Как найти угол между векторами в базисе

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно – 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = – 9 3 · 6 = – 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( – 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = – 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , – 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 2 2 + 0 2 + ( – 1 ) 2 · 1 2 + 2 2 + 3 2 = – 1 70 ⇒ a → , b → ^ = a r c cos ( – 1 70 ) = – a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( – 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 = – 1 cos a → , b → ^ = a → , b → ^ a → · b → = – 1 5 · 14 = – 1 70 ⇒ a → , b → ^ = – a r c cos 1 70

Ответ: a → , b → ^ = – a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , – 1 ) , B ( 3 , 2 ) , C ( 7 , – 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 – 2 , – 2 – ( – 1 ) ) = ( 5 , – 1 ) B C → = ( 7 – 3 , – 2 – 2 ) = ( 4 , – 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( – 1 ) · ( – 4 ) 5 2 + ( – 1 ) 2 · 4 2 + ( – 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 – 2 · O A · O B · cos ( ∠ A O B ) ,

b → – a → 2 = a → + b → – 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 – b → – a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Угол между двумя векторами

Пусть в n-мерном пространстве задан ортонормированный базис

Как известно скалярное произведение ненулевых векторов x и y называется произведение

Если x=0 или y=0, то скалярное произведение равно нулю.

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Так как рассматривается пространство с ортонормированным базисом, то скалярное произведение можно вычислить также из выражения

координаты векторов x и y соответственно.

Из выражений (1) и (2) следует, что косинус угла между двумя векторами равен

И, следовательно, угол между двумя векторами будет равен

Вариант 2. Начальные точки векторов произвольные.

Пусть заданы векторы x= AB и y= CD, где ,,,.

Переместим параллельно векторы x и y так, чтобы начальные точки векторов совпали с началом координат. Получим векторы x’ и y’ с координатами (т.е. с конечными точками):

При таком перемещении угол между векторами x и y равен углу между векторами x’ и y’. Следовательно косинус угла между двумя векторами равен:

Угол между двумя векторами будет равен:

Примеры вычисления угла между двумя векторами

Вариант 1. Начальные точки всех векторов совпадают с началом координат.

Пример . Найти угол между векторами x=(7,2) и y=(4,5).

На рисунке Рис. 1 в двухмерном пространстве представлены векторы x=(7,2) и y=(4,5).

Для вычисления угла между векторами x и y, вычислим нормы векторов x и y:

Косинус угла между векторами x и y, будет равен:

Из выражения (5) вычисляем угол φ:

Вариант 2. Начальные точки векторов произвольные.

Пример . Найти угол между векторами x= AB и y= CD, где A(-1,1), B(3, 7), C(3,2), D(12,5).

На рисунке Рис. 2 в двухмерном пространстве представлены векторы x= AB и y= CD.

Переместим параллельно векторы x и y так, чтобы начальные точки векторов совпали с началом координат. Получим векторы x’ и y’ с координатами (т.е. с конечными точками): x’=(3-(-1),7-1)=(4,6), y’=(12-3,5-2)=(9,3).

Угол φ между векторами x и y равен углу φ’ между векторами x’ и y’. Поэтому вычисляя угол φ’ , получим угол между векторами x и y.

Вычислим норму векторов x’ и y’:

Косинус угла между векторами x’ и y’:

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

http://matworld.ru/vector/angle-between-vectors.php

[/spoiler]

Угол между векторами

Если
известны длины двух векторов и их
скалярное произведение, то можно
вычислить косинус угла между данными
векторами, а, следовательно, и сам угол.


.

Пример

Найти
угол между векторами 
 и 
,
если известно, что 
.

Решение: Используем
формулу:

На
заключительном этапе вычислений
использован технический приём –
устранение иррациональности в знаменателе.
В целях устранения иррациональности я
домножил числитель и знаменатель на 
.

Итак,
если 
,
то:

Ответ: 

Не
забываем указывать размерность –
радианы и градусы.

Пример

Даны 
 –
длины векторов 

 и
угол между ними 
.
Найти угол между векторами 

.

Алгоритм
решения:

1)
По условию требуется найти угол между
векторами 
 и 
,
поэтому нужно использовать формулу 
.

2)
Находим скалярное произведение 
.

3)
Находим длину вектора 
 и
длину вектора 
 .

4)
Нам известно число 
,
а значит, легко найти и сам угол: 

Сделайте
самостоятельно и сравните с решением.

Решение: 
Найдём скалярное произведение:

Найдём
длину вектора
 
:

Найдём
длину вектора
 
:

Таким
образом:

Ответ: 

Скалярное произведение векторов, заданных координатами в ортонормированном базисе

В
данном разделе рассматриваются только
ортонормированные базисы
 плоскости
и пространства.

Скалярное
произведение векторов
 
 и 
,
заданных в ортонормированном
базисе 
выражается
формулой
 

Скалярное
произведение векторов
 
,
заданных в ортонормированном
базисе 
выражается
формулой
 

То
есть, скалярное произведение равно
сумме произведений соответствующих
координат векторов.

Пример

Найти
скалярное произведение
векторов:

а) 
 и 

б) 
 и 
,
если даны точки 

Решение: 

а)
Здесь даны векторы плоскости. По
формуле 
:

б)
Сначала найдём векторы:


 

По
формуле 
 вычислим
скалярное произведение:

Ответ: 

Проверка векторов на ортогональность с помощью скалярного произведения

Векторы 
 и 
 ортогональны
тогда и только тогда, когда 
.
В координатах данный факт запишется
следующим образом:


 (для
векторов плоскости);


 (для
векторов пространства).

Пример

а)
Проверить ортогональность векторов: 
 и  

б)
Выяснить, будут ли перпендикулярными
отрезки 
 и 
,
если 

Решение: 

а)
Вычислим их скалярное произведение:


,
следовательно, 

б)
Найдём векторы:

Вычислим
их скалярное произведение:


,
значит, отрезки 
 и 
 не
перпендикулярны.

Ответ: а) 
,
б) отрезки 
 не
перпендикулярны.

Формула косинуса угла между векторами, которые заданы координатами

Косинус
угла между векторами плоскости
 
 и 
,
заданными в ортонормированном
базисе 
выражается
формулой
:


.

Косинус
угла между векторами пространства
 
,
заданными в ортонормированном
базисе 
выражается
формулой

Пример

Даны
три вершины треугольника 
.
Найти 
 (угол
при вершине 
).

Решение: 

Требуемый
угол 
 помечен
дугой. Угол 
 треугольника
совпадает с углом между векторами 
 и 
,
иными словами: 
.

Найдём
векторы:

Вычислим
скалярное произведение:

И
длины векторов:

Косинус
угла:

Найдём
сам угол:

Ответ: 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #


1.6.9. Как найти угол между векторами в координатах?

Теперь у нас есть полная информация, чтобы ранее выведенную формулу косинуса

угла между векторами  выразить через

координаты векторов :

Косинус угла между векторами плоскости  и ,

заданными в ортонормированном базисе , выражается формулой:
.

Косинус угла между векторами пространства , заданными в ортонормированном базисе , выражается формулой:

Возвращаемся к нашим треугольникам:

Задача 31

Даны три вершины треугольника . Найти .

Решение: по условию чертёж выполнять не требуется, но всё-таки:

Из чертежа совершенно очевидно, что угол  треугольника совпадает с углом между векторами  и , иными словами: , и дальнейшее понятно. Найдём векторы и их длины:

Вычислим скалярное произведение:

Таким образом:

Именно такой порядок выполнения задания рекомендую «чайникам». Более подготовленные читатели могут записать вычисления

«одной строкой»:

Косинус получился «плохим» (не табличным), однако, это не окончательный ответ задачи, и поэтому, к слову, не имеет особого

смысла избавляться от корня в знаменателе.

Найдём сам угол:  

Если посмотреть на чертёж, то результат вполне правдоподобен. Для проверки можно использовать Алгебраический

Калькулятор (см. Приложения) или даже измерить угол транспортиром (у кого он есть). Только не

повредите покрытие монитора =)

Ответ:
В ответе не забываем, что спрашивалось про угол треугольника (а не про угол между векторами), не забываем

указать точный ответ:  и приближенное значение

угла: , найденное с помощью

калькулятора.

Задача 32

В пространстве задан треугольник координатами своих вершин , .

Найти угол между сторонами  и

Это пример для самостоятельного решения, и, конечно же, задачка творческая, повторяем взаимосвязь между углом и знаком скалярного произведения:

Задача 33

При каком значении  угол между векторами  будет: а) острым, б) прямым, в) тупым?

Решение и ответ в конце книги.

Следующий небольшой параграф будет посвящен ортогональным проекциям векторов, в которых тоже «замешано» скалярное произведение:

1.7.1. Как найти проекцию вектора на вектор?

1.6.8. Если векторы заданы суммами векторов с известными координатами

| Оглавление |



Автор: Aлeксaндр Eмeлин

Определение. Углом между двумя векторами, отложенными от одной точки, называется кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором.

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Пример 1. Найти угол между векторами a = {3; 4} и b = {4; 3}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

|a| = √32 + 42 = √9 + 16 = √25 = 5
|b| = √42 + 32 = √16 + 9 = √25 = 5

Найдем угол между векторами:

cos α a · b  =  24  =  24  = 0.96
|a| · |b| 5 · 5 25

Пример 2. Найти угол между векторами a = {7; 1} и b = {5; 5}.

Решение: Найдем скалярное произведение векторов:

a·b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

|a| = √72 + 12 = √49 + 1 = √50 = 5√2
|b| = √52 + 52 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α a · b  =  40  =  40  =  4  = 0.8
|a| · |b| 5√2 · 5√2 50 5

Примеры вычисления угла между векторами для пространственных задач

Пример 3. Найти угол между векторами a = {3; 4; 0} и b = {4; 4; 2}.

Решение: Найдем скалярное произведение векторов:

a·b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

|a| = √32 + 42 + 02 = √9 + 16 = √25 = 5
|b| = √42 + 42 + 22 = √16 + 16 + 4 = √36 = 6

Найдем угол между векторами:

cos α a · b  =  28  =  14
|a| · |b| 5 · 6 15

Пример 4. Найти угол между векторами a = {1; 0; 3} и b = {5; 5; 0}.

Решение: Найдем скалярное произведение векторов:

a·b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

|a| = √12 + 02 + 32 = √1 + 9 = √10
|b| = √52 + 52 + 02 = √25 + 25 = √50 = 5√2

Найдем угол между векторами:

cos α =

a · b|a| · |b|

=

5√10 · 5√2

=

12√5

=

510

= 0.1√5

Угол между векторами – теория и примеры нахождения

Угол между векторами a и b – это тот угол, который находится между лучами и может получаться от 0 до 180 градусов. Как правило, угол находится при помощи скалярного произведения векторов или благодаря теореме косинуса для треугольника.

Угол между векторами – теория и примеры нахождения обновлено: 16 апреля, 2020 автором:

Помощь в написании работы

Угол между векторами

Рассмотрим, как получается угол между векторами. Пусть заданы ненулевые векторы overline{a} и overline{b}. Соединим эти векторы с общей точкой O и в направлениях векторов  overline{a} и overline{b} проведём с точки O лучи (см. рис. 1)

Рис. 1 - Графическое изображение - угол между векторами

Рис. 1

Угол между вектором overline{a} и нулевым вектором не обозначается.

Очевидно, что если overline{a}uparrowuparrowoverline{b}, тогда (overline{a}^overline{b}) = 0. Если же overline{a}uparrowdownarrowoverline{b}, тогда (overline{a},^overline{b}) = 180^0.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Примеры нахождения угла между векторами

В теме разобрались и теперь осталось закрепить её при помощи нескольких примеров.

Найти угол между векторами overline{a} = (3; 4; 0) и overline{b} = (4; 4; 2).

Решение:

Находим модели векторов:

overline{a} = sqrt{3^2 + 4^2 + 0^2} = sqrt{9 + 16} = sqrt25 = 5

overline{b} = sqrt{4^2 + 4^2 + 2^2} = sqrt{16 + 16 + 4} = sqrt{36} = 6

Находим угол между векторами:

cosalpha = {overline{a} * overline{b}}over{overline{|a|} * overline{|b|}} = 28over{5 * 6} = 14over{15}

Угол между векторами – теория и примеры нахождения обновлено: 16 апреля, 2020 автором: Научные Статьи.Ру

Добавить комментарий