Как найти угол между двумя касательными

Задание. Найти тангенс угла между кривыми $y=x^2-1$ и
$y=x^3-1$ в точке их пересечения, которая имеет большую абсциссу.

Решение. Вначале найдем точки пересечения графиков заданных функций, для этого совместно разрешим уравнение заданных кривых:

$$begin{array}{c}
left{begin{array}{l}
y_{1}=x^{2}-1 \
y_{2}=x^{3}-1
end{array} Rightarrow x^{2}-1=x^{3}-1 Rightarrow x^{3}-x^{2}=0 Rightarrowright. \
Rightarrow x_{1,2}=0, x_{3}=1
end{array}$$

Таким образом, искомая точка $x=1$.

Далее находим производные заданных функций в найденной точке:

$$begin{array}{c}
y_{1}^{prime}=left(x^{2}-1right)^{prime}=left(x^{2}right)^{prime}-(1)^{prime}=2 x-0=2 x, y_{1}^{prime}(1)=2 \
y_{2}^{prime}=left(x^{3}-1right)^{prime}=left(x^{3}right)^{prime}-(1)^{prime}=3 x^{2}-0=3 x^{2}, y_{2}^{prime}(1)=3
end{array}$$

Итак, искомый тангенс:

$$operatorname{tg} phi=frac{3-2}{1+2 cdot 3}=frac{1}{7}$$

Ответ. $operatorname{tg} phi=frac{1}{7}$

Угол между касательными.

В этой статье мы рассмотрим, как решать задачи на нахождение угла между касательными.

Угол между касательными.

Пусть дана функция y=f(x) и через точку A(x;y) к графику этой функции проведены две касательные. Найти тангенс угла между прямыми:

угол между касательными

Угол между прямыми – это меньший из двух углов, образованных этими прямыми. В нашем случае это угол alpha.

Чтобы найти угол alpha рассмотрим треугольник ABC:

угол между касательными

В треугольнике ABC угол gamma – внешний угол треугольника, он равен сумме двух углов, не смежных с ним: {gamma}={alpha}+{beta}. Отсюда {alpha}={gamma}-{beta}

Но угол gamma – это угол между касательной AC и положительным направлением оси OX, следовательно, tg(gamma)=f{prime}(x_1)=k_1:

угол между касательными

Угол beta – это угол между касательной AB и положительным направлением оси OX, следовательно, tg(beta)=f{prime}(x_2) =k_2:

угол между касательными

Итак, tg(alpha)=tg({gamma}-{beta})={tg(gamma)-tg(beta)} /{1+tg(gamma)*tg(beta)}={k_1-k_2}/{1+k_1{k_2}}

Мы помним, что угол между прямыми всегда острый, и его тангенс должен быть больше нуля. В общем случае tg(alpha) вполне может быть отрицательным, поэтому

формула для нахождения тангенса угла между касательными y=k_1x+b_1 и y=k_2x+b_2 выглядит так

Решим задачу:

Найти тангенс большего угла между касательными, проведенными из точки  A(-2;-4) к параболе y=x^2+2x-3.

Заметим, что в этой задаче нужно найти тангенс большего угла между касательными, то есть тангенс тупого угла. Тангенсы смежных углов равны по модулю, но противоположны по знаку. Следовательно, нам нужно найти тангенс угла между касательными, и в ответе записать это значение со знаком “-“.

Нужно найти коэффициенты наклона касательных, проведенных к параболе из точки A(-2;-4). Но сначала найдем абсциссы точек касания x_1 и x_2.

Вспомним, как находить уравнение касательной, проведенной к графику функции из данной точки, не принадлежащей графику.

Пусть x_0 – абсцисса точки касания.

f(x_0)= {x_0}^2+2x_0-3

f{prime}(x)=2x+2

f{prime}(x_0)=2x_0+2

Уравнение касательной, проведенной из точки A(-2;-4) имеет вид:

-4=f(x_0)+f{prime}(x_0)(-2-x_0)

Подставим выражения для f(x_0) и f{prime}(x_0) в уравнение касательной. Получим уравнение относительно x_0:

-4={x_0}^2+2x_0-3+(2x_0+2)(-2-x_0)

Решим это уравнение. Упростим правую часть:

-4=-{x_0}^2-4x_0-7

{ x_0}^2+4x_0+3=0

x_1=-1;~~x_2=-3

Итак, мы нашли абсциссы точек касания: x_1=-1;~~x_2=-3

Найдем коэффициенты наклона касательных, проведенных к параболе y=x^2+2x-3. Для этого найдем, чему равны значения производной функции в точках касания.

f{prime}(-1)=2(-1)+2=0=k_1

f{prime}(-3)=2(-3)+2=-4=k_2

tg{alpha}=delim{|}{{k_1-k_2}/{1+k_1*k_2}}{|}=delim{|}{{0-(-4)}/{1+k_1*k_2}}{|}=4

Тангенс большего угла между касательными равен -tg{alpha}=-4

Ответ: -4

И.В. Фельдман, репетитор по математике.

Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами

Доказательства теорем об углах, связанных с окружностью

Теорема 1 . Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу.

Доказательство . Рассмотрим сначала вписанный угол ABC , сторона BC которого является диаметром окружности диаметром окружности , и центральный угол AOC (рис. 5).

Таким образом, в случае, когда одна из сторон вписанного угла проходит через центр окружности, теорема 1 доказана.

Теперь рассмотрим случай, когда центр окружности лежит внутри вписанного угла (рис. 6).

В этом случае справедливы равенства

и теорема 1 в этом случае доказана.

Осталось рассмотреть случай, когда центр окружности лежит вне вписанного угла (рис. 7).

В этом случае справедливы равенства

что и завершает доказательство теоремы 1.

Теорема 2 . Величина угла, образованного пересекающимися хордами хордами , равна половине суммы величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 8.

Нас интересует величина угла AED , образованного пересекающимися в точке E хордами AB и CD . Поскольку угол AED – внешний угол треугольника BED , а углы CDB и ABD являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 3 . Величина угла, образованного секущими секущими , пересекающимися вне круга, равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 9.

Нас интересует величина угла BED , образованного пересекающимися в точке E секущими AB и CD . Поскольку угол ADC – внешний угол треугольника ADE , а углы ADC , DCB и DAB являются вписанными углами, то справедливы равенства

что и требовалось доказать.

Теорема 4 . Величина угла, образованного касательной и хордой касательной и хордой , проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами.

Доказательство . Рассмотрим рисунок 10.

Нас интересует величина угла BAC , образованного касательной AB и хордой AC . Поскольку AD – диаметр диаметр , проходящий через точку касания, а угол ACD – вписанный угол, опирающийся на диаметр, то углы DAB и DCA – прямые. Поэтому справедливы равенства

что и требовалось доказать

Теорема 5 . Величина угла, образованного касательной и секущей касательной и секущей , равна половине разности величин дуг, заключённых между сторонами этого угла.

Доказательство . Рассмотрим рисунок 11.

Нас интересует величина угла BED , образованного касательной AB и секущей CD . Заметим, что угол BDC – внешний угол треугольника DBE , а углы BDC и BCD являются вписанными углами. Кроме того, углы DBE и DCB , в силу теоремы 4, равны. Поэтому справедливы равенства

что и требовалось доказать.

Теорема 6 .Величина угла, образованного двумя касательными к окружности касательными к окружности , равна половине разности величин дуг, заключённых между его сторонами.

Доказательство . Рассмотрим рисунок 12.

Нас интересует величина угла BED , образованного касательными AB и CD . Заметим, что углы BOD и BED в сумме составляют π радиан. Поэтому справедливо равенство

Углы, связанные с окружностью.

Центральный угол — угол, вершина которого совпадает с центром окружности.

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают её.

Вписанный угол в два раза меньше центрального , опирающегося на ту же дугу.

Все вписанные углы , опирающиеся на одну и ту же дугу равны.

Все вписанные углы , опирающиеся на одну и ту же хорду, вершины которых лежат по одну сторону от этой хорды, равны.

Все вписанные углы , опирающиеся на диаметр, прямые.

Любые два вписанных угла , опирающиеся на одну и ту же хорду, вершины которых лежат по разные стороны хорды, составляют в сумме 180°.

Угол между пересекающимися хордами измеряется полусуммой дуг, заключенных между его сторонами.

Угол между секущими, пересекающимися вне окружности, измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательной и секущей, пересекающимися вне окружности, измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательными к окружности измеряется полуразностью дуг, заключенных между его сторонами.

Угол между касательной и хордой, проходящей через точку касания, равняется половине центрального угла, опирающегося на данную хорду:

Центральные и вписанные углы

О чем эта статья:

Центральный угол и вписанный угол

Окружность — замкнутая линия, все точки которой равноудалены от ее центра.

Определение центрального угла:

Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.

На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF

Определение вписанного угла:

Вписанный угол — это угол, вершина которого лежит на окружности.

Вписанный угол равен половине дуги, на которую опирается.

На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC

Свойства центральных и вписанных углов

Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.

  • Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:

Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.

  • Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
  • Вписанные углы окружности равны друг другу, если опираются на одну дугу:

ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.

  • Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:

ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.

Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:

На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.

Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Хорда — отрезок, соединяющий две точки на окружности.

  • Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.

AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.

  • Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.

ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.

  • Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.

ㄥBAC + ㄥBDC = 180°

Примеры решения задач

Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.

Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?

Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°

Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.

Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°

Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?

СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°

[spoiler title=”источники:”]

http://anasta8ia.ru/angles-associated-with-the-circle/

http://skysmart.ru/articles/mathematic/centralnye-i-vpisannye-ugly

[/spoiler]

Если две окружности касаются внешне, как найти угол между их общими внешними касательными?

ugol-mezhdu-obshchimi-kasatelnymiДано: окр. (O1; R) и окр.(O2; r) касаются внешне в точке D, CK и CM — их общие внешние касательные.

Найти: ∠KCM

Решение:

Центры окружностей, точки O1 иO2 и их точка касания D лежат на одной прямой.

ugol-mezhdu-kasatelnymi-dvuh-okruzhnostejПроведём радиусы O1A и O2B в точки касания с их общей внешней касательной CM.

    [{O_1}A bot CM,{O_2}B bot CM]

(как радиусы, проведённые в точки касания), следовательно, O1A∥O2B и четырёхугольник ABO2O1 — прямоугольная трапеция.

Проведём высоту O2F.

Четырёхугольник ABO2F — прямоугольник (так как у него все углы прямые). Значит, AF=O2B=R-r, O2F=AB=2√Rr.

В прямоугольном треугольнике O1O2F

    [sin angle {O_1}{O_2}F = frac{{{O_1}F}}{{{O_1}{O_2}}} = frac{{R - r}}{{R + r}}]

Обозначим для удобства ∠O1O2F=α. Тогда 

    [sin alpha  = frac{{R - r}}{{R + r}},]

    [cos alpha  = frac{{{O_2}F}}{{{O_1}{O_2}}} = frac{{2sqrt {Rr} }}{{R + r}},]

    [tgalpha  = frac{{{O_1}F}}{{{O_2}F}} = frac{{R - r}}{{2sqrt {Rr} }}.]

∠O1CM=∠O1O2F=α (как соответственные при AB∥FO2 и секущей CO1).

CO1 — биссектриса угла KCM. Значит, ∠KCM=2α.

Если значения синуса, косинуса или тангенса не являются табличными, можно найти синус, косинус или тангенс угла KCM, используя формулы двойного угла.

    [sin 2alpha  = 2sin alpha cos alpha ;]

    [cos 2alpha  = 2{cos ^2}alpha  - 1;]

    [tg2alpha  = frac{{2tgalpha }}{{1 - t{g^2}alpha }}.]

Например, 

    [tgangle {rm{KCM}} = frac{{2 cdot frac{{R - r}}{{2sqrt {Rr} }}}}{{1 - {{(frac{{R - r}}{{2sqrt {Rr} }})}^2}}} = frac{{4sqrt {Rr} (R - r)}}{{4Rr - {{(R - r)}^2}}}.]

Угол KCM равен арктангенсу этой величины.

Угол между касательной и хордой

Угол между касательной и хордой равен половине градусной меры дуги, которая находится внутри угла.

Прежде всего: как это понимать? Подробнее о том, что такое «градусная мера дуги», написано в теме «Окружность. Вписанный угол».

Здесь напомним только, что в дуге столько же градусов, сколько в центральном угле, заключающем эту дугу. 

То есть «градусная мера дуги» – это «сколько градусов в центральном угле» – и всё!

Ну вот, как говорит Карлсон, продолжаем разговор. Рисуем ещё раз теорему об угле между касательной и хордой.

Смотри, хорда ( displaystyle AB) разбила окружность на две дуги. Одна дуга находится ВНУТРИ угла ( displaystyle BAC), а другая дуга – внутри угла ( displaystyle BAD).

И теорема об угле между касательной и хордой говорит, что ( displaystyle angle CAB) равен ПОЛОВИНЕ угла ( displaystyle AOB), ( displaystyle angle DAB) равен ПОЛОВИНЕ большего (на рисунке — зеленого) угла ( displaystyle AOB).

При чем же тут тот факт, что радиус, проведенный в точку касания, перпендикулярен касательной?

Сейчас и увидим. ( displaystyle OA) – радиус, ( displaystyle AC) – касательная.

Значит, ( displaystyle angle OAC=90{}^circ ).

Поэтому:( displaystyle angle 1=90{}^circ -angle 4).

Но ( displaystyle angle 2=angle 1) (( displaystyle OA) и ( displaystyle OB) – радиусы)( displaystyle angle 2=90{}^circ -angle 4).

И осталось вспомнить, что сумма углов треугольника ( displaystyle AOB) равна ( displaystyle 180{}^circ ).

Пишем:

Короче:

Здорово, правда? И самым главным оказалось то, что ( displaystyle angle OAC=90{}^circ ).

Равенство отрезков касательных

Задумывался ли ты над вопросом «а сколько касательных можно провести из одной точки к одной окружности»? Вот, представь себе, ровно две! Вот так:

А ещё более удивительный факт состоит в том, что:

Отрезки касательных, проведённых из одной точки к одной окружности, равны.

То есть, на нашем рисунке, ( displaystyle AB=AC).

И для этого факта тоже самым главным является то, что радиус, проведённый в точку касания, перпендикулярен касательной.

Вот, убедись.

Проведём радиусы ( displaystyle OB) и ( displaystyle OC) и соединим ( displaystyle O) и ( displaystyle A).

( displaystyle OB) – радиус.

( displaystyle AB) – касательная, значит, ( displaystyle OBbot AB).
Ну, и так же ( displaystyle OCbot AC).

Получилось два прямоугольных треугольника ( displaystyle AOB) и ( displaystyle AOC), у которых:

  • ( displaystyle OB=OC) — равные катеты
  • ( displaystyle OA) — общая гипотенуза

( displaystyle Rightarrow Delta AOB = Delta AOC)

(заглядываем в тему «Прямоугольный треугольник«, если не помним, когда бывают равны прямоугольные треугольники).

Но раз ( displaystyle Delta AOB=Delta AOC,) то( displaystyle AB=AC). УРА!

И ещё раз повторим – этот факт тоже очень важный:

Отрезки касательных, проведённых из одной точки, – равны.

И есть ещё один факт, который мы здесь не будем доказывать, но он может оказаться тебе полезен при решении задач.

Для любой прямой ( displaystyle AD), пересекающей окружность,( displaystyle ADcdot AC=A{{B}^{2}}), где ( displaystyle AB) – отрезок касательной.

Хитроумными словами об этом говорят так:

«Квадрат длины отрезка касательной равен произведению секущей на её внешнюю часть».

Страшно? Не бойся, помни только, что в буквах это:

Добавить комментарий