -0.89100652 | 0.4539905 |
298 | -0.88294759 | 0.46947156 |
299 | -0.87461971 | 0.48480962 |
300 | -0.8660254 | 0.5 |
301 | -0.8571673 | 0.51503807 |
302 | -0.8480481 | 0.52991926 |
303 | -0.83867057 | 0.54463904 |
304 | -0.82903757 | 0.5591929 |
305 | -0.81915204 | 0.57357644 |
306 | -0.80901699 | 0.58778525 |
307 | -0.79863551 | 0.60181502 |
308 | -0.78801075 | 0.61566148 |
309 | -0.77714596 | 0.62932039 |
310 | -0.76604444 | 0.64278761 |
311 | -0.75470958 | 0.65605903 |
312 | -0.74314483 | 0.66913061 |
313 | -0.7313537 | 0.68199836 |
314 | -0.7193398 | 0.69465837 |
315 | -0.70710678 | 0.70710678 |
316 | -0.69465837 | 0.7193398 |
317 | -0.68199836 | 0.7313537 |
318 | -0.66913061 | 0.74314483 |
319 | -0.65605903 | 0.75470958 |
320 | -0.64278761 | 0.76604444 |
321 | -0.62932039 | 0.77714596 |
322 | -0.61566148 | 0.78801075 |
323 | -0.60181502 | 0.79863551 |
324 | -0.58778525 | 0.80901699 |
325 | -0.57357644 | 0.81915204 |
326 | -0.5591929 | 0.82903757 |
327 | -0.54463904 | 0.83867057 |
328 | -0.52991926 | 0.8480481 |
329 | -0.51503807 | 0.8571673 |
330 | -0.5 | 0.8660254 |
331 | -0.48480962 | 0.87461971 |
332 | -0.46947156 | 0.88294759 |
333 | -0.4539905 | 0.89100652 |
334 | -0.43837115 | 0.89879405 |
335 | -0.42261826 | 0.90630779 |
336 | -0.40673664 | 0.91354546 |
337 | -0.39073113 | 0.92050485 |
338 | -0.37460659 | 0.92718385 |
339 | -0.35836795 | 0.93358043 |
340 | -0.34202014 | 0.93969262 |
341 | -0.32556815 | 0.94551858 |
342 | -0.30901699 | 0.95105652 |
343 | -0.2923717 | 0.95630476 |
344 | -0.27563736 | 0.9612617 |
345 | -0.25881905 | 0.96592583 |
346 | -0.2419219 | 0.97029573 |
347 | -0.22495105 | 0.97437006 |
348 | -0.20791169 | 0.9781476 |
349 | -0.190809 | 0.98162718 |
350 | -0.17364818 | 0.98480775 |
351 | -0.15643447 | 0.98768834 |
352 | -0.1391731 | 0.99026807 |
353 | -0.12186934 | 0.99254615 |
354 | -0.10452846 | 0.9945219 |
355 | -0.08715574 | 0.9961947 |
356 | -0.06975647 | 0.99756405 |
357 | -0.05233596 | 0.99862953 |
358 | -0.0348995 | 0.99939083 |
359 | -0.01745241 | 0.9998477 |
Другие таблицы