Как найти угол падения тела с высоты

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря – падение в пустоте. Конечно, отсутствие сопротивления воздуха – это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения – ускорение, с которым все тела падают на Землю. 

Ускорение свободного падения приблизительно равно 9,81 мс2 и обозначается буквой g. Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 мс2.

Земля – не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения – на полюсах (≈9,83 мс2), а самое малое – на экваторе (≈9,78 мс2).

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его. 

Свободное падение – прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h=v0+gt22.

Так как начальна скорость равна нулю, перепишем:

h=gt22.

Отсюда находится выражение для времени падения тела с высоты h:

t=2hg.

Принимая во внимание, что v=gt, найдем скорость тела в момент падения, то есть максимальную скорость:

v=2hg·g=2hg.

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

v=v0-gt.

Подставив v=0, найдем время подъема тела на максимальную высоту:

t=v0g.

Время падения совпадает со временем подъема, и тело вернется на Землю через t=2v0g.

 Максимальная высота подъема тела, брошенного вертикально:

h=v022g.

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a=-g. Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10мс2.

Движение тела, брошенного вертикально вверх

Первый график – это падение тела с некоторой высоты без начальной скорости. Время падения tп=1с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h=5м.

Второй график – движение тела, брошенного вертикально вверх с начальной скоростью v0=10 мс. Максимальная высота подъема h=5м. Время подъема и время падения tп=1с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси OY тело движется равноускоренно с ускорением g, начальная скорость этого движения – v0y. Движение вдоль оси OX – равномерное и прямолинейное, с начальной скоростью v0x.

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси ОХ:

x0=0; v0x=v0cosα; ax=0.

Условия для движения вдоль оси OY:

y0=0; v0y=v0sinα; ay=-g.

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t=2v0sinαg.

Дальность полета тела:

L=v02sin2αg.

Максимальная дальность полета достигается при угле α=45°.

Lmax=v02g.

Максимальная высота подъема:

h=v02sin2α2g.

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука – баллистика.

Как найти угол падения тела, если высота броска не совпадает с высотой падения?

Александр



Профи

(536),
закрыт



8 лет назад

Знаю что угол можно найти через тангенс составляющих вектор скорости. Но как их рассчитать на любой высоте?

Дополнен 11 лет назад

Знаю что скорость по горизонтали равномерна, как найти Vy в любой момент времени? . Известен лишь угол броска, высота, на которой брос был сделан, ну и составляющие вектора начальной скорости

Как определить угол падения

При решении задач чаще всего приходится находить угол падения светового луча и предмета, брошенного горизонтально или под углом к горизонту. Угол падения луча находится с помощью построения или несложных расчетов, когда известен угол отражения или преломления. Угол падения тела находится в результате расчетов.

Как определить угол падения

Вам понадобится

  • – транспортир;
  • – дальномер;
  • – таблица абсолютных показателей преломления.

Инструкция

При падении светового луча на плоскую поверхность восстановите перпендикуляр к ней в точке падения с помощью транспортира, угольника или угломера. Угол между перпендикуляром и падающим лучом и будет углом падения. Если поверхность не является плоскостью, в точке падения луча постройте касательную, и опустите перпендикуляр к касательной в этой точке. Угол определите так же, как и в предыдущем случае. В обоих случаях для измерения угла пользуйтесь транспортиром или угломером.

Если известен угол отражения, то по первому закону отражения световых лучей он будет равен углу падения. Когда известен угол преломления на границе двух сред, найдите относительный показатель их преломления из таблицы или рассчитайте его, используя абсолютные показатели. Затем умножьте этот показатель на синус угла преломления. Результатом будет синус угла падения светового луча Sin(α)=n•Sin(β). С помощью инженерного калькулятора или специальных таблиц найдите значение угла падения, использовав функцию арксинуса.

Угол падения тела измерьте, восстановив перпендикуляр в точку падения, это угол между перпендикуляром и направлением конечной скорости тела. В том случае, когда тело брошено под углом к горизонту, который заранее известен, угол падения равен 90º минус угол, под которым брошено тело.

В случае, когда тело бросают горизонтально с некоторой высоты, померяйте расстояние, на котором тело упадет на землю и высоту, с которой оно было сброшено в метрах. Сделайте это при помощи рулетки или с дальномера. Чтобы найти угол падения, поделите расстояние, которое преодолело тело на удвоенную высоту, с которой оно падало. Это будет тангенс угла падения. Найдите угол при помощи калькулятора или таблицы.

В данных расчетах не учитывается сопротивление воздуха, которым можно пренебречь при небольших скоростях, с которыми движутся тела, например, брошенный камень. При большом сопротивлении среды при увеличении скорости результаты изменятся.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Если тело бросить горизонтально с некоторой высоты, оно будет одновременно падать и двигаться вперед. Это значит, что оно будет менять положение относительно двух осей: ОХ и ОУ. Относительно оси ОХ тело будет двигаться с постоянной скоростью, а относительно ОУ — с постоянным ускорением.

Кинематические характеристики движения

Важные факты!

Графически движение горизонтально брошенного тела описывается следующим образом:

  1. Вектор скорости горизонтально брошенного тела направлен по касательной к траектории его движения.
  2. Проекция начальной скорости на ось ОХ равна v0: vox = v0. Ее проекция на ось ОУ равна нулю: voy = 0.
  3. Проекция мгновенной скорости на ось ОХ равна v0: vx = v0. Ее проекция на ось ОУ равна нулю: vy = –gt.
  4. Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.

Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:

Подставив в эту формулу значения проекций мгновенной скорости в момент времени t, получим:

Минимальная скорость в течение всего времени движения равна начальной скорости: vmin = v0.

Максимальной скорости тело достигает в момент приземления. Поэтому максимальной скоростью тела в течение всего времени движения является его конечная скорость: vmax = v.

Время падения — время, в течение которого перемещалось тело до момента приземления. Его можно выразить через формулу высоты при равноускоренном прямолинейном движении:

h0 — высота, с которой тело бросили в горизонтальном направлении.

Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:

l = sx = v0tпад

Выразив время падения через высоту и ускорение свободного падения, формула для определения дальности полета получает следующий вид:

Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:

Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости есть модуль этой скорости, данная формула принимает вид:

x = v0t

Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:

Пример №1. Из окна, расположенного 5 м от земли, горизонтально брошен камень, упавший на расстоянии 8 м от дома. С какой скоростью был брошен камень?

Так как нам известна высота места бросания и дальность полета, начальную скорость тела можно вычислить по формуле:

Выразим начальную скорость и вычислим ее:

Горизонтальный бросок тела с горы

Горизонтальный бросок тела с горы — частный случай горизонтального броска. От него он отличается увеличенным расстоянием между местом бросания и местом падения. Это увеличение появляется потому, что плоскость находится под наклоном. И чем больше этот наклон, тем больше времени требуется телу, чтобы приземлиться.

График горизонтального броска тела с горы

α — угол наклона плоскости к горизонту, s — расстояние от места бросания до места падения

Дальность полета — смещение тела относительно оси ОХ от места бросания до места падения. Она равна произведению расстояния от места бросания до места падения и косинуса угла наклона плоскости к горизонту:

l = s • cosα

Начальная высота — высота, с которой было брошено тело. Обозначается h0. Начальная высота равна произведению расстояния от места бросания до места падения и синусу угла наклона плоскости к горизонту:

h0 = s sinα

Пример №2. На горе с углом наклона 30о бросают горизонтально мяч с начальной скоростью 15 м/с. На каком расстоянии от точки бросания вдоль наклонной плоскости он упадет?

Выразим это расстояние через дальность полета:

Дальность полета выражается по формуле:

Подставим ее в формулу для вычисления расстояния от точки бросания до точки падения:

Выразим с учетом формулы начальной высоты:

Преобразуем:

Поделим обе части выражения на общий множитель s:

Подставим известные значения:

Задание EF18083

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

В другом опыте на этой же установке шарик массой 2m бросают со скоростью 2υ0.

Что произойдёт при этом с временем полёта, дальностью полёта и ускорением шарика? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости и массы.
  3. Определить характер изменения физической величины при увеличении начальной скорости и массы шарика.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости и массы тела. Поэтому оно при увеличении начальной скорости и массы вдвое никак не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет увеличена вдвое, дальность полета тоже увеличится (вдвое). От массы дальность полета никак не зависит.

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 313.

Ответ: 313

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18048

Шарик, брошенный горизонтально с высоты H с начальной скоростью υ0, за время t пролетел в горизонтальном направлении расстояние L (см. рисунок).

Что произойдёт с временем полёта, дальностью полёта и ускорением шарика, если на этой же установке уменьшить начальную скорость шарика в 2 раза? Сопротивлением воздуха пренебречь. Для каждой величины определите соответствующий характер её изменения:

  1. увеличится
  2. уменьшится
  3. не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

  1. Записать формулы для каждой из величин.
  2. Определить, как зависит эта физическая величина от начальной скорости.
  3. Определить характер изменения физической величины при уменьшении начальной скорости.

Решение

Время полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, время никак не зависит от начальной скорости. Поэтому оно при уменьшении начальной скорости вдвое не изменится.

Дальность полета тела, брошенного горизонтально, определяется формулой:

Исходя из формулы, дальность полета зависит от начальной скорости прямо пропорционально. Поэтому, если начальная скорость тела будет уменьшена вдвое, дальность полета тоже уменьшится (вдвое).

Ускорение свободного падения — величина постоянная для нашей планеты. Поэтому изменение начальной скорости никак не повлияет на него. Ускорение не изменится.

Значит, верный ответ — 323.

Ответ: 323

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 17.9k

Свободное падение

Свободное падение представляет собой частный случай равномерно ускоренного движения без начальной скорости. Ускорение этого движения равно ускорению свободного падения, называемого также ускорением силы тяжести.
Для этого движения справедливы формулы:

Если:
u — скорость падения тела спустя время t,
g — ускорение свободного падения, 9.81 (м/с²),
h — высота с которой падает тело,
t — время, в течение которого продолжалось падение,
То, свободное падение описывается следующими формулами:

Расстояние, пройденное телом за время падения, зная конечную скорость

[ h = frac{ut}{2} ]

Расстояние, пройденное телом за время падения, зная ускорение свободного падения

[ h = frac{gt^2}{2} ]

Скорость тела, в конце падения, зная ускорение свободного падения и время

[ u = gt ]

Скорость тела, в конце падения, зная ускорение свободного падения и высоту

[ u = sqrt{2gh} ]

Примечание к статье: Свободное падение

Свободное падение

стр. 408

Добавить комментарий