Как найти угол наклона через тангенс


Загрузить PDF


Загрузить PDF

Нахождение угла наклона прямой – это один из важнейших навыков в геометрии, необходимый для построения графика линейной функции или для определения координат точек пересечения прямой с осями X и Y. Угол наклона прямой определяет скорость ее роста или убывания,[1]
то есть как быстро прямая перемещается по вертикали в зависимости от движения по горизонтали. Угол наклона прямой легко вычисляется по координатам двух точек, лежащих на этой прямой.

  1. Изображение с названием Find the Slope of a Line Using Two Points Step 1

    1

    Уясните формулу для вычисления углового коэффициента. Угловой коэффициент равен тангенсу угла наклона прямой, который она образует с осью Х, и вычисляется как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между двумя точками.

  2. Изображение с названием Find the Slope of a Line Using Two Points Step 2

    2

    Выберите две точки и найдите их координаты. Можно выбрать любые две точки, лежащие на прямой.

  3. Изображение с названием Find the Slope of a Line Using Two Points Step 3

    3

    Задайте порядок точек (относительно друг друга). Одна точка будет первой точкой, а другая – второй. Не имеет значения, какая точка будет первой, а какая второй – главное не перепутать их порядок в процессе вычисления.[2]

  4. Изображение с названием Find the Slope of a Line Using Two Points Step 4

    4

    Запишите формулу для вычисления углового коэффициента. Формула: {frac  {VR}{GR}}={frac  {y_{{2}}-y_{{1}}}{x_{{2}}-x_{{1}}}}, где VR – вертикальное расстояние, определяемое изменением координаты «у», GR – горизонтальное расстояние, определяемое изменением координаты «х».[3]

    Реклама

  1. Изображение с названием Find the Slope of a Line Using Two Points Step 5

    1

    В формулу для вычисления углового коэффициента подставьте координаты «у». Не перепутайте их с координатами «х» и убедитесь, что подставляете правильные координаты первой и второй точек.

  2. Изображение с названием Find the Slope of a Line Using Two Points Step 6

    2

    В формулу для вычисления углового коэффициента подставьте координаты «х». Не перепутайте их с координатами «у» и убедитесь, что подставляете правильные координаты первой и второй точек.

  3. Изображение с названием Find the Slope of a Line Using Two Points Step 7

    3

    Вычтите координаты «у». Вы найдете вертикальное расстояние.

  4. Изображение с названием Find the Slope of a Line Using Two Points Step 8

    4

    Вычтите координаты «х». Вы найдете горизонтальное расстояние.

  5. Изображение с названием Find the Slope of a Line Using Two Points Step 9

    5

    Если возможно, сократите дробь. Вы найдете угловой коэффициент.

  6. Изображение с названием Find the Slope of a Line Using Two Points Step 10

    6

    Обращайте внимание на отрицательные числа. Угловой коэффициент может быть положительным или отрицательным. В случае положительного значения прямая возрастает (движется вверх слева направо); в случае отрицательного значения прямая убывает (движется вниз слева направо).

    • Помните, что если и в числителе, и в знаменателе стоят отрицательные числа, то результат будет положительным.
    • Если в числителе или в знаменателе стоит отрицательное число, то результат будет отрицательным.
  7. Изображение с названием Find the Slope of a Line Using Two Points Step 11

    7

    Проверьте ответ. Для этого измерьте или посчитайте (по шкалам осей) вертикальное и горизонтальное расстояния. Если они совпали с вычисленными, то ответ правильный.

    • Если измеренные или посчитанные вертикальное и горизонтальное расстояния не совпали с вычисленными, то ответ не правильный.

    Реклама

Советы

Похожие статьи

Об этой статье

Эту страницу просматривали 90 284 раза.

Была ли эта статья полезной?

7. Взаимосвязь функции и ее производной


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Угловой коэффициент касательной как тангенс угла наклона

(blacktriangleright) Если уравнение прямой задано в виде ({color{royalblue}{y=kx+b ;}}), то число (k) называется угловым коэффициентом.

(blacktriangleright) Угол (alpha) наклона прямой – это угол между этой прямой и положительным направлением оси (Ox) ((0leqslant
alpha< 180^circ)
), лежащий в верхней полуплоскости.

(blacktriangleright) Основная формула. Угловой коэффициент прямой (y=kx+b) равен тангенсу угла наклона этой прямой:

[{large{color{royalblue}{k=mathrm{tg}, alpha}}}]
Т.к. касательная к графику некоторой функции — это и есть прямая, то для нее верны все эти утверждения.

Если (alpha<90^circ), то (k>0);

если (alpha>90^circ), то (k<0);

если (alpha=0^circ), то (k=0) (уравнение прямой имеет вид (y=b) и она параллельна оси (Ox));

если (alpha=90^circ), то уравнение прямой имеет вид (x=a) и она перпендикулярна оси (Ox).


Задание
1

#685

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = x), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = x) коэффициент (k) равен (1), то (mathrm{tg}, alpha = 1).

Ответ: 1


Задание
2

#686

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = 2x – 3), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = 2x – 3) коэффициент (k) равен (2), то (mathrm{tg}, alpha = 2).

Ответ: 2


Задание
3

#687

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = -x + 2), образует с положительным направлением оси (Ox) угол (alpha). Найдите (mathrm{tg}, alpha).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как для прямой (y = -x + 2) коэффициент (k) равен (-1), то (mathrm{tg}, alpha = -1).

Ответ: -1


Задание
4

#688

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx + 77), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = 12).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx + 77) и положительным направлением оси (Ox) равен (12), то (k = mathrm{tg}, alpha = 12).

Ответ: 12


Задание
5

#689

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx + 0,2), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = -3,3).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx + 0,2) и положительным направлением оси (Ox) равен (-3,3), то (k = mathrm{tg}, alpha = -3,3).

Ответ: -3,3


Задание
6

#690

Уровень задания: Легче ЕГЭ

Прямая, заданная уравнением (y = kx), образует с положительным направлением оси (Ox) угол (alpha). Найдите (k), если (mathrm{tg}, alpha = 0).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как тангенс угла (alpha) между прямой (y = kx) и положительным направлением оси (Ox) равен (0), то (k = mathrm{tg}, alpha = 0).

Ответ: 0


Задание
7

#693

Уровень задания: Легче ЕГЭ

Прямая (y = kx – 2016) образует угол (45^{circ}) с положительным направлением оси (Ox). Найдите (k).

Для прямой, заданной уравнением (y = kx + b), коэффициент (k) есть значение тангенса угла между прямой (y = kx + b) и положительным направлением оси (Ox).

Так как угол между прямой (y = kx – 2016) и положительным направлением оси (Ox) равен (dfrac{pi}{4}), то (k = mathrm{tg}, dfrac{pi}{4} = 1).

Ответ: 1

Теме «Угловой коэффициент касательной как тангенс угла наклона» в аттестационном экзамене отводится сразу несколько заданий. В зависимости от их условия, от выпускника может требоваться как полный ответ, так и краткий. При подготовке к сдаче ЕГЭ по математике ученику обязательно стоит повторить задачи, в которых требуется вычислить угловой коэффициент касательной.

Сделать это вам поможет образовательный портал «Школково». Наши специалисты подготовили и представили теоретический и практический материал максимально доступно. Ознакомившись с ним, выпускники с любым уровнем подготовки смогут успешно решать задачи, связанные с производными, в которых требуется найти тангенс угла наклона касательной.

Основные моменты

Для нахождения правильного и рационального решения подобных заданий в ЕГЭ необходимо вспомнить базовое определение: производная представляет собой скорость изменения функции; она равна тангенсу угла наклона касательной, проведенной к графику функции в определенной точке. Не менее важно выполнить чертеж. Он позволит найти правильное решение задач ЕГЭ на производную, в которых требуется вычислить тангенс угла наклона касательной. Для наглядности лучше всего выполнить построение графика на плоскости ОХY.

Если вы уже ознакомились с базовым материалом на тему производной и готовы приступить к решению задач на вычисление тангенса угла наклона касательной, подобных заданиям ЕГЭ, сделать это можно в режиме онлайн. Для каждого задания, например, задач на тему «Связь производной со скоростью и ускорением тела», мы прописали правильный ответ и алгоритм решения. При этом учащиеся могут попрактиковаться в выполнении задач различного уровня сложности. В случае необходимости упражнение можно сохранить в разделе «Избранное», чтобы потом обсудить решение с преподавателем.

УСТАЛ? Просто отдохни

Продолжение темы уравнение прямой на плоскости основывается на изучении прямой линии из уроков алгебры. Данная статья дает обобщенную информацию по теме уравнения прямой с угловым коэффициентом. Рассмотрим определения, получим само уравнение, выявим связь с другими видами уравнений. Все будет рассмотрено на примерах решений задач.

Угол наклона прямой и угловой коэффициент прямой

Перед записью такого уравнения необходимо дать определение угла наклона прямой к оси Ох с их угловым коэффициентом. Допустим, что задана декартова система координат Ох на плоскости.

Определение 1

Угол наклона прямой к оси Ох, расположенный в декартовой системе координат Оху на плоскости, это угол, который отсчитывается от положительного направления Ох к прямой против часовой стрелки.

Угол наклона прямой и угловой коэффициент прямой

Когда прямая параллельна Ох или происходит совпадение в ней, угол наклона равен 0. Тогда угол наклона заданной прямой α определен на промежутке [0, π).

Определение 2

Угловой коэффициент прямой – это тангенс угла наклона заданной прямой.

Стандартное обозначение буквой k. Из определения получим, что k=tg α. Когда прямая параллельна Ох, говорят, что угловой коэффициент не существует, так как он обращается в бесконечность.

Угловой коэффициент положительный, когда график функции возрастает и наоборот. На рисунке показаны различные вариации расположения прямого угла относительно системы координат со значением коэффициента.

Угол наклона прямой и угловой коэффициент прямой

Для нахождения данного угла необходимо применить определение об угловом коэффициенте и произвести вычисление тангенса угла наклона в плоскости.

Пример 1

Посчитать угловой коэффициент прямой при угле наклона равном 120°.

Решение

Из условия имеем, что α=120°. По определению необходимо вычислить угловой коэффициент. Найдем его из формулы k=tg α=120=-3.

Ответ: k=-3.

Если известен угловой коэффициент, а необходимо найти угол наклона к оси абсцисс, тогда следует учитывать значение углового коэффициента. Если k>0, тогда угол прямой острый и находится по формуле α=arctg k. Если k<0, тогда угол тупой, что дает право определить его по формуле α=π-arctgk.

Пример 2

Определить угол наклона заданной прямой к Ох при угловом коэффициенте равном 3.

Решение

Из условия имеем, что угловой коэффициент положительный, а это значит, что угол наклона к Ох меньше 90 градусов. Вычисления производятся по формуле α=arctg k=arctg 3.

Ответ: α=arctg 3.

Пример 3

Найти угол наклона прямой к оси Ох, если угловой коэффициент = -13.

Решение

Если принять за обозначение углового коэффициента букву k, тогда α является углом наклона к заданной прямой по положительному направлению Ох. Отсюда k=-13<0, тогда необходимо применить формулу α=π-arctgkПри подстановке получим выражение:

α=π-arctg-13=π-arctg 13=π-π6=5π6.

Ответ: 5π6.

Уравнение с угловым коэффициентом

Уравнение вида y=k·x+b, где k является угловым коэффициентом, а b некоторым действительным числом, называют уравнением прямой с угловым коэффициентом. Уравнение характерно для любой прямой, непараллельной оси Оу.

Если подробно рассмотреть прямую на плоскости в фиксированной системе координат, которая задана уравнением с угловым коэффициентом, который имеет вид y=k·x+b.  В данном случае значит, что уравнению соответствуют координаты любой точки прямой. Если подставить координаты точки М, M1(x1, y1),  в уравнениеy=k·x+b, тогда в этом случае прямая будет проходить через эту точку, иначе точка не принадлежит прямой.

Пример 4

Задана прямая с угловым коэффициентом y=13x-1. Вычислить, принадлежат ли точки M1(3, 0) и M2(2, -2) заданной прямой.

Решение

Необходимо подставить координаты точки M1(3, 0)  в заданное уравнение, тогда получим 0=13·3-1⇔0=0. Равенство верно, значит точка принадлежит прямой.

Если подставим координаты точки M2(2, -2), тогда получим неверное равенство вида -2=13·2-1⇔-2=-13. Можно сделать вывод, что точка М2 не принадлежит прямой.

Ответ: М1 принадлежит прямой, а М2 нет.

Известно, что прямая определена уравнением y=k·x+b, проходящим через M1(0, b), при подстановке получили равенство вида b=k·0+b⇔b=b. Отсюда можно сделать вывод, что уравнение прямой с угловым коэффициентом y=k·x+b на плоскости определяет прямую, которая проходит через точку 0, b. Она образует угол αс положительным направлением оси Ох, где k=tg α.

Рассмотрим на примере прямую, определенную при помощи углового коэффициента, заданного по виду y=3·x-1. Получим, что прямая пройдет через точку с координатой 0, -1 с наклоном в α=arctg3=π3 радиан по положительному направлению оси Ох. Отсюда видно, что коэффициент равен 3.

Уравнение с угловым коэффициентом

Уравнение прямой с угловым коэффициентом, проходящей через заданную точку

Необходимо решить задачу, где необходимо получить уравнение прямой с заданным угловым коэффициентом, проходящим через точку M1(x1, y1).

Равенство y1=k·x+b можно считать справедливым, так как прямая проходит через точку M1(x1, y1). Чтобы убрать число b, необходимо из левой и правой частей вычесть уравнение с угловым коэффициентом. Из этого следует, что y-y1=k·(x-x1).  Данное равенство называют уравнением прямой с заданным угловым коэффициентом k, проходящая через координаты точки M1(x1, y1).

Пример 5

Составьте уравнение прямой, проходящей через точку М1 с координатами (4,-1), с угловым коэффициентом равным -2.

Решение

По условию имеем, что x1=4, y1=-1, k=-2. Отсюда уравнение прямой запишется таким образом y-y1=k·(x-x1)⇔y-(-1)=-2·(x-4)⇔y=-2x+7.

Ответ: y=-2x+7.

Пример 6

Написать уравнение прямой с угловым коэффициентом, которое проходит через точку М1 с координатами (3,5), параллельную прямой y=2x-2.

Решение

По условию имеем, что параллельные прямые имеют совпадающие углы наклона, отсюда значит, что угловые коэффициенты являются равными. Чтобы найти угловой коэффициент из данного уравнения, необходимо вспомнить его основную формулу y=2x-2, отсюда следует, что k=2. Составляем уравнение с угловым коэффициентом и получаем:

y-y1=k·(x-x1)⇔y-5=2·(x-3)⇔y=2x-1

Ответ: y=2x-1.

Переход от уравнения прямой с угловым коэффициентом к другим видам уравнений прямой и обратно

Такое уравнение не всегда применимо для решения задач, так как имеет не совсем удобную запись. Для этого необходимо представлять в другом виде. Например, уравнение вида y=k·x+b не позволяет записать координаты направляющего вектора прямой или координаты нормального вектора. Для этого нужно научиться представлять уравнениями другого вида.

Можем получить каноническое уравнение прямой на плоскости, используя уравнение прямой с угловым коэффициентом. Получаем x-x1ax=y-y1ay. Необходимо слагаемое b перенести в левую часть и поделить на выражение полученного неравенства. Тогда получим уравнение вида y=k·x+b⇔y-b=k·x⇔k·xk=y-bk⇔x1=y-bk.

Уравнение прямой с угловым коэффициентом стало каноническим уравнением данной прямой.

Пример 7

Привести уравнение прямой с угловым коэффициентом y=-3x+12к каноническому виду.

Решение

Вычислим и представим в виде канонического уравнения прямой. Получим уравнение вида:

y=-3x+12⇔-3x=y-12⇔-3x-3=y-12-3⇔x1=y-12-3

Ответ: x1=y-12-3.

Общее уравнение прямой проще всего получить из y=k·x+b, но для этого необходимо произвести преобразования: y=k·x+b⇔k·x-y+b=0. Производится переход из общего уравнения прямой к уравнениям другого вида.

Пример 8

Дано уравнение прямой видаy=17x-2. Выяснить, является ли вектор с координатами a→=(-1, 7) нормальным вектором прямой?

Решение

Для решения необходимо перейти к другому виду данного уравнения, для этого запишем:

y=17x-2⇔17x-y-2=0

Коэффициенты перед переменными являются координатами нормального вектора прямой. Запишем это так n→=17, -1, отсюда 17x-y-2=0. Понятно, что вектор a→=(-1, 7) коллинеарен вектору n→=17, -1, так как имеем справедливое соотношение a→=-7·n→. Отсюда следует, что исходный вектор a→=-1, 7 – нормальный вектор прямой 17x-y-2=0, значит, считается нормальным вектором для прямой y=17x-2.

Ответ: Является

Решим задачу обратную данной.

Необходимо перейти от общего вида уравнения Ax+By+C=0, где B≠0, к уравнению с угловым коэффициентом. для этого решаем уравнение относительно у. Получим Ax+By+C=0⇔-AB·x-CB.

Результат и является уравннием с угловым коэффициентом, который равняется -AB.

Пример 9

Задано уравнение прямой вида 23x-4y+1=0 . Получить уравнение данной прямой с угловым коэффициентом.

Решение

Исходя из условия, необходимо решить относительно у, тогда получим уравнение вида:

23x-4y+1=0⇔4y=23x+1⇔y=14·23x+1⇔y=16x+14.

Ответ: y=16x+14.

Аналогичным образом решается уравнение вида xa+yb=1, которое называют уравнение прямой в отрезках, или каноническое вида x-x1ax=y-y1ay. Нужно решить его относительно у, только тогда получим уравнение с угловым коэффициентом:

xa+yb=1⇔yb=1-xa⇔y=-ba·x+b.

Каноническое уравнение можно привести к виду с угловым коэффициентом. Для этого:

x-x1ax=y-y1ay⇔ay·(x-x1)=ax·(y-y1)⇔⇔ax·y=ay·x-ay·x1+ax·y1⇔y=ayax·x-ayax·x1+y1

Пример 10

Имеется прямая, заданная уравнением x2+y-3=1. Привести к виду уравнения с угловым коэффициентом.

Решение.

Исходя из условия, необходимо преобразовать, тогда получим уравнение вида _formula_. Обе части уравнения следует умножить на -3 для того, чтобы получить необходимо уравнение с угловым коэффициентом. Преобразуя, получим:

y-3=1-x2⇔-3·y-3=-3·1-x2⇔y=32x-3.

Ответ: y=32x-3.

Пример 11

Уравнение прямой вида x-22=y+15 привести к виду с угловым коэффициентом.

Решение

Необходимо выражение x-22=y+15 вычислить как пропорцию. Получим, что 5·(x-2)=2·(y+1). Теперь необходимо полностью его разрешить, для этого:

5·(x-2)=2·(y+1)⇔5x-10=2y+2⇔2y=5x-12⇔y=52x

Ответ: y=52x-6.

Для решения таких заданий следует приводит параметрические уравнения прямой вида x=x1+ax·λy=y1+ay·λ к каноническому уравнению прямой, только после этого можно переходить к уравнению с угловым коэффициентом.

Пример 12

Найти угловой коэффициент прямой, если она задана параметрическими уравнениями x=λy=-1+2·λ.

Решение

Необходимо выполнить переход от параметрического вида к угловому коэффициенту. Для этого найдем каноническое уравнение из заданного параметрического:

x=λy=-1+2·λ⇔λ=xλ=y+12⇔x1=y+12.

Теперь необходимо разрешить данное равенство относительно y, чтобы получить уравнение прямой с угловым коэффициентом. для этого запишем таким образом:

x1=y+12⇔2·x=1·(y+1)⇔y=2x-1

Отсюда следует, что угловой коэффициент прямой равен 2. Это записывается как k=2.

Ответ: k=2.

Геометрический смысл производной

Если плохо разбираешься в производной, то вот тебе полноценный гид по ней, с текстом, примерами и вебинарами: «Производная функции – геометрический смысл и правила дифференцирования»!

Рассмотрим график какой-то функции ( y=fleft( x right)):

Выберем на линии графика некую точку ( A). Пусть ее абсцисса ( {{x}_{0}}), тогда ордината равна ( fleft( {{x}_{0}} right)).

Затем выберем близкую к точке ( A) точку ( B) с абсциссой ( {{x}_{0}}+Delta x); ее ордината – это ( fleft( {{x}_{0}}+Delta x right)):

Проведем прямую через эти точки. Она называется секущей (прямо как в геометрии).

Обозначим угол наклона прямой к оси ( Ox) как ( alpha ).

Как и в тригонометрии, этот угол отсчитывается от положительного направления оси абсцисс против часовой стрелки.

Какие значения может принимать угол ( alpha )?

Как ни наклоняй эту прямую, все равно одна половина будет торчать вверх. Поэтому максимально возможный угол – ( 180{}^circ ), а минимально возможный – ( 0{}^circ ).

Значит, ( alpha in left[ 0{}^circ ;180{}^circ right)). Угол ( 180{}^circ ) не включается, поскольку положение прямой в этом случае в точности совпадает с ( 0{}^circ ), а логичнее выбирать меньший угол.

Возьмем на рисунке такую точку ( C), чтобы прямая ( AC) была параллельна оси абсцисс, а ( BC) – ординат:

По рисунку видно, что ( AC=Delta x), а ( BC=Delta f).

Тогда отношение приращений:

( frac{Delta f}{Delta x}=frac{BC}{AC}={tg}alpha )

(так как ( angle C=90{}^circ ), то ( triangle ABC) – прямоугольный).

Давай теперь уменьшать ( Delta x).

Тогда точка ( B) будет приближаться к точке ( A). Когда ( Delta x) станет бесконечно малым ( left( Delta xto 0 right)), отношение ( frac{Delta f}{Delta x}) станет равно производной функции в точке ( {{x}_{0}}).

Что же при этом станет с секущей?

Точка ( B) будет бесконечно близка к точке ( A), так что их можно будет считать одной и той же точкой.

Но прямая, имеющая с кривой только одну общую точку – это ни что иное, как касательная (в данном случае это условие выполняется только на небольшом участке – вблизи точки ( A), но этого достаточно).

Говорят, что при этом секущая занимает предельное положение.

Угол наклона секущей к оси ( displaystyle Ox) назовем ( varphi ). Тогда получится, что производная

( {f}’left( {{x}_{0}} right)underset{Delta xto 0}{mathop{=}},frac{Delta f}{Delta x}= {tg}varphi ),

то есть

Производная равна тангенсу угла наклона касательной к графику функции в данной точке

Поскольку касательная – это прямая, давай теперь вспомним уравнение прямой:

( y=kx+b).

За что отвечает коэффициент ( displaystyle k)? За наклон прямой. Он так и называется: угловой коэффициент.

Что это значит? А то, что равен он тангенсу угла между прямой и осью ( displaystyle Ox)!

То есть вот что получается:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k).

Но мы получили это правило, рассматривая возрастающую функцию. А что изменится, если функция будет убывающей?

Посмотрим: Теперь углы ( alpha ) и ( displaystyle varphi ) тупые. А приращение функции ( Delta f) – отрицательное.

Снова рассмотрим ( triangle ABC): ( angle B=180{}^circ -alpha text{ }Rightarrow text{ } {tg}angle B=- {tg}alpha ).

С другой стороны, ( {tg}angle B=frac{AC}{BC}=frac{-Delta f}{Delta x}).

Получаем: ( frac{-Delta f}{Delta x}=- {tg}alpha text{ }Rightarrow text{ }frac{Delta f}{Delta x}= {tg}alpha ), то есть все, как и в прошлый раз.

Снова устремим точку ( displaystyle B) к точке ( displaystyle A), и секущая ( displaystyle AB) примет предельное положение, то есть превратится в касательную к графику функции в точке ( displaystyle A).

Итак, сформулируем окончательно полученное правило:

Производная функции в данной точке равна тангенсу угла наклона касательной к графику функции в этой точке, или (что то же самое) угловому коэффициенту этой касательной:

( {f}’left( {{x}_{0}} right)= {tg}varphi =k)

Это и есть геометрический смысл производной.

Окей, все это интересно, но зачем оно нам? Вот пример:

На рисунке изображен график функции ( displaystyle y=mathsf{f}left( x right)) и касательная к нему в точке с абсциссой ( {{x}_{0}}).

Найдите значение производной функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}).

Решение.

Как мы недавно выяснили, значение производной в точке касания равно угловому коэффициенту касательной, который в свою очередь равен тангенсу угла наклона данной касательной к оси абсцисс: 

( displaystyle f’left( x right)=k= {tg}varphi).

Значит, для нахождения значения производной нам нужно найти тангенс угла наклона касательной.

На рисунке у нас отмечено две точки, лежащие на касательной, координаты которых нам известны. Так давай достроим прямоугольный треугольник, проходящий через эти точки, и найдем тангенс угла наклона касательной!

Угол наклона касательной к оси ( displaystyle Ox) – это ( displaystyle angle BAC). Найдем тангенс этого угла:

( displaystyle {tg}angle BAC=frac{BC}{AC}=frac{6}{5}=1,2).

Таким образом, производная функции ( displaystyle mathsf{f}left( x right)) в точке ( {{x}_{0}}) равна ( displaystyle 1,2).

Ответ: ( displaystyle 1,2).

Теперь попробуй сам.

Уравнение касательной к графику функций

А сейчас сосредоточимся на произвольных касательных.

Предположим, у нас есть какая-то функция, например, ( fleft( x right)=left( {{x}^{2}}+2 right)). Мы нарисовали ее график и хотим провести касательную к нему в какой-нибудь точке ( {{x}_{0}}). Например, в точке ( {{x}_{0}}=2).

Берем линейку, пристраиваем ее к графику и чертим:

Что мы знаем об этой прямой? Что самое важное нужно знать о прямой на координатной плоскости?

Поскольку прямая – это изображение линейной функции, очень удобно было бы знать ее уравнение. То есть коэффициенты ( k) и ( b) в уравнении

( y=kx+b).

Но ведь ( k) мы уже знаем! Это угловой коэффициент касательной, который равен производной функции в этой точке:

( k={f}’left( {{x}_{0}} right)).

В нашем примере будет так:

( {f}’left( x right)={{left( {{x}^{2}}+2 right)}^{prime }}=2x;)

( k={f}’left( {{x}_{0}} right)={f}’left( 2 right)=2cdot 2=4.)

Теперь остается найти ( b) . Это проще простого: ведь ( b) – значение ( y) при ( displaystyle x=0).

Графически ( b) – это координата пересечения прямой с осью ординат (ведь ( displaystyle x=0) во всех точках оси ( displaystyle Oy)):

Проведём ( BCparallel Ox) (так, что ( triangle ABC) – прямоугольный).

Тогда ( angle ABC=alpha )(тому самому углу между касательной и осью абсцисс). Чему равны ( displaystyle AC) и ( displaystyle BC)?

По рисунку явно видно, что ( BC={{x}_{0}}), а ( AC=fleft( {{x}_{0}} right)-b). Тогда получаем:

( {f}’left( {{x}_{0}} right)= {tg}alpha =frac{AC}{BC}=frac{fleft( {{x}_{0}} right)-b}{{{x}_{0}}}text{ }Rightarrow text{ }b=fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right)).

Соединяем все полученные формулы в уравнение прямой:

( y=kx+b={f}’left( {{x}_{0}} right)cdot x+fleft( {{x}_{0}} right)-{{x}_{0}}cdot {f}’left( {{x}_{0}} right);)

( y={f}’left( {{x}_{0}} right)cdot left( x-{{x}_{0}} right)+fleft( {{x}_{0}} right))

Это и есть уравнение касательной к графику функции ( fleft( x right)) в точке ( {{x}_{0}}).

Пример:

Найди уравнение касательной к графику функции ( fleft( x right)={{x}^{2}}-2x+3) в точке ( {{x}_{0}}=3).

Решение:

На этом примере выработаем простой…

Бонус: Вебинар из нашего курса по подготовке к ЕГЭ по математике

ЕГЭ №7. Производная функции — геометрический смысл, дифференцирование

На этом видео мы вспомним, что такое функция и её график, научимся искать производную некоторых функций, например, такой: y = 2×3 – 3×2 + x + 5. 

Мы разберём от А до Я все 7 типов задач, которые могут попасться в задаче №7 из ЕГЭ. Узнаем, на какие 3 фразы в условии задачи нужно обратить особое внимание, чтобы с лёгкостью решить задачу и не потерять баллы на ровном месте.  

Разберём все возможные ошибки, которые можно допустить в этих задачах. Мы поймём, что многие из этих задач решаются обычным подсчётом клеточек на графике! Главное – не перепутать, что нужно считать.

P.S. Не забудьте потом посмотреть родственную тему: «Интегралы на ЕГЭ. Первообразные элементарных функций».

Угол наклона прямой

Решение функций

Для построения графика линейной функции или определения координат точек пересечения прямой с осью Ох и Оy важно уметь находить угол наклона прямой.

Углом наклона прямой к оси Ох является угол, который считают против часовой стрелки от положительного направления Ох к прямой.

В уравнении y = kх + b, где b — координата «у» — точки пересечения прямой с Оy, коэффициент k при х — коэффициент наклона прямой.
Этот коэффициент равняется тангенсу угла а, образованного между прямой и положительным направлением оси Ох: k = tg а.

Если прямая наклонена вправо, то угол, образованный между прямой и осью Ох, будет острым, тангенс угла (tgа) и коэффициент наклона k больше нуля. Угол определяем по формуле: a = arctg k.

Если наклон прямой влево, то угол между прямой и осью Ох будет тупым, а тангенс угла (tgа) и коэффициент k меньше нуля. Угол a = Пи — arctg |k|.

Угол наклона равняется 0, если прямая расположена параллельно Ох или совпадает с ней.

Зная координаты 2-х точек, расположенных на прямой, можно легко рассчитать угол наклона как отношение вертикального расстояния между двумя точками к горизонтальному расстоянию между ними.

Пусть координаты первой точки (х1,y1), координаты второй (х2,y2), тогда угловой коэффициент будет равняться: (y2 — y1): (х2 — х1),
где (y2 — y1) — величина изменения координаты «у», (х2 — х1) — изменение координаты «х». Из полученной величины возьмем арктангенс и определим угол наклона прямой.

Быстро определить угол наклона прямой, вам поможет онлайн калькулятор.

Добавить комментарий