Как найти угол между двумя наклонными

Содержание:

Перпендикулярность в пространстве

В этом параграфе вы ознакомитесь с понятиями угла между прямыми в пространстве, угла между прямой и плоскостью, угла между двумя плоскостями; узнаете, что такое ортогональная проекция, изучите свой­ство ортогональной проекции многоугольника.

Угол между прямыми в пространстве

Поскольку две любые пересекающиеся прямые пространства лежат в одной плоскости, то угол между ними определим так же, как в планиметрии. Определение. Углом между двумя пересекающимися прямыми называют величину того из углов, образовавшихся при их пересечении, который не превышает Перпендикулярность в пространстве с примерами решения (рис. 33.1).

Угол между двумя параллельными прямыми считают равным Перпендикулярность в пространстве с примерами решения Следовательно, если Перпендикулярность в пространстве с примерами решения — угол между двумя прямыми, лежащими в одной плоскости, то Перпендикулярность в пространстве с примерами решения.

Введем понятие угла между скрещивающимися прямыми. Определение. Углом между двумя скрещивающимися прямыми называют угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся пря­мым.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Пусть прямые Перпендикулярность в пространстве с примерами решенияскрещивающиеся. Через точку М простран­ства проведем прямые Перпендикулярность в пространстве с примерами решения так, что Перпендикулярность в пространстве с примерами решения (рис. 33.2). По определению угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения .

Возникает естественный вопрос: зависит ли угол между данными скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения от выбора точки М ? Ответить на этот вопрос помогает следующая теорема.

Теорема 33.1. Угол между двумя пересекающимися прямыми равен углу между двумя другими пересекающимися прямыми, соответственно параллельными данным.

Воспользовавшись теоремой 33.1, можно показать, что угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решения равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения , где Перпендикулярность в пространстве с примерами решения

Например, на рисунке 33.3 изображена треугольная призма Перпендикулярность в пространстве с примерами решения. Угол между скрещивающимися прямыми Перпендикулярность в пространстве с примерами решенияи ВС равен углу между пересекающимися прямыми Перпендикулярность в пространстве с примерами решения и ВС.

Определение. Две прямые в пространстве называют перпендикулярными, если угол между ними равен 90°.

Заметим, что перпендикулярные прямые могут как пересекаться, так и быть скрещивающимися.

Если прямые Перпендикулярность в пространстве с примерами решения перпендикулярны, то записывают: Перпендикулярность в пространстве с примерами решения Два отрезка в пространстве называют перпендикулярными, если они лежат на перпендикулярных прямых.

Например, ребра AD и Перпендикулярность в пространстве с примерами решениякуба Перпендикулярность в пространстве с примерами решения перпендикулярны (рис. 33.4). Действительно, поскольку Перпендикулярность в пространстве с примерами решения то угол между прямыми AD и Перпендикулярность в пространстве с примерами решения равен углу между прямыми AD и Перпендикулярность в пространстве с примерами решения. Но Перпендикулярность в пространстве с примерами решения, поэтому Перпендикулярность в пространстве с примерами решения.

Пример:

На рисунке 33.5 изображен куб Перпендикулярность в пространстве с примерами решения . Най­дите угол между прямыми Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения.

Решение:

Соединим точки Перпендикулярность в пространстве с примерами решения. Поскольку Перпендикулярность в пространстве с примерами решения, то точки Перпендикулярность в пространстве с примерами решения лежат в одной плоскости. Эта плоскость пересекает параллельные плоскости Перпендикулярность в пространстве с примерами решения по параллельным прямым Перпендикулярность в пространстве с примерами решения. Следовательно, угол между прямыми Перпендикулярность в пространстве с примерами решения равен углу Перпендикулярность в пространстве с примерами решения. Соединим точки В и D. Отрезки Перпендикулярность в пространстве с примерами решения равны как диагонали равных квадратов. Следовательно, треугольник Перпендикулярность в пространстве с примерами решения равносторонний. Тогда Перпендикулярность в пространстве с примерами решения. Ответ : 60°.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Перпендикулярность прямой и плоскости

В повседневной жизни мы говорим: флагшток перпендикулярен поверхности земли (рис. 34.1), мачты парусника перпендикулярны поверхности палубы (рис. 34.2), шуруп вкручивают в доску перпендикулярно ее поверхности (рис. 34.3) и т.п.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Эти примеры дают представление о прямой, перпендикулярной плоскости. Определение. Прямую называют перпендикулярной пло­скости, если она перпендикулярна любой прямой, лежащей в этой плоскости (рис. 34.4).

Если прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то записывают: Перпендикулярность в пространстве с примерами решения Также принято говорить, что плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна прямой Перпендикулярность в пространстве с примерами решения или прямая Перпендикулярность в пространстве с примерами решения и плоскость Перпендикулярность в пространстве с примерами решения перпендикулярны.

Из определения следует, что если прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то она пересекает эту плоскость.

Отрезок называют перпендикулярным плоскости, если он принадлежит прямой, перпендикулярной этой плоскости.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Например, интуитивно понятно, что ребро Перпендикулярность в пространстве с примерами решения прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения перпендикулярно плоскости АВС (рис. 34.5). Доказать этот факт нетрудно, воспользовавшись следующей теоремой.

Теорема 34.1 (признак перпендикулярности прямой и плоскости). Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна самой плоскости.

На рисунке 34.5 прямая Перпендикулярность в пространстве с примерами решенияперпендикулярна двум пересекающимся прямым АВ и AD плоскости АВС. Следовательно, по признаку перпен­дикулярности прямой и плоскости Перпендикулярность в пространстве с примерами решения а значит, и ребро Перпендикулярность в пространстве с примерами решениятакже перпендикулярно плоскости АВС.

Теорему 34.1 часто используют на практике. Например, подставка для новогодней елки имеет форму крестовины. Если елку установить так, чтобы ее ствол был перпендикулярен направлениям крестовины, то елка будет стоять перпендикулярно плоскости пола (рис. 34.6).

Перпендикулярность в пространстве с примерами решения

Приведем теорему, которую можно рассматривать как еще один признак перпендикуляр­ности прямой и плоскости.

Теорем а 34.2. Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости (рис. 34.7).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Например, на рисунке 34.5 прямая Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости АВС, а прямая Перпендикулярность в пространстве с примерами решения параллельна прямой Перпендикулярность в пространстве с примерами решения. Следовательно, по теореме 34.2 прямая Перпендикулярность в пространстве с примерами решения также перпендикулярна плоскости АВС. Сформулируем теорему, являющуюся признаком параллельности двух прямых.

Теорем а 34.3. Если две прямые перпендикулярны одной и той же плоскости, то они параллельны (рис. 34.8). Справедлива и такая теорема.

Теорема 34.4. Через данную точку можно провести прямую, перпендикулярную данной плоскости, и притом только одну.

Пример:

Плоскость Перпендикулярность в пространстве с примерами решения перпендикулярная катету АС прямоугольного треугольника АВС, пересекает катет АС в точке Е, а ги­потенузу АВ — в точке F (рис. 34.9). Найдите отрезок EF, если АЕ : ЕС = 3 : 4, ВС = 21 см.

Решение:

Поскольку прямая АС перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения то прямая АС перпендикулярна любой прямой этой плоскости, в частности прямой EF. Прямые EF и ВС лежат в одной плоскости и перпендикулярны прямой АС, поэтому Перпендикулярность в пространстве с примерами решения. Из этого следует, что треугольники AEF и Перпендикулярность в пространстве с примерами решения подобны. Следовательно, можно записать: EF : СВ=АЕ : АС. Отсюда EF : 21 = 3 : 7, EF = 9 см. Ответ: 9 см.

Перпендикулярность в пространстве с примерами решения

Перпендикуляр и наклонная

Пусть фигура Перпендикулярность в пространстве с примерами решения — параллельная проекция фигуры F на плоскость Перпендикулярность в пространстве с примерами решения в направлении прямой Перпендикулярность в пространстве с примерами решения Если Перпендикулярность в пространстве с примерами решения, то фигуру Перпендикулярность в пространстве с примерами решения называют ортогональной проекцией фигуры F на плоскость Перпендикулярность в пространстве с примерами решения

Например, основание ABCD прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения является ортогональной проекцией основания Перпендикулярность в пространстве с примерами решения на пло­скость АВС в направлении прямой Перпендикулярность в пространстве с примерами решения(рис. 35.1).

Перпендикулярность в пространстве с примерами решения

В дальнейшем, говоря о проекции фигуры, если не оговорено противное, будем иметь в виду ортогональную проекцию.

Пусть даны плоскость Перпендикулярность в пространстве с примерами решения и не принадлежащая ей точка А . Через точку А проведем прямую Перпендикулярность в пространстве с примерами решения перпендикулярную плоскости Перпендикулярность в пространстве с примерами решения Пусть Перпендикулярность в пространстве с примерами решения(рис. 35.2).

Отрезок АВ называют перпендикуляром, опущенным из точки А на плоскость Перпендикулярность в пространстве с примерами решения точку В — основанием перпендикуляра. Основание В перпендикуляра АВ — это проекция точки А на плоскость Перпендикулярность в пространстве с примерами решения.

Отметим на плоскости Перпендикулярность в пространстве с примерами решения какую-нибудь точку С, отличную от точки В. Проведем отрезок АС (рис. 35.2). Отрезок АС называют наклонной, проведенной из точки А к плоскости Перпендикулярность в пространстве с примерами решения точку С — основанием наклонной. Отрезок ВС является проекцией наклонной АС.

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 35.1. Если из одной тонки проведены к плоскости перпендикуляр и наклонная, то наклонная больше перпендикуляра.

Пример:

Докажите, что если точка, не принадлежащая плоскости многоугольника, равноудалена от его вершин, то проекцией этой точки на плоскость многоугольника является центр его описанной окружности.

Решение:

Проведем доказательство для треугольника. Для других многоугольников доказательство будет аналогичным. Пусть точка М не принадлежит плоскости АВС, причем МА = = МВ = МС. Опустим из точки М перпендикуляр МО на плоскость АВС (рис. 35.3). Докажем, что точка О — центр описанной окружности треугольника АВС. Поскольку Перпендикулярность в пространстве с примерами решения, то Перпендикулярность в пространстве с примерами решения. В пря­моугольных треугольниках МОА, МОВ, МОС катет МО — общий, гипотенузы равны, следовательно, эти треугольники равны по гипотенузе и катету. Из равенства данных треугольников следует, что ОА = ОВ = ОС, то есть точка О — центр описанной окружности треугольника АВС.

Заметим, что когда надо определить расстояние между двумя геометрическими фигурами, то стремятся найти расстояние между их ближайшими точками. Например, из курса планиметрии вы знаете, что расстоянием от точки, не принадлежащей прямой, до этой прямой называют расстояние от данной точки до ближайшей точки на прямой, то есть длину перпендикуляра, опущенного из точки на прямую. Теорема 35.1 показывает, что целесообразно принять следующее определение.

Определение. Если точка не принадлежит плоскости, то рас­стоянием от точки до плоскости называют длину перпен­дикуляра, опущенного из точки на плоскость. Если точка принадлежит плоскости, то считают, что расстояние от точки до плоскости равно нулю.

Пример:

Докажите, что если прямая параллельна плоскости, то все точки прямой равноудалены от плоскости.

Решение:

Пусть А и В — две произвольные точки прямой Перпендикулярность в пространстве с примерами решения параллельной плоскости Перпендикулярность в пространстве с примерами решения Точки Перпендикулярность в пространстве с примерами решения — основания перпендикуляров, опущенных соответственно из точек А и В на плоскость Перпендикулярность в пространстве с примерами решения (рис. 35.4). Докажем, что Перпендикулярность в пространстве с примерами решения.

Перпендикулярность в пространстве с примерами решения

По теореме 34.3 Перпендикулярность в пространстве с примерами решения. Следовательно, точки Перпендикулярность в пространстве с примерами решения лежат в одной пло­скости. Плоскость Перпендикулярность в пространстве с примерами решения проходит через прямую Перпендикулярность в пространстве с примерами решения параллельную плоскости Перпендикулярность в пространстве с примерами решения и пересекает плоскость Перпендикулярность в пространстве с примерами решения по прямой Перпендикулярность в пространстве с примерами решения. Тогда по теореме 30.2 получаем: Перпендикулярность в пространстве с примерами решения. Таким образом, в четырехугольнике Перпендикулярность в пространстве с примерами решения каждые две противолежащие стороны параллельны. Следовательно, четырехугольник Перпендикулярность в пространстве с примерами решения — параллелограмм. Отсюда Перпендикулярность в пространстве с примерами решения Так как точки А и В выбраны на прямой Перпендикулярность в пространстве с примерами решения произвольно, то утверждение задачи доказано.

Доказанное свойство позволяет принять следующее определение. Определение. Расстоянием от прямой до параллель­ной ей плоскости называют расстояние от любой точки этой прямой до плоскости. Используя результат, полученный в ключевой задаче 2, можно решить следующую задачу.

Пример:

Докажите, что если две плоскости параллельны, то все точки одной плоскости равноудалены от другой плоскости. Определение. Расстоянием между двумя параллель­ными плоскостями называют расстояние от любой точки одной плоскости до другой плоскости.

Результаты, полученные в ключевых задачах 2 и 3, часто ис­пользуют в практической деятельности, например в строительстве (рис. 35.5).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 35.2 (теорема о трех перпендикулярах). Если прямая, принадлежащая плоскости, перпендикулярна проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. И наоборот, если прямая, принадлежащая плоскости, перпендикулярна наклонной к этой плоскости, то она перпендикулярна и проекции наклонной на эту плоскость.

Доказательство. Докажем первую часть теоремы.Пусть прямая Перпендикулярность в пространстве с примерами решения принадлежащая плоскости Перпендикулярность в пространстве с примерами решения перпендикулярна проекции ВС наклонной АС (рис. 35.6). Докажем, что Перпендикулярность в пространстве с примерами решения. Имеем: Перпендикулярность в пространстве с примерами решения следовательно, Перпендикулярность в пространстве с примерами решения. Получили, что прямая а перпендикулярна двум пересекающимся прямым АВ и ВС плоскости АВС; следовательно,Перпендикулярность в пространстве с примерами решения. Поскольку Перпендикулярность в пространстве с примерами решения то Перпендикулярность в пространстве с примерами решения Доказательство второй части теоремы аналогично доказатель­ству первой части.

Пример:

Точка М не принадлежит плоскости выпуклого многоугольника и равноудалена от всех прямых, содержащих его стороны. Проекцией точки М на плоскость многоугольника является точка О, принадлежащая многоугольнику. Докажите, что точка О — центр вписанной окружности многоугольника.

Решение:

Проведем доказательство для треугольника. Для других многоугольников доказательство будет аналогичным. Опустим из точки О перпендикуляры ON, ОК и ОЕ соответственно на прямые АВ, ВС и СА (рис. 35.7). Соединим точку М с точками Е, К и N.

Отрезок ON является проекцией на­клонной MN на плоскость АВС. По построению Перпендикулярность в пространстве с примерами решения. Тогда по теореме о трех перпендикулярах получаем: Перпендикулярность в пространстве с примерами решения

Аналогично можно доказать, что Перпендикулярность в пространстве с примерами решения. Следовательно, длины отрезков MN, МК и ME — расстояния от точки М до прямых АВ, ВС и СА соответственно. По условию MN = МК = МЕ. Перпендикулярность в пространстве с примерами решения

В прямоугольных треугольниках MON, МОК, МОЕ катет МО общий, гипотенузы равны; следовательно, данные треугольники равны по катету и гипотенузе. Из равенства этих треугольников следует, что ON = ОК = ОЕ.

Длины отрезков ON, ОК и ОЕ являются расстояниями от точки О до прямых, содержащих стороны треугольника АВС. Мы показали, что эти расстояния равны. Так как точка О принадлежит треугольнику АВС, то точка О — центр вписанной окружности треугольника АВС.

Угол между прямой и плоскостью

Вы знаете, что в давние времена путешественники ориентировались по звездам. Они измеряли угол, который образовывал с плоскостью горизонта луч, идущий от данной точки к небесному телу.

Сегодня человеку в своей деятельности также важно определять углы, под которыми наклонены к данной плоскости некоторые объекты (рис. 36.1). Эти примеры показывают, что целесообразно ввести понятие угла между прямой и плоскостью.

Перпендикулярность в пространстве с примерами решения

Определение. Если прямая параллельна плоскости или принадлежит ей, то считают, что угол меж ду такой прямой и плоскостью равен 0°.

Если прямая перпендикулярна плоскости, то считают, что угол между такой прямой и плоскостью равен Перпендикулярность в пространстве с примерами решения .

Если прямая пересекает плоскость и не перпендикулярна ей, то углом между такой прямой и плоскостью называют угол между прямой и ее проекцией на плоскость (рис. 36.2).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Из определения следует, что если Перпендикулярность в пространстве с примерами решения — угол между прямой и плоскостью, то Перпендикулярность в пространстве с примерами решения.

Также принято говорить, что прямая образует угол Перпендикулярность в пространстве с примерами решения с плоскостью.

Углом между отрезком и плоскостью называют угол между прямой, содержащей этот отрезок, и плоскостью.

Например, рассмотрим куб Перпендикулярность в пространстве с примерами решения(рис. 36.3). Угол между диагональю Перпендикулярность в пространстве с примерами решения грани Перпендикулярность в пространстве с примерами решения и плоскостью АВС равен 45°. Действительно, прямая АВ — проекция прямой Перпендикулярность в пространстве с примерами решения на плоскость АВС. Тогда угол между прямой Перпендикулярность в пространстве с примерами решения и плоскостью АВС равен величине угла Перпендикулярность в пространстве с примерами решения . Поскольку четырехугольник Перпендикулярность в пространстве с примерами решения — квадрат, то Перпендикулярность в пространстве с примерами решения.

Пример:

Докажите, что если из одной точки к плоскости проведены наклонные, образующие равные углы с плоскостью, то проекция данной точки на плоскость равноудалена от оснований наклонных.

Решение:

Пусть МЛ и М В — наклонные, образующие с плоскостью Перпендикулярность в пространстве с примерами решения равные углы, отрезки ОА и ОВ — проекции этих наклонных (рис. 36.4). Докажем, что ОА = ОВ.

Перпендикулярность в пространстве с примерами решения

Прямая ОА является проекцией прямой МА на плоскость Перпендикулярность в пространстве с примерами решения Так как угол МАО острый, то он равен углу между прямыми ОА и МА. Следовательно, величина угла МАО равна углу между наклонной МА и плоскостью Перпендикулярность в пространстве с примерами решения. Аналогично можно доказать, что величина угла МВО равна углу между наклонной МВ и плоскостью Перпендикулярность в пространстве с примерами решения По условию Перпендикулярность в пространстве с примерами решения.

Поскольку Перпендикулярность в пространстве с примерами решения то Перпендикулярность в пространстве с примерами решения. Получаем, что прямоугольные треугольники МОА и МОВ равны по катету и противолежащему острому углу. Отсюда Перпендикулярность в пространстве с примерами решения.

  • Заказать решение задач по высшей математике

Двугранный угол. Угол между плоскостями

Перпендикулярность в пространстве с примерами решения

На рисунке 37.1 изображена фигура, состоящая из двух полуплоскостей, имеющих общую границу. Эта фигура делит пространство на две части, выделенные на рисунке 37.2 разными цветами. Каждую из этих частей вместе с полуплоскостями называют двугран­ным углом. Полуплоскости называют гранями двугранного угла, а их общую границу — ребром двугранного угла. Как видим, «желтый» и «синий» двугранные углы, изображенные на рисунке 37.2, существенно различаются. Это различие выражается следующим свойством. На гранях двугранного угла выберем произвольные точки М и N (рис. 37.3).

Отрезок MN принадлежит «желтому» двугранному углу, а «сине­му» двугранному углу принадлежат лишь концы отрезка. В дальнейшем, говоря «двугранный угол», будем подразумевать такой двугранный угол, который содержит любой отрезок с концами на его гранях («желтый» двугранный угол).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Наглядное представление о двугранном угле дают полуоткрытая классная доска, двускатная крыша, открытый ноутбук (рис. 37.4).

Перпендикулярность в пространстве с примерами решения

Двугранный угол считают пространственным аналогом угла на плоскости. Вы знаете, как определяют величину угла на плоскости. Научимся определять величину двугранного угла.

Отметим на ребре MN двугранного угла произ­вольную точку О. Через точку О в гранях двугран­ного угла проведем лучи ОА и ОВ перпендикулярно ребру MN (рис. 37.5). Угол АОВ, образованный этими лучами, называют линейным углом двугран­ного угла. Поскольку Перпендикулярность в пространстве с примерами решенияи Перпендикулярность в пространстве с примерами решения, то Перпендикулярность в пространстве с примерами решения. Таким образом, если через произвольную точку ребра двугранного угла провести плоскость перпендикулярно ребру, то эта плоскость пересечет двугранный угол по его линейному углу.

Перпендикулярность в пространстве с примерами решения

Определение. Величиной двугранного угла называют величину его линейного угла.

Двугранный угол называют острым, прямым, тупым или развернутым, если его линейный угол соответственно острый, прямой, тупой или развернутый.

Перпендикулярность в пространстве с примерами решения

Например, рассмотрим куб Перпендикулярность в пространстве с примерами решения(рис. 37.6). Двугранный угол с ребром Перпендикулярность в пространстве с примерами решения, грани которого принадлежат плоскостям Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения является прямым. Действительно, поскольку Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения, то угол ADC — линейный угол двугранного угла с ребром Перпендикулярность в пространстве с примерами решения.

Угол ADC прямой.

При пересечении двух плоскостей образуются четыре двугранных угла, отличных от развернутого (рис. 37.7). Здесь возможны два случая:

  1. все четыре двугранных угла прямые (рис. 37.7, а);
  2. из четырех двугранных углов два равных угла острые и два равных угла тупые (рис. 37.7, б).

Перпендикулярность в пространстве с примерами решения

В обоих случаях из четырех двугранных углов найдется такой, величина которого не превышает 90°.

Определение. Углом между двумя пересекающимися плоскостями называют величину того из образовавшихся дву­гранных углов, который не превышает 90°. Угол между двумя параллельными плоскостям и равен 0°.

Углом между многоугольником и плоскостью, которой много угольник не принадлежит, называют угол между плоскостью, содержащей многоугольник, и данной плоскостью.

Углом между двумя многоугольниками, лежащими в разных плоскостях, называют угол между плоскостями, в которых лежат эти многоугольники.

Пример:

Прямоугольные треугольники Перпендикулярность в пространстве с примерами решения и АВМ Перпендикулярность в пространстве с примерами решения имеют общий катет АВ (рис. 37.8). Отрезок МВ перпендикулярен плоскости АВС. Известно, что МВ = 4 см, АС = 6 см, МС = 10 см. Найдите угол между плоскостями АВС и АМС.

Перпендикулярность в пространстве с примерами решения

Решение:

Отрезок ВА является проекцией наклонной МА на плоскость АВС. Так как Перпендикулярность в пространстве с примерами решения, то по теореме о трех перпендикулярах Перпендикулярность в пространстве с примерами решения. Следователь но, угол МАВ — линейный угол двугранного угла с ребром АС, грани которого принадлежат плоскостям АВС и АМС. Поскольку угол МАВ острый, то угол между плоскостями АВС и АМС равен величине угла МАВ.

Для стороны AM прямоугольного треугольника АМС можно записать: Перпендикулярность в пространстве с примерами решения . Отсюда Перпендикулярность в пространстве с примерами решения. Для угла МАВ прямоугольного треугольника МАВ запишем: Перпендикулярность в пространстве с примерами решения. Отсюда Перпендикулярность в пространстве с примерами решения и Перпендикулярность в пространстве с примерами решения. Ответ: 30°.

Имеет место теорема, устанавливающая связь между площадью данного многоугольника и площадью его проекции.

Теорема 37.1 (площадь ортогональной проекции мно­гоугольника). Площадь проекции выпуклого многоугольника равна произведению его площади и косинуса угла а между многоугольником и его проекцией, где Перпендикулярность в пространстве с примерами решения.

Определение. Две плоскости называют перпендикулярными, если угол между ними равен 90°.

Если плоскости Перпендикулярность в пространстве с примерами решения перпендикулярны, то записывают: Перпендикулярность в пространстве с примерами решения. Также принято говорить, что плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения или плоскость Перпендикулярность в пространстве с примерами решения перпендикулярна плоскости Перпендикулярность в пространстве с примерами решения.

Наглядное представление о перпендикулярных плоскостях дают плоскости стены и потолка комнаты, плоскости двери и пола, плоскости сетки и теннисного корта (рис. 37.9).

Перпендикулярность в пространстве с примерами решения

Очевидно, что перпендикулярные плоскости при пересечении образуют четыре прямых двугранных угла (рис. 37.10).

Перпендикулярность в пространстве с примерами решения Перпендикулярность в пространстве с примерами решения

Теорема 37.2 (признак перпендикулярности плоско­стей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

Например, плоскость грани Перпендикулярность в пространстве с примерами решения прямоугольного параллелепипеда Перпендикулярность в пространстве с примерами решения, (рис. 37.11) перпендикулярна плоскости грани ABCD. Действительно, плоскость Перпендикулярность в пространстве с примерами решения проходит через прямую Перпендикулярность в пространстве с примерами решения, перпендикулярную плоскости АВС.

Перпендикулярность в пространстве с примерами решения ГЛАВНОЕ В ПАРАГРАФЕ 5

Угол между прямыми в пространстве Углом между двумя пересекающимися прямыми называют ве­личину того из углов, образовавшихся при их пересечении, который не превышает 90°. Считают, что угол между двумя параллельными прямыми равен 0°. Углом между двумя скрещивающимися прямыми называют угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся прямым. Две прямые в пространстве называют перпендикулярными, если угол между ними равен 90°.

Перпендикулярность прямой и плоскости

  • Прямую называют перпендикулярной плоскости, если она перпендикулярна любой прямой, лежащей в этой плоскости.
  • Если прямая перпендикулярна двум пересекающимся прямым, лежащим в плоскости, то она перпендикулярна самой плоскости.
  • Если одна из двух параллельных прямых перпендикулярна плоскости, то и другая прямая перпендикулярна этой плоскости.
  • Если две прямые перпендикулярны одной и той же плоскости, то они параллельны.
  • Через данную точку можно провести прямую, перпендикулярную данной плоскости, и притом только одну.

Ортогональная проекция фигуры

Пусть фигура Перпендикулярность в пространстве с примерами решения — параллельная проекция фигуры F на плоскость Перпендикулярность в пространстве с примерами решения в направлении прямой Перпендикулярность в пространстве с примерами решения. Если Перпендикулярность в пространстве с примерами решения, то фигуру Перпендикулярность в пространстве с примерами решения называют ортогональной проекцией фигуры F на плоскость Перпендикулярность в пространстве с примерами решения

Расстояние от точки до плоскости

Если точка не принадлежит плоскости, то расстоянием от точки до плоскости называют длину перпендикуляра, опущенного из точки на плоскость. Если точка принадлежит плоскости, то считают, что расстояние от точки до плоскости равно нулю.

Расстояние от прямой до параллельной ей плоскости

Расстоянием от прямой до параллельной ей плоскости называют расстояние от любой точки этой прямой до плоскости.

Расстояние между двумя параллельными плоскостями

Расстоянием между двумя параллельными плоскостями назы­вают расстояние от любой точки одной плоскости до другой плоскости.

Теорема о трех перпендикулярах

Если прямая, принадлежащая плоскости, перпендикулярна проекции наклонной к этой плоскости, то она перпендикулярна и самой наклонной. И наоборот, если прямая, принадлежащая плоскости, перпендикулярна наклонной к этой плоскости, то она перпендикулярна и проекции наклонной на эту плоскость.

Угол между прямой и плоскостью

  • Если прямая параллельна плоскости или принадлежит ей, то считают, что угол между такой прямой и плоскостью равен 0°.
  • Если прямая перпендикулярна плоскости, то считают, что угол между такой прямой и плоскостью равен 90°.
  • Если прямая пересекает плоскость и не перпендикулярна ей, то углом между такой прямой и плоскостью называют угол между прямой и ее проекцией на плоскость.

Величина двугранного угла

Величиной двугранного угла называют величину его линейного угла.

Угол между двумя пересекающимися плоскостями

Углом между двумя пересекающимися плоскостями называют величину того из образовавшихся двугранных углов, который не превышает 90°.

Площадь ортогональной проекции многоугольника

Площадь проекции выпуклого многоугольника равна произведению его площади и косинуса угла а между многоугольником и его проекцией, где Перпендикулярность в пространстве с примерами решения

Перпендикулярные плоскости

Две плоскости называют перпендикулярными, если угол между ними равен 90°.

Признак перпендикулярности плоскостей

Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.

  • Векторы и координаты в пространстве
  • Множества
  • Рациональные уравнения
  • Рациональные неравенства и их системы
  • Предел числовой последовательности
  • Предел и непрерывность числовой функции одной переменной
  • Функции, их свойства и графики
  • Параллельность в пространстве

Наклонной, проведённой из данной точки к данной плоскости, называется любой отрезок, соединяющий данную точку с точкой плоскости,  не являющийся перпендикуляром к плоскости.

Конец отрезка, лежащий в плоскости, называется основанием наклонной.

Paralelograms šablons.jpg

(AB) — наклонная;
(B) — основание наклонной.

Перпендикуляром, проведённым из данной точки к данной плоскости, называется отрезок, соединяющий данную точку с точкой плоскости, и лежащий на прямой, перпендикулярной плоскости.

Конец этого отрезка, лежащий в плоскости, называется основанием перпендикуляра.

Paralelograms šablons - Copy.jpg

(AC) — перпендикуляр;

(C) — основание перпендикуляра.

Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.

Отрезок, соединяющий основания перпендикуляра и наклонной, проведённых из одной и той же точки, называется проекцией наклонной.

Paralelograms šablons - Copy - Copy.jpg

(CB) — проекция наклонной (AB) на плоскость

α

.

Треугольник (ABC) прямоугольный.

Углом между наклонной и плоскостью называется угол между этой наклонной и её проекцией на плоскость.

Paralelograms šablons - Copy - Copy - Copy.jpg

 (CBA) — угол между наклонной (AB) и плоскостью

α

.

Paralelograms šablons - Copy - Copy - Copy (2).jpg 

Если (AD > AB), то (DC > BC).

Если из данной точки к данной плоскости провести несколько наклонных, то большей наклонной соответствует большая проекция.

 (DAB) — угол между наклонными;

 (DCB) — угол между проекциями.
Отрезок (DB) — расстояние между основаниями наклонных.

Источники:

Рис. 1-5. Наклонная, перпендикуляр к плоскости, © ЯКласс.

Стереометрия

Глава 9. Прямые и плоскости в пространстве

9.5. Наклонные и их проекции на плоскость. Угол наклонной с плоскостью

Определение 1

Прямая, пересекающая плоскость, но не перпендикулярная к ней, называется наклонной к этой плоскости.

Определение 2

Точка пересечения перпендикуляра (наклонной) с плоскостью называется основанием перпендикуляра (наклонной).

Определение 3

Отрезок, соединяющий основания наклонной и перпендикуляра, проведенных к плоскости из одной и той же точки вне ее, называется проекцией наклонной на эту плоскость.

Если из одной и той же точки, взятой вне плоскости, проведены к этой плоскости перпендикуляр и наклонные, то:
1) две наклонные, имеющие равные проекции, равны;
2) из двух наклонных та больше, проекция которой больше;
3) (обратная) равные наклонные имеют равные проекции;
4) (обратная) большей наклонной соответствует большая проекция.

Повернув прямоугольные треугольники вокруг общего их катета (перпендикуляра к плоскости) до совмещения их плоскостей, получим все наклонные (гипотенузы) и их проекции (другие катеты) в одной плоскости, где эти теоремы верны.

Следствие

Перпендикуляр к плоскости меньше всякой наклонной, проведенной к той же плоскости из той же точки вне ее (катет меньше гипотенузы).

Определение 4

Расстоянием точки от плоскости называется длина перпендикуляра, опущенного из этой точки на данную плоскость.

Определение 5

Углом между наклонной и плоскостью называется острый угол между наклонной и ее проекцией на эту плоскость.

Теорема 5

Угол между наклонной и ее проекцией на плоскость является наименьшим из всех углов, образуемых данной наклонной с прямыми, лежащими в данной плоскости.

Геометрия, 10 класс

Урок №10. Перпендикуляр и наклонные

Перечень вопросов, рассматриваемых в теме.

  • Определение перпендикуляра, наклонной и проекции наклонной на плоскость;
  • Доказательство теоремы о трех перпендикулярах;
  • Определение угла между прямой и плоскостью.

Глоссарий по теме

Теорема о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

Обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.

Определение: углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.

Основная литература:

Атанасян Л. С., Бутузов В. Ф. Кадомцев С. Б. и др. Математика: алгебра и начала математического анализа, геометрия. Геометрия. 10–11 классы: учеб. для общеобразоват. организаций: базовый и углубл. уровни. – 4-е изд. – М.: Просвещение, 2017. – 255 с.

Дополнительная литература:

Глазков Ю. А., Юдина И. И., Бутузов В. Ф. Рабочая тетрадь по геометрии для 10 класса. Базовый и профильный уровень. – М.: Просвещение, 2017. – 160 с.

Теоретический материал для самостоятельного изучения

Рассмотрим плоскость α и точку А, не лежащую в этой плоскости (рис. 1). Проведем через точку А прямую, перпендикулярную к плоскости α, и обозначим буквой Н точку пересечения этой прямой с плоскостью α. Отрезок АН называется перпендикуляром, проведенным из точки А к плоскости α, а точка Н — основанием перпендикуляра. Отметим в плоскости α какую-нибудь точку М, отличную от Н, и проведем отрезок AM. Он называется наклонной, проведенной из точки А к плоскости α, а точка М – основанием наклонной. Отрезок НМ называется проекцией наклонной на плоскость α.

(Рис. 1)

Рассмотрим прямоугольный треугольник АМН. Сторона АН — катет, а сторона AM — гипотенуза, поэтому АН < AM. Поэтому перпендикуляр, проведенный из данной точки к плоскости, меньше любой наклонной, проведенной из той же точки к этой плоскости.

Следовательно, из всех расстояний от точки А до различных точек плоскости α наименьшим является расстояние до точки Н. Это расстояние, т. е. длина перпендикуляра, проведенного из точки А к плоскости α, называется расстоянием от точки А до плоскости α.

Стоит отметить, что в случае двух параллельных плоскостей, расстоянием между ними будет расстояние от произвольной точки одной плоскости до другой плоскости. Например, все точки потолка находятся на одинаковом расстоянии от пола. Если же прямая параллельна плоскости, то все точки прямой равноудалены от этой плоскости. В этом случае расстояние от произвольной точки прямой до плоскости называется расстоянием между прямой и параллельной ей плоскостью. Например, все точки прямой b равноудалены от потолка комнаты.

Если мы имеем дело со скрещивающимися прямыми, то расстоянием между ними будет расстояние между одной из этих прямых и плоскостью, проходящей через другую прямую параллельно первой.

Сформулируем теорему о трех перпендикулярах: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ее проекции на эту плоскость, перпендикулярна и к самой наклонной.

(Рис. 2)

На рисунке 2: АН — перпендикуляр к плоскости α, AM — наклонная, а — прямая, проведенная в плоскости α через точку М перпендикулярно к проекции наклонной НМ. Докажем, что прямая а перпендикулярна наклонной AM.

Рассмотрим плоскость АМН. Прямая а перпендикулярна к НМ по условию. Так как прямая а, лежит в плоскости α, а эта плоскость перпендикулярна отрезку AH, то прямая а перпендикулярна к этой плоскости. Отсюда следует, что прямая а перпендикулярна к любой прямой, лежащей в плоскости АМН, в частности прямая а перпендикулярна отрезку АМ. Теорема доказана.

Эта теорема называется теоремой о трех перпендикулярах, так как в ней говорится о связи между тремя перпендикулярами АН, НМ и AM.

Справедлива также обратная теорема: прямая, проведенная в плоскости через основание наклонной перпендикулярно к ней, перпендикулярна и к ее проекции.

Введем теперь понятие проекции произвольной фигуры на плоскость. Проекцией точки на плоскость называется основание перпендикуляра, проведенного из этой точки к плоскости, если точка не лежит в плоскости, и сама точка, если она лежит в плоскости.

Обозначим буквой F какую-нибудь фигуру в пространстве. Если мы построим проекции всех точек этой фигуры на данную плоскость, то получим фигуру F1, которая называется проекцией фигуры F на данную плоскость (рис. 3).

(Рис. 3)

Докажем теперь, что проекцией прямой на плоскость, не перпендикулярную к этой прямой, является прямая (рис. 4).

Данную плоскость обозначим буквой α. Произвольную прямую, не перпендикулярную к плоскости, обозначим буквой а. Из какой-нибудь точки М прямой а проведем перпендикуляр МН к плоскости α и рассмотрим плоскость β, проходящую через прямую a и перпендикуляр МН. Плоскости α и β пересекаются по некоторой прямой а1.

Докажем, что эта прямая и является проекцией прямой а на плоскость α. В самом деле, возьмем произвольную точку М1 прямой а и проведем в плоскости β прямую М1Н1, параллельную прямой МН.

Так как отрезок MH перпендикуляр к плоскости α и отрезок MH параллелен М1Н1, то отрезок М1Н1 тоже перпендикулярен плоскости α.

Этим мы доказали, что проекция произвольной точки прямой а лежит на прямой а1.

Аналогично доказывается, что любая точка прямой а1 является проекцией некоторой точки прямой а. Следовательно, прямая а1 — проекция прямой а на плоскость α. Что и требовалось доказать.

(Рис. 4)

Теперь введем понятие угла между прямой и плоскостью.

Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной к ней, называется угол между прямой и ее проекцией на плоскость.

Примеры и разбор решения заданий тренировочного модуля

Пример 1. Докажем, что угол между φ0 между данной прямой AM и плоскостью α является наименьшим из всех углов φ, которые данная прямая образует с прямыми, проведенными в плоскости α через точку А.

(Рис. 5)

Обозначим буквой Н основание перпендикуляра (рис. 5), проведенного из точки М к плоскости α.

Рассмотрим произвольную прямую р в плоскости α, проходящую через точку А и отличную от прямой АН.

Угол между прямыми AM и р обозначим через φ.

Докажем, что φ больше чем φ0.

Из точки М проведем перпендикуляр MN к прямой р. Если точка N совпадает с точкой А, то φ равняется 90 градусам и поэтому φ больше чем φ 0. Рассмотрим случай, когда точки А и N не совпадают. Отрезок AM — общая гипотенуза прямоугольных

треугольников ANM и АНМ, поэтому
sinφ=MN/AM

Так как наклонная MN больше, чем перпендикуляр МН, то синус угла φ больше, чем синус угла φ0. Поэтому угол φ больше, чем угол φ0. Что и требовалось доказать.

Тестовый вопрос №7. Прямая AM перпендикулярна плоскости равностороннего треугольника ABC, точка H середина стороны BC. Найдите угол между прямой MH и плоскостью ABC, если AM = a, HB = a.

Решение. Искомый угол – MHA.

Рассмотрим треугольник ABC. Он равносторонний. Это означает, что его медиана так же является высотой и биссектрисой. Так как HB = a, следовательно, любая сторона треугольника имеет длину 2a. Рассмотрим треугольник AHB. Он прямоугольный, т.к. AH медиана и высота. По теореме Пифагора вычислим длину стороны AH: .

Далее рассмотрим треугольник MHA, он прямоугольный, т.к. MA перпендикулярна плоскости ABC. Зная это мы можем выразить тангенс искомого угла: .. Отсюда делаем вывод, что искомый угол равен 30 градусов.

Ответ: ∠MHA = 30˚.

Тестовый вопрос №8. Из точки O к плоскости α проведена наклонная, длина которой равна 17 см, проекция наклонной равна 15 см. На каком расстоянии от плоскости находится точка O?

Решение. Нарисуем рисунок. OH – перпендикуляр, OM – наклонная, длина которой 17 см, MH – проекция наклонной, длина которой 15 см.

Треугольник OHM – прямоугольный, т.к. OH – перпендикуляр. Поэтому OH – искомое расстояние. Найдем его по теореме Пифагора: сантиметров.

Ответ: 8 сантиметров.

Добавить комментарий