Как найти угол между асимптотами гиперболы

Как находится угол между асимптотами гиперболы?

Pawok
[16.9K]

9 лет назад 

Подскажите пожалуйста, как правильно рассчитать угол между асимптотами гиперболы?

Угол между асимптотами гиперболы определяется соотношением ее полуосей. Гиперболы называют коэффициенты a и b, входящие ее каноническое уравнение: x^2/a^2 − y^2/b^2 = 1. Через эти коэффициенты угол между асимптотами гиперболы выражается следующим образом:

α = 2arctg(b/a).

комментировать

в избранное

ссылка

отблагодарить

Mefod­y66
[35.1K]

9 лет назад 

Каноническое уравнение гиперболы

x^2/a^2 – y^2/b^2 = 1

Здесь а и b – полуоси гиперболы.

Угол между асимптотами

tg(a/2) = b/a

комментировать

в избранное

ссылка

отблагодарить

Знаете ответ?

Чему равен угол между асимптотами гиперболы?

Популярные ответы

  • Когда буквы е, ё, ю, я обозначают два звука?
  • Каким членом предложения может быть местоимение?
  • Как правильно произносятся слова термин, шинель, темп?
  • Как найти точки экстремума функции по графику производной?
  • Как правильно: по средам (ударение на «а» или на «е»)?
  • Какой официальный сайт Московского энергетического института (МЭИ)?
  • На какие вопросы отвечает наречие?
  • Где найти примеры сравнительных оборотов и других конструкций со словом «как»?
  • Как в физике обозначается скорость движения?
  • Где скачать задания по английскому языку олимпиады для школьников «Покори Воробьевы горы!»?

Гипербола — это плоская кривая второго порядка, одно из конических сечений. Она состоит из двух несвязанных между собой ветвей. Каждая ветвь гиперболы представляет собой бесконечную линию, которая с двух сторон бесконечно приближается c двум пересекающимся прямым, которые называют асимптотами гиперболы.

Каноническое уравнение гиперболы:

x2/a2 − y2/b2 = 1, где параметры a и b называют полуосями гиперболы. От их соотношения зависит угол между асимптотами:

tg(α/2) = b/a

или

α = 2arctg(b/a).

В школьной программе, рассматривается только один частный случай гиперболы, которая задается уравнением:

y = 1/x.

Асимптотами такой гиперболы служат оси декартовой системы координат. Угол между ними составляет 90 градусов.

Источники:

  • bolshoyvopros.ru — как находится угол между асимптотами гиперболы;
  • otvet.mail.ru — угол между асимптотами гиперболы.

Последнее редактирование ответа: 19.02.2014


  • Оставить отзыв

    Оставить отзыв

    Вы можете написать свои замечания к ответу, предложения об улучшении или просто поблагодарить автора. Комментарий, после проверки, увидят автор и редактор ответа. Будьте, пожалуйста, вежливыми. Спасибо!

    Если Вы хотите получить уведомление об
    исправлении ответа укажите свой e-mail:

    Неправильный формат адреса электронной почты

Похожие вопросы

В соответствии с пользовательским соглашением администрация не несет ответственности за содержание материалов, которые размещают пользователи. Для урегулирования спорных вопросов и претензий Вы можете связаться с администрацией сайта genon.ru.
Размещенные на сайте материалы могут содержать информацию, предназначенную для пользователей старше 18 лет, согласно Федерального закона №436-ФЗ от 29.12.2010 года “О защите детей от информации, причиняющей вред их здоровью и развитию”. Обращение к пользователям 18+.

Опред. угол между асимптотами гиперболы.

Alexander K.



Профи

(531),
закрыт



12 лет назад

Дополнен 13 лет назад

У которой:
а) эксцентриситет = 2
б) расстояние между фокусами вдвое больше расстояния между директрисами.

Марина Васильевна

Гений

(65102)


13 лет назад

Уравнения директрисс У=b/aX Y=-b/aX Чтобы найти угол, достаточно найти b/a Ексентриситет=с/a=2, c=2a, c^2=a^2+b^2, 4a^2=a^2+b^2, 3a^2=b^2, a/b=sqrt(3) tgФ=(sqrt(3)+sqrt(3))/(1-3)=sqrt(3), Угол Ф=60 градусов.

Alexander K.Профи (531)

13 лет назад

Неверно. Ответ 120 и 90

Марина Васильевна
Гений
(65102)
Может объясните почему?

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы — бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат — каноническое уравнение гиперболы:

Если — произвольная точка левой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

Если — произвольная точка правой ветви гиперболы () и — расстояния до этой точки от фокусов , то формулы для расстояний — следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где — расстояние от левого фокуса до точки любой ветви гиперболы, — расстояние от правого фокуса до точки любой ветви гиперболы и и — расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Гипербола

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Функция заданная формулой (y=frac), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

гипербола, где k y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.

Пример №2:
$$y=frac<1>-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

Дробь (color <frac<1>>) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.



5. Гипербола нечетная функция.

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k Category: 8 класс, База знаний, Уроки Tag: Гипербола Leave a comment

Гипербола и её свойства

Гипербола и её форма.

Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
$$
frac>>-frac>>=1.label
$$

Из этого уравнения видно, что для всех точек гиперболы (|x| geq a), то есть все точки гиперболы лежат вне вертикальной полосы ширины (2a) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами ((a, 0)) и ((-a, 0)), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа (a) и (b) называются соответственно вещественной и мнимой полуосями гиперболы.

Рис. 8.6. Гипербола.

Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

Доказательство аналогично доказательству соответствующего утверждения для эллипса.

Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде (y=kx), поскольку мы уже знаем, что прямая (x=0) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
$$
frac>>-fracx^<2>>>=1.
$$
Поэтому, если (b^<2>-a^<2>k^ <2>> 0), то
$$
x=pm frac<sqrt-a^<2>k^<2>>>.
$$
Это позволяет указать координаты точек пересечения ((ab/v, abk/v)) и ((-ab/v, -abk/v)), где обозначено (v=(b^<2>-a^<2>k^<2>)^<1/2>). В силу симметрии достаточно проследить за движением первой из точек при изменении (k) (рис. 8.7).

Рис. 8.7. Пересечение прямой и гиперболы.

Числитель дроби (ab/v) постоянен, а знаменатель принимает наибольшее значение при (k=0). Следовательно, наименьшую абсциссу имеет вершина ((a, 0)). С ростом (k) знаменатель убывает, и (x) растет, стремясь к бесконечности, когда (k) приближается к числу (b/a). Прямая (y=bx/a) с угловым коэффициентом (b/a) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то (k) будет убывать, (k^<2>) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом (-b/a).

К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

Прямые с уравнениями (y=bx/a) и (y=-bx/a) в канонической системе координат называются асимптотами гиперболы.

источники:

http://tutomath.ru/8-klass/kak-postroit-giperbolu.html

http://univerlib.com/analytic_geometry/second_order_lines_and_surfaces/hyperbola/

Гипербола: определение, свойства, построение

Гиперболой называется геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух заданных точек F_1 и F_2 есть величина постоянная (2a), меньшая расстояния (2c) между этими заданными точками (рис.3.40,а). Это геометрическое определение выражает фокальное свойство гиперболы.

Фокальное свойство гиперболы

Точки F_1 и F_2 называются фокусами гиперболы, расстояние 2c=F_1F_2 между ними — фокусным расстоянием, середина O отрезка F_1F_2 — центром гиперболы, число 2a — длиной действительной оси гиперболы (соответственно, a — действительной полуосью гиперболы). Отрезки F_1M и F_2M, соединяющие произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e=frac{c}{a}, где c=sqrt{a^2+b^2}, называется эксцентриситетом гиперболы. Из определения (2a&lt;2c) следует, что e&gt;1.

Геометрическое определение гиперболы, выражающее ее фокальное свойство, эквивалентно ее аналитическому определению — линии, задаваемой каноническим уравнением гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1.

(3.50)

Действительно, введем прямоугольную систему координат (рис.3.40,б). Центр O гиперболы примем за начало системы координат; прямую, проходящую через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F_1 к точке F_2); прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

Гипербола и фокальное свойство гипербол

Составим уравнение гиперболы, используя геометрическое определение, выражающее фокальное свойство. В выбранной системе координат определяем координаты фокусов F_1(-c,0) и F_2(c,0). Для произвольной точки M(x,y), принадлежащей гиперболе, имеем:

left||overrightarrow{F_1M}|-|overrightarrow{F_2M}|right|=2a.

Записывая это уравнение в координатной форме, получаем:

sqrt{(x+c)^2+y^2}-sqrt{(x-c)^2+y^2}=pm2a.

Выполняя преобразования, аналогичные преобразованиям, используемым при выводе уравнения эллипса (т.е. избавляясь от иррациональности), приходим к каноническому уравнению гиперболы:

frac{x^2}{a^2}-frac{y^2}{b^2}=1,,

где b=sqrt{c^2-a^2}, т.е. выбранная система координат является канонической.

Проводя рассуждения в обратном порядке, можно показать, что все точки, координаты которых удовлетворяют уравнению (3.50), и только они, принадлежат геометрическому месту точек, называемому гиперболой. Таким образом, аналитическое определение гиперболы эквивалентно его геометрическому определению.


Директориальное свойство гиперболы

Директрисами гиперболы называются две прямые, проходящие параллельно оси ординат канонической системы координат на одинаковом расстоянии a^2!!not{phantom{|}},c от нее (рис.3.41,а). При a=0, когда гипербола вырождается в пару пересекающихся прямых, директрисы совпадают.

Гиперболу с эксцентриситетом e=1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e (директориальное свойство гиперболы). Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

Директрисы гиперболы и директориальное свойство

В самом деле, например, для фокуса F_2 и директрисы d_2 (рис.3.41,а) условие frac{r_2}{rho_2}=e можно записать в координатной форме:

sqrt{(x-c)^2+y^2}=eleft(x-frac{a^2}{c}right)

Избавляясь от иррациональности и заменяя e=frac{c}{a},~c^2-a^2=b^2, приходим к каноническому уравнению гиперболы (3.50). Аналогичные рассуждения можно провести для фокуса F_1 и директрисы d_1:

frac{r_1}{rho_1}=e quad Leftrightarrow quad sqrt{(x+c)^2+y^2}= eleft(x+frac{a^2}{c} right).


Уравнение гиперболы в полярной системе координат

Уравнение правой ветви гиперболы в полярной системе координат F_2rvarphi (рис.3.41,б) имеет вид

r=frac{p}{1-ecdotcosvarphi}, где p=frac{p^2}{a}фокальный параметр гиперболы.

В самом деле, выберем в качестве полюса полярной системы координат правый фокус F_2 гиперболы, а в качестве полярной оси — луч с началом в точке F_2, принадлежащий прямой F_1F_2, но не содержащий точки F_1 (рис.3.41,б). Тогда для произвольной точки M(r,varphi), принадлежащей правой ветви гиперболы, согласно геометрическому определению (фокальному свойству) гиперболы, имеем F_1M-r=2a. Выражаем расстояние между точками M(r,varphi) и F_1(2c,pi) (см. пункт 2 замечаний 2.8):

F_1M=sqrt{(2c)^2+r^2-2cdot(2c)^2cdot rcdotcos(varphi-pi)}=sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}.

Следовательно, в координатной форме уравнение гиперболы имеет вид

sqrt{r^2+4cdot ccdot rcdotcosvarphi+4cdot c^2}-r=2a.

Уединяем радикал, возводим обе части уравнения в квадрат, делим на 4 и приводим подобные члены:

r^2+4crcdotcosvarphi+4c^2=4a^2+4ar+r^2 quad Leftrightarrow quad aleft(1-frac{c}{a}cosvarphiright)r=c^2-a^2.

Выражаем полярный радиус r и делаем замены e=frac{c}{a},~b^2=c^2-a^2,~p=frac{b^2}{a}:

r=frac{c^2-a^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{b^2}{a(1-ecosvarphi)} quad Leftrightarrow quad r=frac{p}{1-ecosvarphi},

что и требовалось доказать. Заметим, что в полярных координатах уравнения гиперболы и эллипса совпадают, но описывают разные линии, поскольку отличаются эксцентриситетами (e&gt;1 для гиперболы, 0leqslant e&lt;1 для эллипса).


Геометрический смысл коэффициентов в уравнении гиперболы

Найдем точки пересечения гиперболы (рис.3.42,а) с осью абсцисс (вершины гиперболы). Подставляя в уравнение y=0, находим абсциссы точек пересечения: x=pm a. Следовательно, вершины имеют координаты (-a,0),,(a,0). Длина отрезка, соединяющего вершины, равна 2a. Этот отрезок называется действительной осью гиперболы, а число a — действительной полуосью гиперболы. Подставляя x=0, получаем y=pm ib. Длина отрезка оси ординат, соединяющего точки (0,-b),,(0,b), равна 2b. Этот отрезок называется мнимой осью гиперболы, а число b — мнимой полуосью гиперболы. Гипербола пересекает прямую, содержащую действительную ось, и не пересекает прямую, содержащую мнимую ось.

Замечания 3.10.

1. Прямые x=pm a,~y=pm b ограничивают на координатной плоскости основной прямоугольник, вне которого находится гипербола (рис.3.42,а).

2. Прямые y=pmfrac{b}{a},x, содержащие диагонали основного прямоугольника, называются асимптотами гиперболы (рис.3.42,а).

Для равносторонней гиперболы, описываемой уравнением frac{x^2}{a^2}-frac{y^2}{a^2}=1 (т.е. при a=b), основной прямоугольник является квадратом, диагонали которого перпендикулярны. Поэтому асимптоты равносторонней гиперболы также перпендикулярны, и их можно взять в качестве координатных осей прямоугольной системы координат Ox'y' (рис.3.42,б). В этой системе координат уравнение гиперболы имеет вид y'=frac{a^2}{2x'} (гипербола совпадает с графиком элементарной функции, выражающей обратно-пропорциональную зависимость).

Асимптоты гиперболы и равносторонняя гипербола

В самом деле, повернем каноническую систему координат на угол varphi=-frac{pi}{4} (рис.3.42,б). При этом координаты точки в старой и новой системах координат связаны равенствами

left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y',\ y&=-frac{sqrt{2}}{2}cdot x'+frac{sqrt{2}}{2}cdot y'end{aligned}right. quad Leftrightarrow quad left{!begin{aligned}x&=frac{sqrt{2}}{2}cdot(x'+y'),\ y&=frac{sqrt{2}}{2}cdot(y'-x')end{aligned}right.

Подставляя эти выражения в уравнение frac{x^2}{a^2}-frac{y^2}{a^2}=1 равносторонней гиперболы и приводя подобные члены, получаем

frac{frac{1}{2}(x'+y')^2}{a^2}-frac{frac{1}{2}(y'-x')^2}{a^2}=1 quad Leftrightarrow quad 2cdot x'cdot y'=a^2 quad Leftrightarrow quad y'=frac{a^2}{2cdot x'}.

3. Координатные оси (канонической системы координат) являются осями симметрии гиперболы (называются главными осями гиперболы), а ее центр — центром симметрии.

Действительно, если точка M(x,y) принадлежит гиперболе frac{x^2}{a^2}-frac{y^2}{b^2}=1. то и точки M'(x,y) и M''(-x,y), симметричные точке M относительно координатных осей, также принадлежат той же гиперболе.

Ось симметрии, на которой располагаются фокусы гиперболы, является фокальной осью.

4. Из уравнения гиперболы в полярных координатах r=frac{p}{1-ecosvarphi} (см. рис.3.41,б) выясняется геометрический смысл фокального параметра — это половина длины хорды гиперболы, проходящей через ее фокус перпендикулярно фокальной оси (r=p при varphi=frac{pi}{2}).

5. Эксцентриситет e характеризует форму гиперболы. Чем больше e, тем шире ветви гиперболы, а чем ближе e к единице, тем ветви гиперболы уже (рис.3.43,а).

Действительно, величина gamma угла между асимптотами гиперболы, содержащего ее ветвь, определяется отношением сторон основного прямоугольника: operatorname{tg}frac{gamma}{2}=frac{b}{2}. Учитывая, что e=frac{c}{a} и c^2=a^2+b^2, получаем

e^2=frac{c^2}{a^2}=frac{a^2+b^2}{a^2}=1+{left(frac{b}{a}right)!}^2=1+operatorname{tg}^2frac{gamma}{2}.

Чем больше e, тем больше угол gamma. Для равносторонней гиперболы (a=b) имеем e=sqrt{2} и gamma=frac{pi}{2}. Для e&gt;sqrt{2} угол gamma тупой, а для 1&lt;e&lt;sqrt{2} угол gamma острый (рис.3.43,а).

Эксцентриситет гиперболы и сопряжённая гипербола

6. Две гиперболы, определяемые в одной и той же системе координат уравнениями frac{x^2}{a^2}-frac{y^2}{b^2}=1 и -frac{x^2}{a^2}+frac{y^2}{b^2}=1 называются сопряженными друг с другом. Сопряженные гиперболы имеют одни и те же асимптоты (рис.3.43,б). Уравнение сопряженной гиперболы -frac{x^2}{a^2}+frac{y^2}{b^2}=1 приводится к каноническому при помощи переименования координатных осей (3.38).

7. Уравнение frac{(x-x_0)^2}{a^2}-frac{(y-y_0)^2}{b^2}=1 определяет гиперболу с центром в точке O'(x_0,y_0), оси которой параллельны координатным осям (рис.3.43,в). Это уравнение сводится к каноническому при помощи параллельного переноса (3.36). Уравнение -frac{(x-x_0)^2}{a^2}+frac{(y-y_0)^2}{b^2}=1 определяет сопряженную гиперболу с центром в точке O'(x_0,y_0).


Параметрическое уравнение гиперболы

Параметрическое уравнение гиперболы в канонической системе координат имеет вид

begin{cases}x=acdotoperatorname{ch}t,\y=bcdotoperatorname{sh}t,end{cases}tinmathbb{R},

где operatorname{ch}t=frac{e^t+e^{-t}}{2} — гиперболический косинус, a operatorname{sh}t=frac{e^t-e^{-t}}{2} гиперболический синус.

Действительно, подставляя выражения координат в уравнение (3.50), приходим к основному гиперболическому тождеству operatorname{ch}^2t-operatorname{sh}^2t=1.


Построение гиперболы в канонической системе координат

Пример 3.21. Изобразить гиперболу frac{x^2}{2^2}-frac{y^2}{3^2}=1 в канонической системе координат Oxy. Найти полуоси, фокусное расстояние, эксцентриситет, фокальный параметр, уравнения асимптот и директрис.

Решение. Сравнивая заданное уравнение с каноническим, определяем полуоси: a=2 — действительная полуось, b=3 — мнимая полуось гиперболы. Строим основной прямоугольник со сторонами 2a=4,~2b=6 с центром в начале координат (рис.3.44). Проводим асимптоты, продлевая диагонали основного прямоугольника. Строим гиперболу, учитывая ее симметричность относительно координатных осей. При необходимости определяем координаты некоторых точек гиперболы. Например, подставляя x=4 в уравнение гиперболы, получаем

frac{4^2}{2^2}-frac{y^2}{3^2}=1 quad Leftrightarrow quad y^2=27 quad Leftrightarrow quad y=pm3sqrt{3}.

Следовательно, точки с координатами (4;3sqrt{3}) и (4;-3sqrt{3}) принадлежат гиперболе. Вычисляем фокусное расстояние

2cdot c=2cdotsqrt{a^2+b^2}=2cdotsqrt{2^2+3^2}=2sqrt{13}

эксцентриситет e=frac{c}{a}=frac{sqrt{13}}{2}; фокальныи параметр p=frac{b^2}{a}=frac{3^2}{2}=4,!5. Составляем уравнения асимптот y=pmfrac{b}{a},x, то есть y=pmfrac{3}{2},x, и уравнения директрис: x=pmfrac{a^2}{c}=frac{4}{sqrt{13}}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Добавить комментарий