Как найти угол между гранями четырехугольной пирамиды

Типичными линейными параметрами любой пирамиды являются длины сторон ее основания, высота, боковые ребра и апофемы. Тем не менее существует еще одна характеристика, которая связана с отмеченными параметрами, – это двугранный угол. Рассмотрим в статье, что он собой представляет и как его находить.

Пространственная фигура пирамида

Каждый школьник хорошо представляет, о чем идет речь, когда слышит слово “пирамида”. Геометрически построить ее можно так: выбрать некоторый многоугольник, затем зафиксировать точку в пространстве и соединить ее с каждым углом многоугольника. Получившаяся объемная фигура будет пирамидой произвольного типа. Многоугольник, который ее образует, называется основанием, а точка, с которой соединены все его углы, является вершиной фигуры. Ниже на рисунке схематически показана пятиугольная пирамида.

Популяция людей: определение, виды, свойства и примерыВам будет интересно:Популяция людей: определение, виды, свойства и примеры

Пятиугольная пирамида

Видно, что ее поверхность образована не только пятиугольником, но и пятью треугольниками. В общем случае число этих треугольников будет равно количеству сторон многоугольного основания.

Двугранные углы фигуры

«Дурачок» или «дурачек»: как не проспорить в Интернете из-за орфографии?Вам будет интересно:«Дурачок» или «дурачек»: как не проспорить в Интернете из-за орфографии?

Когда рассматриваются геометрические задачи на плоскости, то любой угол образован двумя пересекающимися прямыми, или отрезками. В пространстве же к этим линейным углам добавляются двугранные, образованные пересечением двух плоскостей.

Если отмеченное определение угла в пространстве применить к рассматриваемой фигуре, то можно сказать, что существует два вида двугранных углов:

  • При основании пирамиды. Он образован плоскостью основания и любой из боковых граней (треугольником). Это означает, что углов при основании у пирамиды n, где n – число сторон многоугольника.
  • Между боковыми сторонами (треугольниками). Количество этих двугранных углов также составляет n штук.

Заметим, что первый тип рассматриваемых углов строится на ребрах основания, второй тип – на боковых ребрах.

Как рассчитать углы пирамиды?

Двугранный угол между плоскостями

Линейный угол двугранного угла является мерой последнего. Вычислить его непросто, поскольку грани пирамиды, в отличие от граней призмы, пересекаются не под прямыми углами в общем случае. Надежнее всего проводить расчет значений двугранных углов с использованием уравнений плоскости в общем виде.

В трехмерном пространстве плоскость задается следующим выражением:

A*x + B*y + C*z + D = 0

Где A, B, C, D – это некоторые действительные числа. Удобством этого уравнения является то, что первые три отмеченных числа являются координатами вектора, который перпендикулярен заданной плоскости, то есть:

n¯ = [A; B; C]

Если известны координаты трех точек, принадлежащих плоскости, то, взяв векторное произведение двух векторов, построенных на этих точках, можно получить координаты n¯. Вектор n¯ называется направляющим для плоскости.

Согласно определению, двугранный угол, образованный пересечением двух плоскостей, равен линейному углу между их направляющими векторами. Предположим, что мы имеем две плоскости, нормальные векторы которых равны:

n1¯ = [A1; B1; C1];

n2¯ = [A2; B2; C2]

Для вычисления угла φ между ними можно воспользоваться свойством произведения скалярного, тогда соответствующая формула принимает вид:

φ = arccos(|(n1¯*n2¯)|/(|n1¯|*|n2¯|))

Или в координатной форме:

φ = arccos(|A1*A2 + B1*B2 + C1*C2|/(√(A12 + B12+C12)*√(A22 + B22 + C22)))

Покажем, как использовать изложенную методику расчета двугранных углов при решении геометрических задач.

Углы правильной пирамиды четырехугольной

Предположим, что имеется правильная пирамида, в основании которой находится квадрат со стороной 10 см. Высота фигуры равна 12 см. Необходимо вычислить, чему равны двугранные углы при основании пирамиды и для ее боковых сторон.

Поскольку заданная в условии задачи фигура является правильной, то есть обладает высокой симметрией, то все углы при основании равны друг другу. Также являются одинаковыми углы, образованные боковыми гранями. Чтобы вычислить необходимые двугранные углы, найдем направляющие векторы для основания и двух боковых плоскостей. Обозначим длину стороны основания буквой a, а высоту h.

Правильная четырехугольная пирамида

Рисунок выше показывает четырехугольную правильную пирамиду. Выпишем координаты точек A, B, C и D в соответствии с введенной системой координат:

A(a/2; -a/2; 0);

B(a/2; a/2; 0);

C(-a/2; a/2; 0);

D(0; 0; h)

Теперь найдем направляющие векторы для плоскостей основания ABC и двух боковых сторон ABD и BCD в соответствии с изложенной в пункте выше методикой:

Для ABC:

AB¯ = (0; a; 0); AC¯ = (-a; a; 0); n1¯ = [AB¯*AC¯] = (0; 0; a2)

Для ABD:

AB¯ = (0; a; 0); AD¯ = (-a/2; a/2; h); n2¯ = [AB¯*AD¯] = (a*h; 0; a2/2)

Для BCD:

BC¯ = (-a; 0; 0); BD¯ = (-a/2; -a/2; h); n3¯ = [BC¯*BD¯] = (0; a*h; a2/2)

Теперь остается применить соответствующую формулу для угла φ и подставить значения стороны и высоты из условия задачи:

Угол между ABC и ABD:

(n1¯*n2¯) = a4/2; |n1¯| = a2; |n2¯| = a*√(h2 + a2/4);

φ = arccos(a4/2/(a2*a*√(h2 + a2/4))) = arccos(a/(2*√(h2 + a2/4))) = 67,38o

Угол между ABD и BDC:

(n2¯*n3¯) = a4/4; |n2¯| = a*√(h2 + a2/4) ; |n3¯| = a*√(h2 + a2/4);

φ = arccos(a4/(4*a2*(h2+a2/4)) = arccos(a2/(4*(h2+a2/4))) = 81,49o

Мы вычислили значения углов, которые требовалось найти по условию задачи. Полученные при решении задачи формулы можно использовать для определения двугранных углов четырехугольных правильных пирамид с любыми значениями a и h.

Углы треугольной правильной пирамиды

На рисунке ниже дана пирамида, основанием которой является правильный треугольник. Известно, что двугранный угол между боковыми сторонами является прямым. Необходимо вычислить площадь основания, если известно, что высота фигуры равна 15 см.

Двугранный угол треугольной пирамиды

Двугранный угол, равный 90o, на рисунке обозначен как ABC. Решить задачу можно, применяя изложенную методику, однако в данном случае поступим проще. Обозначим сторону треугольника a, высоту фигуры – h, апофему – hb и боковое ребро – b. Теперь можно записать следующие формулы:

S = 1/2*a*hb;

b2 = hb2 + a2/4;

b2 = h2 + a2/3

Поскольку два боковых треугольника в пирамиде являются одинаковыми, то стороны AB и CB равны и являются катетами треугольника ABC. Обозначим их длину x, тогда:

x = a/√2;

S = 1/2*b*a/√2

Приравнивая площади боковых треугольников и подставляя апофему в соответствующее выражение, имеем:

1/2*a*hb = 1/2*b*a/√2 =>

hb = b/√2;

b2 = b 2/2 + a2/4 =>

b = a/√2;

a2/2 = h2 + a2/3 =>

a = h*√6

Площадь равностороннего треугольника рассчитывается так:

S = √3/4*a2 = 3*√3/2*h2

Подставляем значение высоты из условия задачи, получаем ответ: S = 584,567 см2.

Двугранные углы и формула для их вычисления. Двугранный угол при основании четырехугольной правильной пирамиды

В геометрии для изучения фигур используют две важные характеристики: длины сторон и углы между ними. В случае пространственных фигур к этим характеристиками добавляются двугранные углы. Рассмотрим, что это такое, а также опишем методику определения этих углов на примере пирамиды.

Понятие о двугранном угле

Каждый знает, что две пересекающиеся прямые образуют некоторый угол с вершиной в точке их пересечения. Этот угол можно измерить с помощью транспортира или воспользоваться тригонометрическими функциями для его вычисления. Образованный двумя прямыми угол называется линейным.

Вам будет интересно: Географическая справка: площадь России в кв. км

Теперь представим, что в трехмерном пространстве имеется две плоскости, которые пересекаются по прямой. Они изображена на рисунке.

Двугранным углом называется угол между двумя пересекающимися плоскостями. Так же как и линейный, он измеряется в градусах или радианах. Если к какой-либо точке прямой, по которой плоскости пересекаются, восстановить два перпендикуляра, лежащих в этих плоскостях, то угол между ними будет искомым двугранным. Определить этот угол проще всего, если воспользоваться уравнениями плоскостей в общем виде.

Уравнение плоскостей и формула для угла между ними

Уравнение любой плоскости в пространстве в общем виде записывается так:

A × x + B × y + C × z + D = 0.

Здесь x, y, z – это координаты точек, принадлежащих плоскости, коэффициенты A, B, C, D – некоторые известные числа. Удобство этого равенства для вычисления двугранных углов заключается в том, что оно в явном виде содержит координаты направляющего вектора плоскости. Будем обозначать его n¯. Тогда:

Вектор n¯ перпендикулярен плоскости. Угол между двумя плоскостями равен углу между их направляющими векторами n1¯ и n2¯. Из математики известно, что угол, образованный двумя векторами, однозначно определяется из их скалярного произведения. Это позволяет записать формулу для вычисления двугранного угла между двумя плоскостями:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)).

Если подставить координаты векторов, то формула запишется в явном виде:

φ = arccos (|A1 × A2 + B1 × B2 + C1 × C2| / (√(A12 + B12 + C12) × √(A22 + B22 + C22))).

Знак модуля в числителе используется, чтобы определить только острый угол, поскольку двугранный угол всегда меньше или равен 90o.

Пирамида и ее углы

Пирамидой называют фигуру, которая образована одним n-угольником и n треугольниками. Здесь n – целое число, равное количеству сторон многоугольника, который является основанием пирамиды. Данная пространственная фигура является многогранником или полиэдром, поскольку она состоит из плоских граней (сторон).

Двугранные углы многогранника-пирамиды могут быть двух типов:

  • между основанием и боковой стороной (треугольником);
  • между двумя боковыми сторонами.

Если рассматривается пирамида правильная, то названные углы для нее определить несложно. Для этого по координатам трех известных точек следует составить уравнение плоскостей, а затем воспользоваться приведенной в пункте выше формулой для угла φ.

Ниже приведем пример, в котором покажем, как найти двугранные углы при основании пирамиды четырехугольной правильной.

Четырехугольная правильная пирамида и угол при ее основании

Предположим, что дана правильная пирамида с квадратным основанием. Длина стороны квадрата равна a, высота фигура составляет h. Найдем угол между основанием пирамиды и ее боковой стороной.

Поместим начало координатной системы в центр квадрата. Тогда координаты точек A, B, C, D, показанных на рисунке, будут равны:

Рассмотрим плоскости ACB и ADB. Очевидно, что направляющий вектор n1¯ для плоскости ACB будет равен:

Для определения направляющего вектора n2¯ плоскости ADB поступим следующим образом: найдем произвольные два вектора, которые ей принадлежат, например, AD¯ и AB¯, затем, вычислим их векторное произведение. Его результат даст координаты n2¯. Имеем:

AD¯ = D – A = (0; 0; h) – (a/2; -a/2; 0) = (-a/2; a/2; h);

AB¯ = B – A = (a/2; a/2; 0) – (a/2; -a/2; 0) = (0; a; 0);

n2¯ = [AD¯ × AB¯] = [(-a/2; a/2; h) × (0; a; 0)] = (-a × h; 0; -a2/2).

Поскольку умножение и деление вектора на число не изменяет его направления, то преобразуем полученный n2¯, разделив его координаты на -a, получим:

Мы определили направляющие вектора n1¯ и n2¯ для плоскостей основания ACB и боковой стороны ADB. Остается воспользоваться формулой для угла φ:

φ = arccos (|(n1¯ × n2¯)| / (|n1¯| × |n2¯|)) = arccos (a / (2 × √h2 + a2/4)).

Преобразуем полученное выражение и перезапишем его так:

φ = arccos (a / √(a2 + 4 × h2)).

Мы получили формулу для двугранного угла при основании для правильной четырехугольной пирамиды. Зная высоту фигуры и длину ее стороны, можно рассчитать угол φ. Например, для пирамиды Хеопса, сторона основания которой составляет 230,4 метра, а начальная высота равнялась 146,5 метра, угол φ будет равен 51,8o.

Определить двугранный угол для четырехугольной правильной пирамиды также можно с помощью геометрического метода. Для этого достаточно рассмотреть прямоугольный треугольник, образованный высотой h, половиной длины основания a/2 и апофемой равнобедренного треугольника.

Повторение теории и решение задач по теме “Двугранный угол. Перпендикулярность плоскостей”

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Тема данного урока: « Повторение теории и решение задач по теме “Двугранный угол. Перпендикулярность плоскостей”». На этом занятии мы повторим теорию, вспомнив определение параллельных прямых и лемму о пересечении параллельными прямыми плоскости. Далее повторим определение о параллельности прямой и плоскости и ее признак. Затем решим несколько задач по теме «Двугранный угол. Перпендикулярность плоскостей».

Двугранный угол для четырехугольника

Замечание . Иногда говорят, что двугранный угол α a β образован двумя полуплоскостями α и β , имеющими общую граничную прямую a .

Фигуры, образованные двумя страницами одной книги, двумя соседними гранями куба, — модели двугранного угла.

Для измерения двугранного угла введём понятие его линейного угла. На ребре a двугранного угла α a β отметим произвольную точку O и в гранях α и β проведём из точки O соответственно лучи OA и OB , перпендикулярные ребру a (рис. 96, а ). Угол AOB , образованный этими лучами, называется линейным углом двугранного угла α a β .

Так как OA ⊥ a и OB ⊥ a , то плоскость AOB перпендикулярна прямой a . Это означает, что линейный угол двугранного угла есть пересечение данного двугранного угла и плоскости, перпендикулярной его ребру .

Вследствие произвольного выбора точки O на ребре двугранного угла заключаем, что двугранный угол имеет бесконечное множество линейных углов. Докажем, что все они равны. Действительно, рассмотрим два линейных угла AOB и A 1 O 1 B 1 двугранного угла α a β (рис. 96, б ). Лучи OA и O 1 A 1 лежат в одной грани α и перпендикулярны прямой a — ребру двугранного угла, поэтому они сонаправлены. Аналогично получаем, что сонаправлены лучи OB и O 1 B 1 . Тогда ∠ AOB = ∠ A 1 O 1 B 1 (как углы с сонаправленными сторонами).

Таким образом, нами доказана теорема.

Теорема 27. Величина линейного угла не зависит от выбора его вершины на ребре двугранного угла.

Иначе говоря, все линейные углы данного двугранного угла равны между собой.

Это позволяет ввести следующее определение.

Определение. Величиной двугранного угла называется величина его линейного угла.

Величина двугранного угла, измеренная в градусах, принадлежит промежутку (0 ° ; 180 ° ).

На рисунке 97 изображён двугранный угол, градусная мера (величина) которого равна 30 ° . В этом случае также говорят, что двугранный угол равен тридцати градусам.

Двугранный угол является острым (рис. 98, а ), прямым (рис. 98, б ) или тупым (рис. 98, в ), если его линейный угол соответственно острый, прямой или тупой.

Заметим, что аналогично тому, как и на плоскости, в пространстве определяются смежные (рис. 99, а ) и вертикальные (рис. 99, б ) двугранные углы . При этом справедливы и аналогичные теоремы о величинах этих углов.

Попробуйте доказать самостоятельно следующие два утверждения, важные для решения задач.

 На гранях двугранного угла величины α взяты точки A и B ; A 1 и B 1 — проекции этих точек на ребро двугранного угла; AA 1 = a ; BB 1 = b ; A 1 B 1 = h . Тогда

AB = .

 Если внутри двугранного угла величины α взята точка на расстояниях a и b от граней двугранного угла, то её расстояние от ребра двугранного угла равно .

14.2. Угол между двумя плоскостями

Две пересекающиеся плоскости образуют четыре двугранных угла с общим ребром (рис. 100). Если величина одного из них равна ϕ , то величины трёх остальных равны соответственно 180 ° – ϕ , ϕ , 180 ° – ϕ (почему?). Наименьшая из этих величин принимается за величину угла между данными пересекающимися плоскостями.

Определение. Углом между двумя пересекающимися плоскостями называется наименьший из двугранных углов, образованных при их пересечении.

Угол между параллельными или совпадающими плоскостями полагается считать равным нулю.

Если величина угла между плоскостями α и β равна ϕ , то пишут: ( α ; β ) = ϕ .

Так как двугранный угол измеряется своим линейным углом, то из выше приведённого определения следует, что угол между пересекающимися плоскостями равен углу между пересекающимися прямыми, лежащими в этих плоскостях и перпендикулярными к линии их пересечения (см. рис. 100). Это означает, что величина угла между плоскостями принадлежит промежутку [0 ° ; 90 ° ] .

ЗАДаЧа. Отрезок DM длиной 3,2 перпендикулярен плоскости ромба ABCD ( ∠ ADC — тупой). Диагонали ромба равны 12 и 16. Найти углы между плоскостями:

а) ABC и MBC ; б) AMD и CMD .

Решение. а) Пусть DE — высота ромба ABCD (рис. 101). Тогда по теореме о трёх перпендикулярах ME ⊥ BC и ∠ DEM = ϕ — линейный угол двугранного угла, образованного плоскостями ABC и MBC . Найдём величину этого угла.

По условию задачи DM ⊥ ( ABC ), поэтому ⧌ MDE — прямоугольный, значит, tg ϕ = . Так как DE — высота ромба ABCD , то DE = , где S — площадь этого ромба. Сторона BC ромба является гипотенузой прямоугольного треугольника BOC , катеты OB и OC которого равны 6 и 8. Значит, BC = = = 10.

Учитывая, что S = • AC • BD = •12•16 = 96, находим: DE = = 9,6. Тогда tg ϕ = = = , откуда ϕ = arctg .

б) Так как отрезок DM — перпендикуляр к плоскости ромба ABCD , то AD ⊥ DM , CD ⊥ DM , значит, ∠ ADC = ψ — линейный угол двугранного угла, образованного пересекающимися плоскостями ADM и CDM . Найдём этот угол.

В треугольнике ACD по теореме косинусов находим

cos ψ = = = – ,

откуда ψ = arccos .

Ответ: а) arctg ; б) arccos .

[spoiler title=”источники:”]

http://interneturok.ru/lesson/geometry/10-klass/perpendikulyarnost-pryamyh-i-ploskostejb/povtorenie-teorii-i-reshenie-zadach-po-teme-dvugrannyy-ugol-perpendikulyarnost-ploskostey

http://reader.lecta.rosuchebnik.ru/demo/7999/data/chapter16.xhtml

[/spoiler]

Многогранник, одна грань которого является (n)-угольником, а остальные грани — треугольники с общей вершиной, называется пирамидой, (n)-угольник называется основанием пирамиды, а треугольники — боковыми гранями.

Общая вершина боковых граней называется вершиной пирамиды.

Отрезки, соединяющие вершину пирамиды с вершинами основания, называются рёбрами пирамиды.

В зависимости от количества сторон основания пирамиды могут быть треугольными, четырёхугольными, пятиугольными и т. д.

Перпендикуляр, проведённый из вершины пирамиды к плоскости основания, называется высотой пирамиды.

Важно знать, где на плоскости основания находится проекция вершины пирамиды, она может быть в центре основания, на стороне основания, за пределами многоугольника основания. Решение задачи в большей степени зависит от расположения этой точки.

Чтобы нарисовать пирамиду, нужно соблюдать определённый порядок:

1. первым рисуется основание, 

2. по условию задачи находится проекция вершины на плоскости основания,

3. вертикально проводится высота,

4. проводятся рёбра.

TPT 2.JPG

На рисунке изображена четырёхугольная пирамида (SABCD)

(первой пишут букву вершины).

Основание — четырёхугольник (ABCD).

Вершина проецируется в точку пересечения диагоналей (O) — основание высоты или проекция вершины.

(SA), (SB), (SC), (SD) — рёбра пирамиды,

(AB), (BC), (CD), (DA) — стороны основания.

В курсе средней школы в основном есть задачи, в которых даны:

– правильная пирамида (вершина проецируется в центр основания);
– пирамида, вершина которой проецируется в центр описанной окружности;
– пирамида, вершина которой проецируется в центр вписанной окружности;
– пирамида, высота которой совпадает с боковым ребром;
– пирамида, высота которой также является высотой боковой грани.

Углы, которые образованы боковой гранью и основанием пирамиды, называются двугранными углами при основании пирамиды.

Двугранный угол между боковой гранью (SCD) и гранью основания равен линейному углу 

 (OES). Этот угол образован отрезками (OE) и (SE), лежащими в этих гранях и перпендикулярных их общей прямой (CD). То есть (OE)

⊥CD

  и (SE)

⊥CD

.

Чтобы определить этот угол, часто нужно использовать теорему о трёх перпендикулярах.

Углы, которые образованы боковым ребром и его проекцией на плоскость основания, называются углами между боковым ребром и плоскостью основания.

На рисунке

 (OCS).

Угол, который образован двумя боковыми гранями, называется двугранным углом при боковом ребре пирамиды.

Угол, который образован двумя боковыми рёбрами одной грани пирамиды, называется углом при вершине пирамиды.

Основные формулы пирамиды

Площадь боковой поверхности равна сумме площадей всех боковых граней пирамиды:  

S=S1+S2+S3+…

(Некоторые формулы годятся только для определённых видов пирамиды.)

Площадь полной поверхности

Sп.п.=S+Sоснования

.

Объём пирамиды (V =)

13Sоснования

(H), где (H) — высота пирамиды.

Формула объёма используется для пирамид любого вида.

Источники:

Рис. 1. Пирамида, © ЯКласс.

Задача

В правильной четырёхугольной пирамиде сторона основания равна а, высота равна 3а.
Найдите углы наклона боковых рёбер и боковых граней к плоскости основания
.

Найдем угол наклона ребер к плоскости основания.
Поскольку в основании правильной пирамиды лежит правильный четырехугольник, то, в данном случае, это — квадрат. Поскольку высота пирамиды проецируется в центр основания, то это — точка пересечения диагоналей. Откуда KN = а/2

Треугольник OKN — прямоугольный, OK — высота, равная 3а.
Найдем тангенс угла KNO, обозначив его как α .

tg α = OK / KN
tg α = 3a / (a/2) = 6
α = arctg 6 ≈ 80.5377°

Найдем угол наклона ребра пирамиды.
Диагональ квадрата со стороной а равна а√2. Поскольку высота проецируется в центр основания, то в этой точке диагонали делятся пополам.

Таким образом, для прямоугольного треугольника OKC тангенс угла KCO (обозначим его как β ) равен

tg β = OK / KC
tg β = 3a / (а√2/2) = 6 / √2
β = arctg 6/√2 ≈ 76.7373°

Ответ: угол наклона граней arctg 6 ≈ 80.5377°; угол наклона ребер arctg 6/√2 ≈ 76.7373°

Двугранные углы пирамиды и методика их расчета

Типичными линейными параметрами любой пирамиды являются длины сторон ее основания, высота, боковые ребра и апофемы. Тем не менее существует еще одна характеристика, которая связана с отмеченными параметрами, — это двугранный угол. Рассмотрим в статье, что он собой представляет и как его находить.

Пространственная фигура пирамида

Каждый школьник хорошо представляет, о чем идет речь, когда слышит слово «пирамида». Геометрически построить ее можно так: выбрать некоторый многоугольник, затем зафиксировать точку в пространстве и соединить ее с каждым углом многоугольника. Получившаяся объемная фигура будет пирамидой произвольного типа. Многоугольник, который ее образует, называется основанием, а точка, с которой соединены все его углы, является вершиной фигуры. Ниже на рисунке схематически показана пятиугольная пирамида.

Популяция людей: определение, виды, свойства и примеры Вам будет интересно: Популяция людей: определение, виды, свойства и примеры

Пятиугольная пирамида

Видно, что ее поверхность образована не только пятиугольником, но и пятью треугольниками. В общем случае число этих треугольников будет равно количеству сторон многоугольного основания.

Двугранные углы фигуры

«Дурачок» или «дурачек»: как не проспорить в Интернете из-за орфографии? Вам будет интересно: «Дурачок» или «дурачек»: как не проспорить в Интернете из-за орфографии?

Когда рассматриваются геометрические задачи на плоскости, то любой угол образован двумя пересекающимися прямыми, или отрезками. В пространстве же к этим линейным углам добавляются двугранные, образованные пересечением двух плоскостей.

Если отмеченное определение угла в пространстве применить к рассматриваемой фигуре, то можно сказать, что существует два вида двугранных углов:

  • При основании пирамиды. Он образован плоскостью основания и любой из боковых граней (треугольником). Это означает, что углов при основании у пирамиды n, где n — число сторон многоугольника.
  • Между боковыми сторонами (треугольниками). Количество этих двугранных углов также составляет n штук.

Заметим, что первый тип рассматриваемых углов строится на ребрах основания, второй тип — на боковых ребрах.

Как рассчитать углы пирамиды?

Двугранный угол между плоскостями

Линейный угол двугранного угла является мерой последнего. Вычислить его непросто, поскольку грани пирамиды, в отличие от граней призмы, пересекаются не под прямыми углами в общем случае. Надежнее всего проводить расчет значений двугранных углов с использованием уравнений плоскости в общем виде.

В трехмерном пространстве плоскость задается следующим выражением:

A*x + B*y + C*z + D = 0

Где A, B, C, D — это некоторые действительные числа. Удобством этого уравнения является то, что первые три отмеченных числа являются координатами вектора, который перпендикулярен заданной плоскости, то есть:

Если известны координаты трех точек, принадлежащих плоскости, то, взяв векторное произведение двух векторов, построенных на этих точках, можно получить координаты n¯. Вектор n¯ называется направляющим для плоскости.

Согласно определению, двугранный угол, образованный пересечением двух плоскостей, равен линейному углу между их направляющими векторами. Предположим, что мы имеем две плоскости, нормальные векторы которых равны:

Для вычисления угла φ между ними можно воспользоваться свойством произведения скалярного, тогда соответствующая формула принимает вид:

Или в координатной форме:

φ = arccos(|A1*A2 + B1*B2 + C1*C2|/(√(A12 + B12+C12)*√(A22 + B22 + C22)))

Покажем, как использовать изложенную методику расчета двугранных углов при решении геометрических задач.

Углы правильной пирамиды четырехугольной

Предположим, что имеется правильная пирамида, в основании которой находится квадрат со стороной 10 см. Высота фигуры равна 12 см. Необходимо вычислить, чему равны двугранные углы при основании пирамиды и для ее боковых сторон.

Поскольку заданная в условии задачи фигура является правильной, то есть обладает высокой симметрией, то все углы при основании равны друг другу. Также являются одинаковыми углы, образованные боковыми гранями. Чтобы вычислить необходимые двугранные углы, найдем направляющие векторы для основания и двух боковых плоскостей. Обозначим длину стороны основания буквой a, а высоту h.

Правильная четырехугольная пирамида

Рисунок выше показывает четырехугольную правильную пирамиду. Выпишем координаты точек A, B, C и D в соответствии с введенной системой координат:

Теперь найдем направляющие векторы для плоскостей основания ABC и двух боковых сторон ABD и BCD в соответствии с изложенной в пункте выше методикой:

Теперь остается применить соответствующую формулу для угла φ и подставить значения стороны и высоты из условия задачи:

Угол между ABC и ABD:

Угол между ABD и BDC:

φ = arccos(a4/(4*a2*(h2+a2/4)) = arccos(a2/(4*(h2+a2/4))) = 81,49o

Мы вычислили значения углов, которые требовалось найти по условию задачи. Полученные при решении задачи формулы можно использовать для определения двугранных углов четырехугольных правильных пирамид с любыми значениями a и h.

Углы треугольной правильной пирамиды

На рисунке ниже дана пирамида, основанием которой является правильный треугольник. Известно, что двугранный угол между боковыми сторонами является прямым. Необходимо вычислить площадь основания, если известно, что высота фигуры равна 15 см.

Двугранный угол треугольной пирамиды

Двугранный угол, равный 90o, на рисунке обозначен как ABC. Решить задачу можно, применяя изложенную методику, однако в данном случае поступим проще. Обозначим сторону треугольника a, высоту фигуры — h, апофему — hb и боковое ребро — b. Теперь можно записать следующие формулы:

Поскольку два боковых треугольника в пирамиде являются одинаковыми, то стороны AB и CB равны и являются катетами треугольника ABC. Обозначим их длину x, тогда:

Приравнивая площади боковых треугольников и подставляя апофему в соответствующее выражение, имеем:

Площадь равностороннего треугольника рассчитывается так:

Подставляем значение высоты из условия задачи, получаем ответ: S = 584,567 см2.

Пирамида и ее элементы

Здесь собраны основные сведения о пирамидах и связанных с ней формулах и понятиях. Все они изучаются с репетитором по математике при подготовке к ЕГЭ.

Рассмотрим плоскость alpha , многоугольник A_1A_2. A_n, лежащий в ней и точку S, не лежащую в ней. Соединим S со всеми вершинами многоугольника. Полученный при этом многогранник называется пирамидой. Отрезки SA_1,SA_2. SA_nназываются боковыми ребрами. ПирамидаМногоугольник называется основанием, а точка S — вершиной пирамиды. В зависимости от числа n пирамида называется треугольной (n=3), четырехугольной (n=4), птяиугольной (n=5) и так далее. Альтернативное название треугольной пирамиды – тетраэдр. Высотой пирамиды называется перпендикуляр, опущенный из ее вершины к плоскости основания.
Виды пирамид

Пирамида называется правильной, если A_1A_2. A_nправильный многоугольник, а основание высоты пирамиды (основание перпендикуляра) является его центром.

Комментарий репетитора:
Не путайте понятие «правильная пирамида» и «правильный тетраэдр». У правильной пирамиды боковые ребра совсем не обязательно равны ребрам основания, а в правильном тетраэдре все 6 ребер ребра равные. Это его определение. Легко доказать, что из равенства SA_1=SA_2=. =SA_nследует совпадение центра P многоугольника A_1A_2. A_nс основанием высоты, поэтому правильный тетраэдр является правильной пирамидой.

Что такое апофема?
Апофемой пирамиды называется высота ее боковой грани. Если пирамида правильная, то все ее апофемы равны. Обратное неверно.
апофемы
Репетитор по математике о своей терминологии: работа с пирамидами на 80% строится через два вида треугольников:
1) Содержащий апофему SK и высоту SP
2) Содержащий боковое ребро SA и его проекцию PA
Реберный и апофемный треугольники
Чтобы упростить ссылки на эти треугольники репетитору по математике удобнее называть первый из них апофемным, а второй реберным. К сожалению, этой терминологии вы не встретите ни в одном из учебников, и преподавателю приходится вводить ее в одностороннем порядке.

Формула объема пирамиды:
1) V=frac<1> <3>cdot S_ <OCH>cdot h» />, где <img decoding=-высота пирамиды
2) V=frac<1> <3>cdot r cdot S_<0>» />, где <img decoding=– радиус вписанного шара, а S_0 – площадь полной поверхности пирамиды.
3) V= frac<2> <3>cdot MN cdot S_0″ />, где MN – расстояние любыми двумя скрещивающимися ребрами, а <img decoding=– площадь параллелограмма, образованного серединами четырех оставшихся ребер.

Свойство основания высоты пирамиды:

Свойство основания высотыТочка P (смотри рисунок) совпадает с центром вписанной окружности в основание пирамиды, если выполняется одно из следующих условий:
1) Все апофемы равны
2) Все боковые грани одинаково наклонены к основанию
3) Все апофемы одинаково наклонены к высоте пирамиды
4) Высота пирамиды одинаково наклонена ко всем боковым граням

Комментарий репетитора по математике: обратите внимание, что все пункты объединяет одно общее свойство: так или иначе везде участвуют боковые грани (апофемы — это их элементы). Поэтому репетитор может предложить менее точную, но более удобную для заучивания формулировку: точка P совпадает с центром вписанной окружности основание пирамиды, если имеется любая равная информация о ее боковых гранях. Для доказательства достаточно показать, что все апофемные треугольники равны.

Свойство основания высоты 2Точка P совпадает с центром описанной около основания пирамиды окружностью, если верно одно их трех условий:
1) Все боковые ребра равны
2) Все боковые ребра одинаково наклонены к основанию
3) Все боковые ребра одинаково наклонены к высоте

Комментарий репетитора. Аналогично предыдущему пункту текст можно упростить и вместо этих условий произнести : «если имеется любая равная информация о боковых ребрах». При этом все апофемные треугольники будут равны implies все проекции боковых ребер будет равны impliesP будет равноудалена от всех вершин основания и поэтому окажется центром описанной окружности.

Площадь полной поверхности пирамиды:
Полощадью поверности пирамиды называется сумма площадей всех ее граней S=S_<OCH>+S_1+S_2+. +S_n» />. <br />Площадь боковой поверхностии — сумма площадей всех боковых граней <img decoding=.
Если все апофемы равны (например в правильной пирамиде), то площадь ее боковой поверхности вычисляется по формуле S_b=p cdot SK , где p — полупериметр основания, а SK-апофема.

Правильная треугольная пирамида однозначно определяется двумя параметрами: один плоский, а другой пространственный: к плоскому я отношу любой элемент правильного треугольника (кроме угла), а к пространственному любой связующий параметр между основанием и точкой S: апофема, высота, углы наклона ребер, граней, объем, площадь поверхности и др. При наличие в условии задачи этих двух начальных данных репетитор с учеником может найти у такой пирамиды все что угодно.

Пирамида — обязательный пункт подготовки к ЕГЭ по математике. Програмный минимум по стереометрии включает в себя все вышеуказанные сведения, кроме третьей формулы вычисления объема пирамиды.

Колпаков Александр,
репетитор по математике в Москве. Строгино

Площадь боковой поверхности правильной треугольной пирамиды в два раза больше площади основания. Найти угол между боковой поверхностью и основанием.

бонус за лучший ответ (выдан): 10 кредитов

Как я понимаю, нас интересует угол SB1O. Равен он 60 градусам. Теперь покажем, как это появляется. Пусть сторона основания AB=x, высота боковой грани SB1=y, а высота пирамиды SO=h.

Площадь основания пирамиды S1=(Sqrt(3)/4)x^2, площадь боковой грани S2=0,5xy, площадь боковой поверхности S3=3S2=(3/2)xy.

По условиям задачи S3=2S1 -> (3/2)xy=2(Sqrt(3)/4)x^2 -> y=x/Sqrt(3)

Косинус искомого угла a=OB1/SB1=(0,5xtg(30g))/y=(0,5x(1/Sqrt(3))/x(1/Sqrt(3)), т.е. косинус равен 1/2, а это соответствует углу 60 градусов.

автор вопроса выбрал этот ответ лучшим

Cappu­ccino
[11.8K]

6 лет назад 

Площадь боковой поверхности правильной треугольной пирамиды в два раза больше площади основания. Найти угол между боковой поверхностью и основанием.

Боковая поверхность – 3ASC

Основание – ABC

Угол между боковой поверхностью и основанием – B1B

S – площадь

3S(ASC)=2S(ABC)

S(ASC)=(1/2)AC*SB1

S(ABC)=(1/2)AC*BB1

Подставляем две последние формулы в первую, получаем

3(1/2)AC*SB1=2(1/2)AC*BB1

SB1=(2/3)BB1

Точка O – пересечение медиан треугольника ABC, значит BB1= 3OB1

SB1=2OB1

Треугольник SOB1 прямоугольный с прямым углом SOB1, т.к SO является высотой пирамиды.

cos угла OB1S = OB1/SB1=1/2

Отсюда угол OB1S=60 грудусов, т.к. 1/2 это cos угла 60 градусов

габба­с
[215K]

6 лет назад 

Можно обойтись без синусов и косинусов.

Площадь боковой поверхности – это сумма площадей трех равнобедренных треугольников (например SAC), а площадь основания это площадь треугольника АВС. Поэтому 3*S(SAC) = 2*S (ABC). Это значит, что S(SAC) = 2/3*S (ABC), а значит и высота SВ1 = 2/3 ВВ1. Основание пирамиды равносторонний треугольник АВС, у которого высоты в точке пересечения делятся в отношении 2:1, то есть ОВ1 = 1/3 ВВ1. Соответственно в прямоугольном треугольнике OSB1 катет OB1 = 1/2 SB1 (гипотенузы). По известной теореме угол OSB1 = 30 градусов, тогда искомый угол ОВ1S hfdty 60 uhflecfv/

Rafai­l
[136K]

6 лет назад 

Площадь грани АСS равна (1/2)*(АС)*(SB1), а вся боковая поверхность S(б)=3/2*(АС)*(SB1).

Площадь основания равна S(о)=(1/2)*(АС)*(ВВ1).

По условию S(б)=2*S(о), т.е. 3/2*(АС)*(SB1)=2*(1/2)*(АС)*(ВВ1), отсюда (SB1)=(2/3)*(ВВ1).

Точка О – точка пересечения медиан треугольника АВС, поэтому отрезок (OB1)=(1/3)*(ВВ1).

cos(SB1O)=(OB1)/(SB1)=(1/3)*(ВВ1)/((2/3)*(ВВ1))=1/2, угол (SB1O) равен 60°.

Знаете ответ?

Добавить комментарий