Свойства высот треугольника. Ортоцентр
Анна Малкова
Схема 1. В треугольнике АВС проведены высоты АМ и СК.
Н – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК
Запомните этот рисунок. Перед вами – схема, из которой можно получить сразу несколько полезных фактов.
1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
, если , и , если
- Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
- Четырехугольник ВКМН также можно вписать в окружность.
- Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
- ,где R – радиус описанной окружности .
Докажем эти факты по порядку.
1) Заметим, что на рисунке есть подобные треугольники. Это АВМ и СВК, прямоугольные треугольники с общим углом В, и они подобны по двум углам
Мы получили, что в треугольниках МВК и АВС стороны, прилежащие к углу В, пропорциональны. Получаем, что по углу и двум сторонам.
2) Докажем, что вокруг четырехугольника АКМС можно описать окружность. Для этого необходимо и достаточно, чтобы суммы противоположных углов четырехугольника АКМС были равны .
Пусть ∠ACB=∠BKM=γ (поскольку треугольники МВК и АВС подобны), тогда
– как смежный с углом ВКМ. Получили, что , и это значит, что четырехугольник AKMC можно вписать в окружность.
3) Рассмотрим четырехугольник KBMH. Его противоположные углы ВКН и ВМН – прямые, их сумма равна , и значит, четырехугольник КВМН можно вписать в окружность.
4) По теореме синусов, радиус окружности, описанной вокруг треугольника АВС,
Радиус окружности, описанной вокруг треугольника АНС,
Мы помним, что . Значит, синусы углов АВС и АНС равны, и радиусы окружностей, описанных вокруг треугольников АВС и АНС равны.
5) Докажем, что ,где R – радиус описанной окружности . Поскольку четырехугольник КВМН можно вписать в окружность и углы ВКН и ВМН – прямые, отрезок ВН является диаметром этой окружности. Треугольник МВК также вписан в эту окружность, и по теореме синусов, .
Диаметр окружности, описанной вокруг треугольника АВС, равен Поскольку треугольники МВК и АВС подобны, отношение диаметров описанных вокруг них окружностей равно . Получили, что
Задача ЕГЭ по теме «Высоты треугольника» (Профильный уровень, №16)
2. В остроугольном треугольнике KMN проведены высоты KB и NA.
а) Докажите, что угол ABK равен углу ANK.
б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и
а) Докажем, что
(по двум углам). Запишем отношение сходственных сторон:
Но это значит, что (по углу и двум сторонам), причем .
– смежный с углом ,
,
,четырехугольник ABNK можно вписать в окружность.
(опираются на одну дугу).
б) Найдем , если и
По теореме синусов,
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Свойства высот треугольника. Ортоцентр» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.
Публикация обновлена:
08.05.2023
Свойства высот треугольника
свойства высоты в треугольнике
Свойство 1
Высоты треугольника или их продолжения пересекаются в одной точке – ортоцентре треугольника.
Свойство 2
Если AD, BE, CF – высоты треугольника ABC, O – точка пересечения этих высот или их продолжений, то:
Свойство 3
Высота, опущенная на гипотенузу прямоугольного треугольника, делит его на два треугольника, подобных между собой и подобных исходному треугольнику:
Высота на сторону c вычисляется по формулам:
Точка пересечения высот треугольника – свойства, координаты и расположение ортоцентра
Что такое высота
Если из вершины опустить перпендикуляр на противоположную сторону, получится отрезок, который именуется высотой. В равнобедренном треугольнике 2 отрезка равны, а в равностороннем равны все 3.
У фигур с углами 90 и более градусов высота попадает на противоположную сторону. В случае острого угла дело обстоит иначе. Прямая попадет только на продолжение противоположной стороны и будет находиться вне самой фигуры. Таким образом, если все углы острые, отрезки будут находиться внутри, как и ортоцентр. В тупоугольной фигуре два из трех отрезков будут проходить за его пределами — ортоцентр окажется вне фигуры.
Свойства ортоцентра
Свойства высот треугольника, пересекающихся в одной точке, давно изучены и описаны. Согласно основному из них, все 3 высоты всегда пересекаются в одном месте. Иногда, чтобы найти это место, отрезки нужно продлить, превратив в ортогональные прямые.
Ортоцентр по отношению к фигуре может быть расположен:
- внутри;
- снаружи;
- в вершине (у прямоугольных треугольников)
Ортоцентр — важная в геометрии характеристика, влияющая на нахождение золотого сечения.
Так называется маленький треугольник, расположенный внутри основного, находящийся на пересечении его трех параметров:
Золотое сечение может представлять собой не только треугольную фигуру, но и отрезок. В правильном треугольнике медианы, биссектрисы и высоты совпадают, значит, золотое сечение превращается в точку.
Полезные факты
Местонахождение ортоцентра имеет некоторые закономерности. Их знание принесет пользу при решении задач.
Пусть:
- H — ортоцентр в ABC;
- О — центр описанной окружности.
Тогда:
- окружности, описанные вокруг АБС, АНВ, CHB, HCA, равны:
- отрезок BH вдвое длиннее отрезка АС;
- середины отрезков AC и BH разделены расстоянием, равным радиусу описанной окружности.
Задача Фаньяно
Это классическая теорема. Она возникла в процессе поиска фигур с наименьшим периметром. Теорему доказал Фаньяно — итальянский математик и инженер. Это произошло еще в начале XVIII века.
Формулировка: ортотреугольник, то есть фигура, полученная соединением трех оснований треугольника, проведенный внутри остроугольного треугольника, имеет самый маленький периметр изо всех возможных, вписанных в данную фигуру.
Площадь ортотреугольника рассчитывается по формуле:
Здесь S — площадь, а, b, c — стороны.
Существует понятие ортоцентрической системы. Оно включает в себя 3 вершины и место пересечения их высот. Любая из данных четырех точек будет являться ортоцентром треугольника, образованного тремя остальными.
История изучения
Важное значение имеет место пересечения медиан или центр тяжести. Вместе с ортоцентром это еще одна «замечательная точка», которая была известна еще древним грекам. Так их стали называть начиная с 18 века, другое название «особенные».
Исследование этих точек стало началом для создания геометрии треугольника, основателем которой считается Леонард Эйлер. Ученый показал, что в любом треугольнике точки соединения высот, медиан и центр описанного круга находятся на одной линии, которую позже назвали прямой Эйлера.
В позапрошлом веке была обнаружена окружность 9 точек или Фейербаха. Она состоит из оснований медиан, высот и центров высот. Оказалось, что все эти точки лежат на общей окружности, центр которой находится на линии Эйлера.
Каждый отрезок, прочерченный из ортоцентра до соединения с описанной окружностью, всегда будет делиться линией Эйлера на 2 равные части.
Треугольник — удивительная фигура, изучением которой занимается целый раздел геометрии. Ортоцентр и его свойства имеют широкое применение в практической жизни, например, в строительстве. Этот показатель настолько важен и распространен, что существуют калькуляторы, позволяющие определить местонахождение точки по координатам вершин.
Свойства высот треугольника. Ортоцентр
Схема 1. В треугольнике АВС проведены высоты АМ и СК.
Н – точка пересечения высот треугольника (ортоцентр), Н=АМ∩СК
Запомните этот рисунок. Перед вами – схема, из которой можно получить сразу несколько полезных фактов.
1. Треугольники МВК и △АВС, подобны, причем коэффициент подобия
, если , и , если
- Четырехугольник АКМС можно вписать в окружность. Эта вспомогательная окружность поможет решить множество задач.
- Четырехугольник ВКМН также можно вписать в окружность.
- Радиусы окружностей, описанных вокруг треугольников АВС, АНС, ВНС и АВН, равны.
- ,где R – радиус описанной окружности .
Докажем эти факты по порядку.
1) Заметим, что на рисунке есть подобные треугольники. Это АВМ и СВК, прямоугольные треугольники с общим углом В, и они подобны по двум углам
Мы получили, что в треугольниках МВК и АВС стороны, прилежащие к углу В, пропорциональны. Получаем, что по углу и двум сторонам.
2) Докажем, что вокруг четырехугольника АКМС можно описать окружность. Для этого необходимо и достаточно, чтобы суммы противоположных углов четырехугольника АКМС были равны .
Пусть ∠ACB=∠BKM=γ (поскольку треугольники МВК и АВС подобны), тогда
– как смежный с углом ВКМ. Получили, что , и это значит, что четырехугольник AKMC можно вписать в окружность.
3) Рассмотрим четырехугольник KBMH. Его противоположные углы ВКН и ВМН – прямые, их сумма равна , и значит, четырехугольник КВМН можно вписать в окружность.
4) По теореме синусов, радиус окружности, описанной вокруг треугольника АВС,
Радиус окружности, описанной вокруг треугольника АНС,
Мы помним, что . Значит, синусы углов АВС и АНС равны, и радиусы окружностей, описанных вокруг треугольников АВС и АНС равны.
5) Докажем, что ,где R – радиус описанной окружности . Поскольку четырехугольник КВМН можно вписать в окружность и углы ВКН и ВМН – прямые, отрезок ВН является диаметром этой окружности. Треугольник МВК также вписан в эту окружность, и по теореме синусов, .
Диаметр окружности, описанной вокруг треугольника АВС, равен Поскольку треугольники МВК и АВС подобны, отношение диаметров описанных вокруг них окружностей равно . Получили, что
Задача ЕГЭ по теме «Высоты треугольника» (Профильный уровень, №16)
2. В остроугольном треугольнике KMN проведены высоты KB и NA.
а) Докажите, что угол ABK равен углу ANK.
б) Найдите радиус окружности, описанной около треугольника ABM, если известно, что и
а) Докажем, что
(по двум углам). Запишем отношение сходственных сторон:
Но это значит, что (по углу и двум сторонам), причем .
– смежный с углом ,
,
,четырехугольник ABNK можно вписать в окружность.
(опираются на одну дугу).
[spoiler title=”источники:”]
http://nauka.club/matematika/geometriya/ortotsentr.html
http://ege-study.ru/materialy-ege/svojstva-vysot-treugolnika-ortocentr/
[/spoiler]
Ортоцентр – это точка пересечения высот треугольника.
Рассмотрим остроугольный треугольник ABC:
O – ортоцентр,
∠ BAC = a,
∠ ABC = b,
∠ ACB = c.
Утверждения.
1. Треугольник ABC подобен треугольнику, образованному вершиной B и основанием двух высот:
Δ ABC ∼ Δ H3BH2,
коэффициент подобия:
H3B / AB = H2B / CB = H3H2 / AC = cos b.
2. Соотношение отрезков, на которые ортоцентр делит высоту, можно вычислить по формуле:
BO / OH1 = cos b / (cos a * cos c).
3. Высоты треугольника можно вычислить по формуле:
BH1 = AC * sin a * sin c / sin b.
4. Расстояние от ортоцентра до вершины треугольника:
OB = AC / tg b.
5. 1 / BH1 + 1 / CH2 + 1 / AH3 = 1 / r,
r – радиус вписанной окружности.
Докажем эти утверждения.
1.
В треугольнике ABC проведены высоты BD и CE.
Докажем, что треугольник ABC подобен треугольнику ADE.
Решение.
Рассмотрим Δ ABD:
cos A = AD / AB.
Рассмотрим Δ ACE:
cos A = AE / AC.
Таким образом,
cos A = AD / AB = AE / AC.
Значит, Δ ABC ∼ Δ ADE по двум сторонам и углу между ними.
2.
Диагонали трапеции ABCD пересекаются под прямым углом.
CH – высота, проведенная к большему основанию AD.
∠ CAD = a,
∠ ACD = c,
∠ ADC = d.
Найдем отношение, в котором диагональ трапеции делит высоту CH.
Решение.
Пусть K – точка пересечения диагоналей трапеции,
O – точка пересечения диагонали BD и высоты CH.
Найдем соотношение CO / OH.
Δ BOC подобен Δ DOH по двум углам,
так как ∠ BCO = ∠ DHO = 90,
∠ BOC = ∠ DOH как вертикальные.
Значит,
CO / OH = BC / DH. (*)
Рассмотрим Δ CKD:
KC = CD * cos c.
Рассмотрим Δ BCK:
BC = KC / cos a = (CD * cos c) / cos a.
Рассмотрим Δ CHD:
HD = CD * cos d.
Из (*) и последних трех равенств получаем:
CO / OH = BC / DH =
( (CD * cos c) / cos a ) : (CD * cos d) =
Таким образом, мы нашли соотношение отрезков, на которые ортоцентр O треугольника ABD делит высоту CH:
3.
Найдем расстояние от ортоцентра треугольника до его вершины, и высоту, проведенную из этой вершины, если известны углы треугольника и противолежащая сторона.
Решение.
Рассмотрим треугольник ABC.
O – ортоцентр.
∠ BAC = a,
∠ ABC = b,
∠ ACB = с,
также известна величина стороны AC.
Найдем BH и OB.
Обозначим AH за x, тогда HC = AC – x.
Рассмотрим Δ AHB:
BH = x * tg a.
Рассмотрим Δ CHB:
BH = (AC – x) * tg c.
Таким образом,
BH = x * tg a = (AC – x) * tg c.
Рассмотрим Δ AHB:
Таким образом высоту можно вычислить по формуле,
4.
Найдем теперь расстояние от вершины B до ортоцентра.
Так как BH = BO + OH, получаем:
Выражаем из уравнения (1) OH и подставляем в уравнение (2):
Значит, расстояние от ортоцентра до вершины можно вычислить по формуле:
5.
1 / BH1 + 1 / CH2 + 1 / AH3 = 1 / r.
Площадь треугольника ABC можно вычислить по формуле:
S = ½ * AC * BH1 = ½ * AB * CH2 = ½ * BC * AH3,
Значит,
BH1 = 2S / AC
CH2 = 2S / AB
AH3 = 2S / BC
1 / BH1 = AC / 2S
1 / CH2 = AB / 2S
1 / AH3 = BC / 2S
1 / BH1 + 1 / CH2 + 1 / AH3 = (AC + BC + AB) / 2S = p / S, (*)
где p – полупериметр.
Еще одна формула площади треугольника:
S = p * r,
откуда r = S / p
1 / r = p / S.
Из (*) и последнего равенства получаем нужное нам равенство.
Содержание 👉
Решение задач по геометрии часто сводится к самой простой фигуре, называемой треугольником, точка пересечения высот которого обладает важными свойствами, помогающими найти неизвестные величины: стороны, углы, периметр и площадь. В интернете можно найти немало информации по этой теме, но, как правило, она не систематизирована. В результате тратится много времени на поиск формул и важных утверждений.
Оглавление:
- Общие сведения
- Информация об ортоцентре
- Полезные свойства и формулы
Общие сведения
Перед переходом к основным соотношениям высот с другими параметрами треугольника нужно ознакомиться с теоретическими сведениями об этой фигуре. Треугольник — фигура, состоящая из трех вершин, не лежащих на одной прямой, и отрезков, соединяющих их. Упрощенная форма записи в математике — символ «тильда», т. е. Δ. После последнего идут названия трех вершин, например, ΔPTS. Угол обозначается символом ∠, а после него указывается полная запись (∠РТS) или сокращенная (∠a).
Специалисты рекомендуют не называть вершины русскими буквами, поскольку эта запись не является верной. Треугольники бывают нескольких типов, на основании которых можно применить некоторые свойства, утверждения (теоремы) и формулы.
Типы треугольников
Математики классифицируют треугольные фигуры по определенным правилам или критериям. Они отличаются между собой по сторонам и углам. В первом случае фигуры бывают:
- произвольными;
- равнобедренными;
- равносторонними.
К первым принадлежат все фигуры с различными сторонами, ко вторым — с двумя равными, а к третьим — с тремя. Если классифицировать Δ по углам, то фигуры можно разделить на три типа. К ним принадлежат:
- прямоугольные;
- тупоугольные;
- остроугольные.
В прямоугольном Δ один из углов является прямым, т. е. равным 90 градусам. Тогда, используя свойство суммы его ∠, можно сделать вывод, что при сложении последних получается величина, равная 90°. Если Δ тупоугольный, то один из его ∠ эквивалентен величине, которая больше 90°. В остроугольном Δ все ∠ имеют градусную меру меньше 90°.
Следует отметить, что произвольные и равнобедренные Δ бывают прямоугольными и тупоугольными. Однако равносторонние (правильные) могут быть только остроугольными, поскольку все их углы эквивалентны значению 60°. Это можно определить по формуле: ∠K = ∠L = ∠M = 180 / 3 = 60. Кроме того, только вокруг этого типа фигуры можно описать окружность.
Основные и дополнительные параметры
У каждой фигуры, а треугольник не является исключением, существуют основные и дополнительные параметры. К первым относятся стороны и углы, ко вторым — периметр, площадь, высота, медиана и биссектриса.
Периметр — совокупность или алгебраическая сумма значений длин всех его сторон. Площадью является размерность фигуры, которая рассчитывается по некоторому соотношению. Она может быть только у плоских элементов геометрии, кроме точки, прямой, угла, луча и отрезка.
Следует отметить, что при решении задач в фигуре проводятся дополнительные элементы: высота, биссектриса и медиана. Первой называется отрезок, который проводится из вершины треугольника на противоположную сторону под углом 90 градусов. Высота образует подобный Δ относительного того, где она проведена. Это утверждение следует из равенства двух углов и пропорциональности сторон.
Все высоты в остроугольном треугольнике расположены внутри него. Если Δ является прямоугольным, то высоты, которые проводятся из вершин его острых углов, совпадают с катетами. В тупоугольном Δ высота, проведенная из вершины любого острого ∠, всегда находится вне фигуры.
Следующим вспомогательным отрезком является медиана. Она проводится из вершины, как и высота, но не под прямым углом, а соединяет среднюю точку противоположной стороны, посредством которой и будет делиться на две равные части. Биссектриса делит угол на две равные части. Она проводится из вершины Δ.
В произвольном Δ количество высот, медиан и биссектрис эквивалентно числу его вершин, то есть можно провести по три элемента. Однако бывают исключения из этого правила: если фигура равнобедренная или равносторонняя, то ее высота является медианой и биссектрисой.
Информация об ортоцентре
Теорема об ортоцентре позволяет вывести важные свойства высот треугольника, пересекающихся в одной точке. Ее формулировка следующая: высоты, проведенные в произвольном Δ, пересекаются в одной точке. Для доказательства требуется начертить произвольный ΔKLM. Он не должен содержать прямой или тупой угол. Далее нужно действовать по такому алгоритму:
- Из двух вершин следует провести высоты, которые пересекают противоположную сторону под прямым углом, то есть из вершины L опустить LN на сторону КМ. Аналогичную операцию нужно выполнить для вершины К (KU к LM).
- Высоты пересекутся в некоторой точке — будущем ортоцентре треугольника. Ее следует обозначить W.
- Предположим, что высоты не пересекаются. Следовательно, они параллельны. Это записывается таким образом: LN || KU. Сторона KL является секущей по определению.
- Исходя из третьего пункта, алгебраическая сумма значений углов (∠К/2 и ∠L/2) эквивалентна 180. Из равенства получается, что ∠К + ∠L = 360. Если ∠К и ∠L — внутренние углы ΔKLM, то их сумма не может составлять 360 градусов. Следовательно, предположение ошибочно.
- На основании доказанного в четвертом пункте утверждения можно сделать вывод, что высоты пересекаются в точке W.
- Аналогичным образом доказывается, что высота MV, опущенная из вершины M, проходит через ортоцентр. Для этого нужно повторить 1—5 пункты алгоритма, но вместо KU провести MV.
- Утверждение доказано.
Однако теоремы о высотах недостаточно для решения задач по геометрии. Для этого случая математики вывели полезные свойства и соотношения, облегчающие нахождение неизвестной величины или доказательства нового утверждения.
Полезные свойства и формулы
При решении задач могут потребоваться некоторые свойства ортоцентра, которые были доказаны математиками. К ним относятся следующие:
- Расположение ортоцентра: остроугольный — в центре, прямоугольный — совпадает с образующей прямой угол вершиной, тупоугольный — внешний (находится за пределами треугольника).
- Ортоцентр остроугольного Δ — центр окружности, вписанной в него.
- Алгебраическая сумма квадратов расстояний от вершин до ортоцентра (KW, LW и MW) с учетом квадратов сторон (KL, LM и KM) эквивалентна двенадцати квадратам радиуса окружности R, которая описана вокруг треугольника: KW2 + LW2 + MW2 + KL2 + LM2 + KM2 = 12 * R2.
- Расстояние (К{kl}) от ортоцентра до середины стороны KL: К{kl} = KL / (2 * tg (∠K)). Для других величин (К{lm} и К{mk}): К{lm} = LM / (2 * tg (∠L)) и К{mk} = MK / (2 * tg (∠M)) соответственно.
- Величина расстояний от W до вершин (KW, LW и MW): KW = KL / tg (∠K), LW = LM / tg (∠L) и MW = KM / tg (∠M).
- Площадь S: S = KL2 * sin (∠K) / 2 = LM2 * sin (∠L) / 2 = KM2 * sin (∠M) / 2.
Существует определенный класс задач, в которых требуется найти координаты ортоцентра. В этом случае нужно начертить декартовую систему координат и отметить на ней вершины, а затем соединить их отрезками. Далее необходимо провести высоты и найти ортоцентр треугольника, а затем начертить из искомой точки проекции на координатные прямые.
Таким образом, расположение ортоцентра треугольника зависит от его вида и является важным параметром для построения вписанных и описанных окружностей.
В данной публикации мы рассмотрим определение высоты треугольника, продемонстрируем, как она выглядит в зависимости от вида треугольника, а также перечислим ее основные свойства.
- Определение высоты треугольника
- Высота в разных видах треугольников
-
Свойства высоты треугольника
- Свойство 1
- Свойство 2
-
Свойство 3
- Свойство 4
Определение высоты треугольника
Высота треугольника – это перпендикуляр, который опущен из вершины фигуры на противоположную сторону.
Основание высоты – точка на противоположной стороне треугольника, которую пересекает высота (или точка пересечения их продолжений).
Обычно высота обозначается буквой h (иногда как ha – это означает, что она проведена к стороне a).
Высота в разных видах треугольников
В зависимости от вида фигуры высота может:
Свойства высоты треугольника
Свойство 1
Все три высоты в треугольнике (или их продолжения) пересекаются в одной точке, которая называется ортоцентром (точка O на чертежах ниже).
Свойство 2
При пересечении двух высот в треугольнике, образуются следующие подобные треугольники:
Свойство 3
Точка пересечения высот в остроугольном треугольнике является центром окружности, вписанной в его ортотреугольник.
Ортотреугольник – треугольник, вершинами которого являются основания высот △ABC. В нашем случае – это △DEF.
Свойство 4
Точки, которые симметричны ортоцентру треугольника относительно его сторон, лежат на окружности, описанной вокруг этого треугольника.
- GE = EL
- GD = DM
- GF = FK
Примечание: формулы для нахождения высоты треугольника подробно рассмотрены в нашей публикации – “Как найти высоту в треугольнике abc”.