Синус угла. Таблица синусов.
Синус угла через градусы, минуты и секунды
Синус угла через десятичную запись угла
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция – arcsin(y)=x
sin(arcsin(y))=y
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Рассчитать арксинус
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
sin(α) = BC/AB
sin(-α) = -sin(α)
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
sin(α ± 2π) = sin(α)
Пример sin(5π) = sin(4π + π) = sin(π)
Таблица синусов в радианах
sin(0°) = 0sin(π/12) = sin(15°) = 0.2588190451sin(π/6) = sin(30°) = 0.5sin(π/4) = sin(45°) = 0.7071067812sin(π/3) = sin(60°) = 0.8660254038sin(5π/12) = sin(75°) = 0.9659258263sin(π/2) = sin(90°) = 1sin(7π/12) = sin(105°) = 0.9659258263sin(2π/3) = sin(120°) = 0.8660254038sin(3π/4) = sin(135°) = 0.7071067812sin(5π/6) = sin(150°) = 0.5sin(11π/12) = sin(165°) = 0.2588190451sin(π) = sin(180°) = 0sin(13π/12) = sin(195°) = -0.2588190451sin(7π/6) = sin(210°) = -0.5sin(5π/4) = sin(225°) = -0.7071067812sin(4π/3) = sin(240°) = -0.8660254038sin(17π/12) = sin(255°) = -0.9659258263sin(3π/2) = sin(270°) = -1sin(19π/12) = sin(285°) = -0.9659258263sin(5π/3) = sin(300°) = -0.8660254038sin(7π/4) = sin(315°) = -0.7071067812sin(11π/6) = sin(330°) = -0.5sin(23π/12) = sin(345°) = -0.2588190451
Таблица Брадиса синусы
sin(0) = 0 | sin(120) = 0.8660254038 | sin(240) = -0.8660254038 |
sin(1) = 0.01745240644 | sin(121) = 0.8571673007 | sin(241) = -0.8746197071 |
sin(2) = 0.0348994967 | sin(122) = 0.8480480962 | sin(242) = -0.8829475929 |
sin(3) = 0.05233595624 | sin(123) = 0.8386705679 | sin(243) = -0.8910065242 |
sin(4) = 0.06975647374 | sin(124) = 0.8290375726 | sin(244) = -0.8987940463 |
sin(5) = 0.08715574275 | sin(125) = 0.8191520443 | sin(245) = -0.906307787 |
sin(6) = 0.1045284633 | sin(126) = 0.8090169944 | sin(246) = -0.9135454576 |
sin(7) = 0.1218693434 | sin(127) = 0.79863551 | sin(247) = -0.9205048535 |
sin(8) = 0.139173101 | sin(128) = 0.7880107536 | sin(248) = -0.9271838546 |
sin(9) = 0.156434465 | sin(129) = 0.7771459615 | sin(249) = -0.9335804265 |
sin(10) = 0.1736481777 | sin(130) = 0.7660444431 | sin(250) = -0.9396926208 |
sin(11) = 0.1908089954 | sin(131) = 0.7547095802 | sin(251) = -0.9455185756 |
sin(12) = 0.2079116908 | sin(132) = 0.7431448255 | sin(252) = -0.9510565163 |
sin(13) = 0.2249510543 | sin(133) = 0.7313537016 | sin(253) = -0.956304756 |
sin(14) = 0.2419218956 | sin(134) = 0.7193398003 | sin(254) = -0.9612616959 |
sin(15) = 0.2588190451 | sin(135) = 0.7071067812 | sin(255) = -0.9659258263 |
sin(16) = 0.2756373558 | sin(136) = 0.6946583705 | sin(256) = -0.9702957263 |
sin(17) = 0.2923717047 | sin(137) = 0.6819983601 | sin(257) = -0.9743700648 |
sin(18) = 0.3090169944 | sin(138) = 0.6691306064 | sin(258) = -0.9781476007 |
sin(19) = 0.3255681545 | sin(139) = 0.656059029 | sin(259) = -0.9816271834 |
sin(20) = 0.3420201433 | sin(140) = 0.6427876097 | sin(260) = -0.984807753 |
sin(21) = 0.3583679495 | sin(141) = 0.629320391 | sin(261) = -0.9876883406 |
sin(22) = 0.3746065934 | sin(142) = 0.6156614753 | sin(262) = -0.9902680687 |
sin(23) = 0.3907311285 | sin(143) = 0.6018150232 | sin(263) = -0.9925461516 |
sin(24) = 0.4067366431 | sin(144) = 0.5877852523 | sin(264) = -0.9945218954 |
sin(25) = 0.4226182617 | sin(145) = 0.5735764364 | sin(265) = -0.9961946981 |
sin(26) = 0.4383711468 | sin(146) = 0.5591929035 | sin(266) = -0.9975640503 |
sin(27) = 0.4539904997 | sin(147) = 0.544639035 | sin(267) = -0.9986295348 |
sin(28) = 0.4694715628 | sin(148) = 0.5299192642 | sin(268) = -0.999390827 |
sin(29) = 0.4848096202 | sin(149) = 0.5150380749 | sin(269) = -0.9998476952 |
sin(30) = 0.5 | sin(150) = 0.5 | sin(270) = -1 |
sin(31) = 0.5150380749 | sin(151) = 0.4848096202 | sin(271) = -0.9998476952 |
sin(32) = 0.5299192642 | sin(152) = 0.4694715628 | sin(272) = -0.999390827 |
sin(33) = 0.544639035 | sin(153) = 0.4539904997 | sin(273) = -0.9986295348 |
sin(34) = 0.5591929035 | sin(154) = 0.4383711468 | sin(274) = -0.9975640503 |
sin(35) = 0.5735764364 | sin(155) = 0.4226182617 | sin(275) = -0.9961946981 |
sin(36) = 0.5877852523 | sin(156) = 0.4067366431 | sin(276) = -0.9945218954 |
sin(37) = 0.6018150232 | sin(157) = 0.3907311285 | sin(277) = -0.9925461516 |
sin(38) = 0.6156614753 | sin(158) = 0.3746065934 | sin(278) = -0.9902680687 |
sin(39) = 0.629320391 | sin(159) = 0.3583679495 | sin(279) = -0.9876883406 |
sin(40) = 0.6427876097 | sin(160) = 0.3420201433 | sin(280) = -0.984807753 |
sin(41) = 0.656059029 | sin(161) = 0.3255681545 | sin(281) = -0.9816271834 |
sin(42) = 0.6691306064 | sin(162) = 0.3090169944 | sin(282) = -0.9781476007 |
sin(43) = 0.6819983601 | sin(163) = 0.2923717047 | sin(283) = -0.9743700648 |
sin(44) = 0.6946583705 | sin(164) = 0.2756373558 | sin(284) = -0.9702957263 |
sin(45) = 0.7071067812 | sin(165) = 0.2588190451 | sin(285) = -0.9659258263 |
sin(46) = 0.7193398003 | sin(166) = 0.2419218956 | sin(286) = -0.9612616959 |
sin(47) = 0.7313537016 | sin(167) = 0.2249510543 | sin(287) = -0.956304756 |
sin(48) = 0.7431448255 | sin(168) = 0.2079116908 | sin(288) = -0.9510565163 |
sin(49) = 0.7547095802 | sin(169) = 0.1908089954 | sin(289) = -0.9455185756 |
sin(50) = 0.7660444431 | sin(170) = 0.1736481777 | sin(290) = -0.9396926208 |
sin(51) = 0.7771459615 | sin(171) = 0.156434465 | sin(291) = -0.9335804265 |
sin(52) = 0.7880107536 | sin(172) = 0.139173101 | sin(292) = -0.9271838546 |
sin(53) = 0.79863551 | sin(173) = 0.1218693434 | sin(293) = -0.9205048535 |
sin(54) = 0.8090169944 | sin(174) = 0.1045284633 | sin(294) = -0.9135454576 |
sin(55) = 0.8191520443 | sin(175) = 0.08715574275 | sin(295) = -0.906307787 |
sin(56) = 0.8290375726 | sin(176) = 0.06975647374 | sin(296) = -0.8987940463 |
sin(57) = 0.8386705679 | sin(177) = 0.05233595624 | sin(297) = -0.8910065242 |
sin(58) = 0.8480480962 | sin(178) = 0.0348994967 | sin(298) = -0.8829475929 |
sin(59) = 0.8571673007 | sin(179) = 0.01745240644 | sin(299) = -0.8746197071 |
sin(60) = 0.8660254038 | sin(180) = 0 | sin(300) = -0.8660254038 |
sin(61) = 0.8746197071 | sin(181) = -0.01745240644 | sin(301) = -0.8571673007 |
sin(62) = 0.8829475929 | sin(182) = -0.0348994967 | sin(302) = -0.8480480962 |
sin(63) = 0.8910065242 | sin(183) = -0.05233595624 | sin(303) = -0.8386705679 |
sin(64) = 0.8987940463 | sin(184) = -0.06975647374 | sin(304) = -0.8290375726 |
sin(65) = 0.906307787 | sin(185) = -0.08715574275 | sin(305) = -0.8191520443 |
sin(66) = 0.9135454576 | sin(186) = -0.1045284633 | sin(306) = -0.8090169944 |
sin(67) = 0.9205048535 | sin(187) = -0.1218693434 | sin(307) = -0.79863551 |
sin(68) = 0.9271838546 | sin(188) = -0.139173101 | sin(308) = -0.7880107536 |
sin(69) = 0.9335804265 | sin(189) = -0.156434465 | sin(309) = -0.7771459615 |
sin(70) = 0.9396926208 | sin(190) = -0.1736481777 | sin(310) = -0.7660444431 |
sin(71) = 0.9455185756 | sin(191) = -0.1908089954 | sin(311) = -0.7547095802 |
sin(72) = 0.9510565163 | sin(192) = -0.2079116908 | sin(312) = -0.7431448255 |
sin(73) = 0.956304756 | sin(193) = -0.2249510543 | sin(313) = -0.7313537016 |
sin(74) = 0.9612616959 | sin(194) = -0.2419218956 | sin(314) = -0.7193398003 |
sin(75) = 0.9659258263 | sin(195) = -0.2588190451 | sin(315) = -0.7071067812 |
sin(76) = 0.9702957263 | sin(196) = -0.2756373558 | sin(316) = -0.6946583705 |
sin(77) = 0.9743700648 | sin(197) = -0.2923717047 | sin(317) = -0.6819983601 |
sin(78) = 0.9781476007 | sin(198) = -0.3090169944 | sin(318) = -0.6691306064 |
sin(79) = 0.9816271834 | sin(199) = -0.3255681545 | sin(319) = -0.656059029 |
sin(80) = 0.984807753 | sin(200) = -0.3420201433 | sin(320) = -0.6427876097 |
sin(81) = 0.9876883406 | sin(201) = -0.3583679495 | sin(321) = -0.629320391 |
sin(82) = 0.9902680687 | sin(202) = -0.3746065934 | sin(322) = -0.6156614753 |
sin(83) = 0.9925461516 | sin(203) = -0.3907311285 | sin(323) = -0.6018150232 |
sin(84) = 0.9945218954 | sin(204) = -0.4067366431 | sin(324) = -0.5877852523 |
sin(85) = 0.9961946981 | sin(205) = -0.4226182617 | sin(325) = -0.5735764364 |
sin(86) = 0.9975640503 | sin(206) = -0.4383711468 | sin(326) = -0.5591929035 |
sin(87) = 0.9986295348 | sin(207) = -0.4539904997 | sin(327) = -0.544639035 |
sin(88) = 0.999390827 | sin(208) = -0.4694715628 | sin(328) = -0.5299192642 |
sin(89) = 0.9998476952 | sin(209) = -0.4848096202 | sin(329) = -0.5150380749 |
sin(90) = 1 | sin(210) = -0.5 | sin(330) = -0.5 |
sin(91) = 0.9998476952 | sin(211) = -0.5150380749 | sin(331) = -0.4848096202 |
sin(92) = 0.999390827 | sin(212) = -0.5299192642 | sin(332) = -0.4694715628 |
sin(93) = 0.9986295348 | sin(213) = -0.544639035 | sin(333) = -0.4539904997 |
sin(94) = 0.9975640503 | sin(214) = -0.5591929035 | sin(334) = -0.4383711468 |
sin(95) = 0.9961946981 | sin(215) = -0.5735764364 | sin(335) = -0.4226182617 |
sin(96) = 0.9945218954 | sin(216) = -0.5877852523 | sin(336) = -0.4067366431 |
sin(97) = 0.9925461516 | sin(217) = -0.6018150232 | sin(337) = -0.3907311285 |
sin(98) = 0.9902680687 | sin(218) = -0.6156614753 | sin(338) = -0.3746065934 |
sin(99) = 0.9876883406 | sin(219) = -0.629320391 | sin(339) = -0.3583679495 |
sin(100) = 0.984807753 | sin(220) = -0.6427876097 | sin(340) = -0.3420201433 |
sin(101) = 0.9816271834 | sin(221) = -0.656059029 | sin(341) = -0.3255681545 |
sin(102) = 0.9781476007 | sin(222) = -0.6691306064 | sin(342) = -0.3090169944 |
sin(103) = 0.9743700648 | sin(223) = -0.6819983601 | sin(343) = -0.2923717047 |
sin(104) = 0.9702957263 | sin(224) = -0.6946583705 | sin(344) = -0.2756373558 |
sin(105) = 0.9659258263 | sin(225) = -0.7071067812 | sin(345) = -0.2588190451 |
sin(106) = 0.9612616959 | sin(226) = -0.7193398003 | sin(346) = -0.2419218956 |
sin(107) = 0.956304756 | sin(227) = -0.7313537016 | sin(347) = -0.2249510543 |
sin(108) = 0.9510565163 | sin(228) = -0.7431448255 | sin(348) = -0.2079116908 |
sin(109) = 0.9455185756 | sin(229) = -0.7547095802 | sin(349) = -0.1908089954 |
sin(110) = 0.9396926208 | sin(230) = -0.7660444431 | sin(350) = -0.1736481777 |
sin(111) = 0.9335804265 | sin(231) = -0.7771459615 | sin(351) = -0.156434465 |
sin(112) = 0.9271838546 | sin(232) = -0.7880107536 | sin(352) = -0.139173101 |
sin(113) = 0.9205048535 | sin(233) = -0.79863551 | sin(353) = -0.1218693434 |
sin(114) = 0.9135454576 | sin(234) = -0.8090169944 | sin(354) = -0.1045284633 |
sin(115) = 0.906307787 | sin(235) = -0.8191520443 | sin(355) = -0.08715574275 |
sin(116) = 0.8987940463 | sin(236) = -0.8290375726 | sin(356) = -0.06975647374 |
sin(117) = 0.8910065242 | sin(237) = -0.8386705679 | sin(357) = -0.05233595624 |
sin(118) = 0.8829475929 | sin(238) = -0.8480480962 | sin(358) = -0.0348994967 |
sin(119) = 0.8746197071 | sin(239) = -0.8571673007 | sin(359) = -0.01745240644 |
Похожие калькуляторы
Синус угла sin(A) — есть отношение противолежащего катета a к гипотенузе c [ sin(A) = frac{a}{c} ] |
Синус угла — sin(A), таблица
0° Синус угла 0 градусов |
$ sin(0°) = sin(0) = 0 $ |
0.000 |
30° Синус угла 30 градусов |
$ sin(30°) = sinBig(Largefrac{pi}{6}normalsizeBig) = Largefrac{1}{2}normalsize $ |
0.500 |
45° Синус угла 45 градусов |
$ sin(45°) = sinBig(Largefrac{pi}{4}normalsizeBig) = Largefrac{sqrt{2}}{2}normalsize $ |
0.707 |
60° Синус угла 60 градусов |
$ sin(60°) = sinBig(Largefrac{pi}{3}normalsizeBig) = Largefrac{sqrt{3}}{2}normalsize $ |
0.866 |
90° Синус угла 90 градусов |
$ sin(90°) = sinBig(Largefrac{pi}{2}normalsizeBig) = 1 $ |
1.000 |
Вычислить, найти синус угла sin(A) и угол, в прямоугольном треугольнике
Вычислить, найти синус угла sin(A) по углу A в градусах
Вычислить, найти синус угла sin(A) по углу A в радианах
Синус угла — sin(A) |
стр. 212 |
---|
Таблица синусов, найти угол синуса
Тригонометрические функции: синус угла
Зачем надо знать значение синуса? Представим ситуацию: известен один из углов (А=60⁰), вписанный в прямоугольный треугольник, и длина гипотенузы. Больше нет никакой информации. Надо узнать вычислить дальний к углу (А) катет. Как поступить?
Ситуация очень простая: смотрим таблицы Брадиса, находим значение sin(60⁰)=0,866, подставляем данные в формулу тригонометрической функции и решаем линейное уравнение. Из школьного курса известно, что sin угла – это отношение дальнего к углу, в данном случае А=60⁰, катета к гипотенузе.
Произвести все расчеты проще, если воспользоваться онлайн калькулятором на сайте. Таким образом можно вычислить длину любой из сторон прямоугольного треугольника. Знаем угол – значит, знаем sin этого угла. И наоборот, знаем sin – найти угол не составит проблемы.
Таблица синусов 0°- 360°
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Содержание
- – Как посчитать угол зная длину и высоту?
- – Как высчитать угол наклона?
- – Как правильно рассчитать градус?
- – Как рассчитать угол наклона трубы?
- – Как найти угол зная длину катетов?
- – Как найти cos?
- – Как рассчитать угол наклона пандуса?
- – Как измерить угол наклона лестницы?
- – Как узнать угол запила?
- – Как определить правильный угол наклона крыши?
- – Как рассчитать угол наклона в градусах формула?
- – Как посчитать уклон в промилле?
- – Как определить уклон канализации?
- – Какой уклон у канализационных труб?
- – Какой уклон канализации на метр?
Чтобы определить угол наклона крыши, нужно воспользоваться таблицей Брадиса и простой методикой: высота кровельной конструкции делится на длину фронтона, разделенную на два, после чего остается найти таблице угол, который соответствует полученному результату.
Как посчитать угол зная длину и высоту?
α = 180°-β-γ
Здесь, квадрат одной стороны треугольника (а) равен сумме квадратов двух его других сторон (b,с), образующих искомый угол (α), плюс удвоенное произведение этих сторон (b,с) на косинус угла.
Как высчитать угол наклона?
sin α = H/S, где «S» – это длина ската. Соответственно высота конька будет равна: Н=S x sin α. Точно также можно определить длину ската, или, зная оба параметра, можно рассчитать угол наклона крыши.
Как правильно рассчитать градус?
Разделите сумму всех углов правильного многоугольника на число углов. Правильный многоугольник это многоугольник с равными сторонами и равными углами. Например, каждый угол равностороннего треугольника вычисляется так: 180 ÷ 3 = 60°, а каждый угол квадрата находится так: 360 ÷ 4 = 90°.
Как рассчитать угол наклона трубы?
Рассмотрим, как действует правило: Предположим, нужно рассчитать оптимальный уклон для трубы 110 мм, согласно ГОСТ он составляет 0,02 мм. Чтобы рассчитать общий угол, нужно длину трубы умножить на уклон, указанный в СНиП или ГОСТ. Получится: 10 м (длина канализационной системы) * 0,02 = 0,2 м или 20 см.
Как найти угол зная длину катетов?
Углы прямоугольного треугольника
- α = 90°-β Если известна величина двух катетов прямоугольного треугольника (а, b), находим угол, используя отношения тангенсов.
- tg (α) = a/b. Т. …
- β = 180° — 90° — α …
- sin (α) = a/c.
Как найти cos?
Чтобы найти синус и косинус угла в прямоугольном треугольнике, нужно вспомнить определения. Синус угла равен отношению противоположного катета к гипотенузе. Косинус угла равен отношению прилежащего катета к гипотенузе.
Как рассчитать угол наклона пандуса?
Вычисляется уклон пандуса с помощью формулы: наклон пандуса = H / L, где: H — перепад высот, который необходимо оборудовать пандусом, а L — длина горизонтальной проекции наклонного участка пандуса (нажмите для увеличения).
Как измерить угол наклона лестницы?
Как рассчитать угол наклона лестницы
Высота ступеней будет идеальной при значении 150 – 180 мм, ширина – 280 – 300 мм. Придерживаясь таких стандартов, угол наклона можно рассчитать по формуле: 2х + у = 580/660 мм, где х – это высота ступеней, а у – ширина.
Как узнать угол запила?
КАК ОПРЕДЕЛИТЬ УГОЛ ЗАПИЛА
Для каждого соединения необходимо замерить и определить стыковочный угол, а затем, чтобы определить угол косого запила, разделить результат замера пополам. на необрезанном конце заготовки и в этой точке начинают косой запил. Повторяют эту операцию по всему периметру изделия.
Как определить правильный угол наклона крыши?
В основном угол выбирают от 9 до 20 градусов. Среднегодовые объемы осадков: Однако на практике в разных регионах возникают как сильные порывы ветра, так и обильные осадки, и выбор угла должен учитывать этот факт. Поэтому наиболее оптимальным является уклон крыши, в средних значениях, то есть от 20 до 45 градусов.
Как рассчитать угол наклона в градусах формула?
Найти его несложно по следующей формуле: i = H / L, где i — уклон кровли, H — высота конька, L — половина пролета (ширины здания). Если нужно произвести расчет в процентах, то применяем формулу: i = H / L * 100%. Из таблицы преобразования “градусы в проценты” для 44,5% находим величину 24 — градусная мера.
Как посчитать уклон в промилле?
Перевод уклона из промилле в мм на м длины онлайн
Чтобы узнать сколько составляет уклон в промилле, необходимо ознакомиться с определением: Промилле (‰) — это одна десятая процента или 1/1000 доля. 1‰=1мм/м.
Как определить уклон канализации?
«Наибольший уклон трубопроводов не должен превышать 0,15 (за исключением ответвлений от приборов длиной до 1,5 м)». То есть уклон 15 сантиметров на метре. Если превысить данный угол при прокладке, то возможно заиливание трубопровода канализации. Или, проще говоря, вода быстро уйдет, а все остальное останется.
Какой уклон у канализационных труб?
Итак нормы уклона канализационных труб по СНиП: Уклон канализационной трубы 110 – 2 см на 1 метр Уклон канализационной трубы 50 – 3 см на 1 метр
Какой уклон канализации на метр?
минимально допустимый показатель уклонения канализационного трубопровода составляет 3 см на 1 м. п., при условии, что диаметр магистрали не превышает 50 мм; рекомендуемый уклон трубопровода с размером сечения 1600 мм составляет 8 мм на 1 м.
Интересные материалы:
Какую функцию в луковице выполняют листья?
Какую функцию в луковице выполняют сочные чешуи листья )?
Какую функцию выполняют сочные чешуи листья?
Когда краснеют листья клена?
Когда листья меняют окраску?
Когда лучше бросать в суп лавровый лист?
Когда лучше положить в суп лавровый лист?
Когда надо собирать листья лещины?
Когда надо собирать листья мать и мачехи?
Когда нужно добавлять лавровый лист в суп?
Как найти угол имея цифровое значение синуса, косинуса, тангенса,котангенса? например есть значение sin a=0,3452 какой угол этому соответствует? Функции: синус (sin), косинус (cos), тангенс (tg), котангенс (ctg), называются тригонометрическими. Они выражают зависимости длин сторон от углов треугольника при гипотенузе. Определяются отношением какой-либо из сторон треугольника к другой. То есть, показывают, насколько одна сторона больше другой. Это отношение может быть характерно только для строго определенного угла. Выражаются тригонометрические функции в безразмерных единицах. Если известно значение какой-либо тригонометрической функции (в данном случае, синуса – sin), а требуется найти соответствующий ему угол в градусах, то нужно:
Определение значения arcsin угла (в радианах) и значения в градусах – с помощью функций Excel Итак, ответ получен: Синусу угла альфа со значением 0,3452 соответствует угол 20,194 градуса. автор вопроса выбрал этот ответ лучшим RIOLIt 6 лет назад Данному значению синуса соответствует угол- немногим более 20 градусов, это- по таблице, а если есть значение гипотенузы, то- по отношению- можно найти катет и другие элементы треугольника и- возможно- все улы, здесь- главное- зацепка- кончик ниточки, чтобы размотать весь клубочек,( а имея в хозяйстве инженерный калькулятор, можно сразу- по функции найти угол с точностью до н- ого знака после запятой…) Можно без компьютера, без калькулятора, без таблиц Брадиса найти этот угол. Для этого нужен такой инструмент, как транспортир. Можно воспользоваться угломером. Если есть чертежный прибор, который еще называют кульман, то и им. Но сначала высисляют катет и гипотенузу. Чем больше длина, тем точгее. Допустим, гипотенуза 100 мм, тогда противолежащий катет будет равен 100*0,3452=34,52мм. Берем клетчатую бумагу, по вертикали откладываем 35 мм от горизонтальной линии вверх. Из верхней точки циркулем с разведенными ножками на 100 мм делаем засечку на глризонтальной линии. Соединяем три точки линиями и измеряем угол. Если честно, то в повседневной жизни не припомню, чтобы приходилось определять углы по синусу или тагенсу. Вот строить углы приходится постоянно. Например, нужно обрезать плинтуса под углом 45 градусов. Никакой транспортир или угломер не нужен. На заводе плинтус обрезан под прямым углом, тогда просто отмеряешь два одинаковых катета и проводишь гипотенузу, угол получантся сам собой. Так же легко строить углы 30 и 60 градусов, так как гипотенуза равна двум противолежащим катетам. Еще углы можно измерять смартфоном илитпланшетом, если в нем установлено приложение по измерению углов, очень удобная штука, не надо покупать строительный уровень. bezdelnik 6 лет назад Найти угол имея цифровое значение синуса, косинуса, тангенса можно по таблицам Брадиса, на логарифмической линейке или на калькуляторе. Если sin a=0,3452, то a=20,194… градуса. Можно найти приближенное значение тригонометрических функций по их графикам, для синуса и косинуса это графики синусоиды и косинусоиды. Найдя значения синуса и косинуса значения тангенса и котангенса можно вычислить по формулам tg a = Sin a /Cos a, ctg a = Cos a/Sin a DartFallen 6 лет назад Я открою Вам одну старую и великую тайну! Все эти величины давно вычислены и сведены в таблицу. Носит она название таблицы Браддиса. Когда я учился в старших классах у каждого ученика была желтенькая такая брошюрка, в которой и представлены многие данные и не только для градусной меры углов. Величины эти постоянные и периодического пересчета не требуют. Вот как-то так… Blockphild 8 месяцев назад Зачем так все сложно и это в век компьютеров? Иди сюда -> https://allcalc.ru/node/1039 вставляй величины катетов и гипотенуз –> жми на кнопку -> ВЫЧИСЛИТЬ и вот тебе результат в градусах и радианах. Недостаток: нужно иметь интернет Не надо никаких там EXCEL, таблиц Брадисов и прочей ерунды, мы в 21 веке живем, все делается очень быстро. Успехов! bezdelnik 5 лет назад Для некоторых значений тригонометрических функций соответствующие углы общеизвестны из учебников по математике. Например,для углов 0°, 30°, 45°, 60°, 90° синус равен 0, 1/2, √2/2, √3/2, 1 ,соответственно, а косинус такие же значения в обратном порядке. Это должны знать все получившие среднее школьное образование. Знаете ответ? |
Смотрите также: В треугольнике АВС угол С равен 90°, АВ=10, АС=√51. Как найти sin A? Как вычислить площадь параллелограма по формуле S=a·b·sin A с след.данными? В треугольнике ABC угол C = 90°, sin A = 4/5, AC=9. Найти AB. Как решить? Как доказать теорему о равенстве синусов острых углов? Как построить угол, если известен синус? Если синус X равен 1, чему равен косинус X(см)? Как найти котангенс, тангенс, синус, косинус? Как выучить таблицу значений синуса, косинуса, тангенса разных углов? Перечислите все формулы, объединяющие синус, косинус, тангенс и котангенс? Как записать две различные функции для синуса и косинуса? |