Ученик
(89),
закрыт
7 лет назад
Андрей Степанов
Просветленный
(22749)
10 лет назад
1. Полагая что сопротивления воздуха нет (т. к. это не указано в задаче) , получаем, что горизонтальная составляющая скорости полета не меняется. Из этих соображений получаем время полета тела:
t = L/V = 50/20 = 2.5 с.
2. В вертикальном направлении на тело действует сила тяжести, придающая телу ускорение g. Т. к. в вертикальном направлении начальная скорость равна 0, то за время t = 2.5 с. тело пролетит расстояние:
H = g*t²/2 = g*6.25/2 = 30,65 м.
3. Скорость падения. Скорость падения состоит из вертикальной составляющей Vy и горизонтальной составляющей Vx. Vx = 20 м/с как мы выяснили в п. 1. Вертикальная составляющая скорости меняется со временем по закону:
Vy(t) = g*t
Подставив в эту формулу ускорение свободного падения g и время полета t = 2.5 c. найдете Vy
Vx и Vy перпендикулярны. Полная скорость равна V = √(Vxˢ + Vyˢ), согласно теореме Пифагора.
4. Угол падения равен углу α между вектором скорости в момент падения и землей. По определению косинуса:
cos(α) = Vx/V
Полную скорость V Вы нашни в п. 3. Подставляете и находите косинус угла падения. Затем используя калькулятор, компьютера, таблицы Брадиса, наконец, логарифмическую линейку, находите величину угла.
Успехов!
- Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
- Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (a = g).
Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.
Движение тела, брошенного горизонтально.
Выразим проекции скорости и координаты через модули векторов.
Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y:
Движение тела, брошенного под углом к горизонту.
Порядок решения задачи аналогичен предыдущей.
Решим задачу для случая х0=0 и y0=0.
Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):
.
Мы получили квадратичную зависимость между координатами. Значит траектория – парабола.
Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.
Время полета:
Зная время полета, найдем максимальное расстояние, которое пролетит тело:
Дальность полета:
Из этой формулы следует, что:
– максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;
– на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя способами – т.н. навесная и настильная баллистические траектории.
Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:
Время подъема:
Тогда:
Максимальная высота:
Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна
Угол, под которым направлен вектор скорости в любой момент времени:
Когда тело бросают вверх под углом к горизонту, оно сначала равнозамедленно поднимается, а затем равноускорено падает. При этом оно перемещается относительно земли с постоянной скоростью.
Важные факты!График движения тела, брошенного под углом к горизонту:
α — угол, под которым было брошено тело
- Вектор скорости тела, брошенного под углом к горизонту, направлен по касательной к траектории его движения.
- Так как начальная скорость направлена не вдоль горизонтальной линии, обе ее проекции отличны от нуля. Проекция начальной скорости на ось ОХ равна v0x = v0cosα. Ее проекция на ось ОУ равна v0y = v0sinα.
- Проекция мгновенной скорости на ось ОХ равна: vx = v0 cosα. Ее проекция на ось ОУ равна нулю: vy = v0 sinα – gt.
- Проекция ускорения свободного падения на ось ОХ равна нулю: gx = 0. Ее проекция на ось ОУ равна –g: gy = –g.
Кинематические характеристики
Модуль мгновенной скорости в момент времени t можно вычислить по теореме Пифагора:
Минимальной скорости тело достигает в верхней точке траектории. Она выражается формулой:
vmin = v0 cosα = vh
Максимальной скоростью тело обладает в момент начала движения и в момент падения на землю. Начальная и конечная скорости движения тела равны:
vmax = vo = v
Время подъема — время, которое требуется телу, чтобы достигнуть верхней точки траектории. В этой точке проекция скорости на ось ОУ равна нулю: vy = 0. Время подъема определяется следующей формулой:
Полное время — это время всего полета тела от момента бросания до момента приземления. Так как время падения равно времени подъема, формула для определения полного времени полета принимает вид:
Дальность полета — перемещение тела относительно ОХ. Обозначается буквой l. Так как относительно ОХ тело движется с постоянной скоростью, для вычисления дальности полета можно использовать формулу перемещения при равномерном прямолинейном движении:
l = sx = v0x tполн = v0 cosα tполн
Подставляя в выражение формулу полного времени полета, получаем:
Горизонтальное смещение тела — смещение тела вдоль оси ОХ. Вычислить горизонтальное смещение тела в любой момент времени t можно по формуле координаты x:
Учитывая, что x0 = 0, и проекция ускорения свободного падения на ось ОХ тоже равна нулю, а проекция начальной скорости на эту ось равна v0 cosα, данная формула принимает вид:
x = v0 cosα t
Мгновенная высота — высота, на которой находится тело в выбранный момент времени t. Она вычисляется по формуле координаты y:
Учитывая, что начальная координата равна 0, проекция начальной скорости на ось ОУ равна v0 sinα, а проекция ускорения свободного падения на эту ось равна –g, эта формула принимает вид:
Наибольшая высота подъема — расстояние от земли до верхней точки траектории. Наибольшая высота подъема обозначается h и вычисляется по формуле:
Пример №1. Небольшой камень бросили с ровной горизонтальной поверхности под углом к горизонту. На какую максимальную высоту поднялся камень, если ровно через 1 с после броска его скорость была направлена горизонтально?
Скорость направляется горизонтально в верхней точке полета. Значит, время подъема равно 1 с. Из формулы времени подъема выразим произведение начальной скорости на синус угла, под которым было брошено тело:
v0 sinα = gtпод
Подставим полученное выражение в формулу для определения наибольшей высоты подъема и сделаем вычисления:
Тело, брошенное под углом к горизонту с некоторой высоты
Когда тело бросают под углом к горизонту с некоторой высоты, характер его движения остается прежним. Но приземлится оно дальше по сравнению со случаем, если бы тело бросали с ровной поверхности.
Важные факты!
График движения тела, брошенного под углом к горизонту с некоторой высоты:
Время падения тела больше времени его подъема: tпад > tпод.
Полное время полета равно:
tполн = tпад + tпод
Уравнение координаты x:
x = v0 cosα t
Уравнение координаты y:
Пример №2. С балкона бросили мяч под углом 60 градусов к горизонту, придав ему начальную скорость 2 м/с. До приземления мяч летел 3 с. Определить дальность полета мяча.
Косинус 60 градусов равен 0,5. Подставляем известные данные в формулу:
x = v0 cosα t = 2 ∙ 0,5 ∙ 3 = 3 м.
Задание EF17562
С высоты Н над землёй начинает свободно падать стальной шарик, который через время t = 0,4 c сталкивается с плитой, наклонённой под углом 30° к горизонту. После абсолютно упругого удара он движется по траектории, верхняя точка которой находится на высоте h = 1,4 м над землёй. Чему равна высота H? Сделайте схематический рисунок, поясняющий решение.
Алгоритм решения
1.Записать исходные данные.
2.Построить на чертеже начальное и конечное положения тела. Выбрать систему координат.
3.Выбрать нулевой уровень для определения потенциальной энергии.
4.Записать закон сохранения энергии.
5.Решить задачу в общем виде.
6.Подставить числовые значения и произвести вычисления.
Решение
Запишем исходные данные:
• Время падения стального шарика: t = 0,4 c.
• Верхняя точка траектории после абсолютно упругого удара о плиту: h = 1,4 м.
• Угол наклона плиты: α = 30о.
Построим чертеж и укажем на нем все необходимое:
Нулевой уровень — точка D.
Закон сохранения энергии:
Ek0 + Ep0 = Ek + Ep
Потенциальная энергия шарика в точке А равна:
EpA = mgH
Кинетическая энергия шарика в точке А равна нулю, так как скорость в начале свободного падения нулевая.
В момент перед упругим ударом с плитой в точке В потенциальная энергия шарика минимальна. Она равна:
EpB=mgl1
Перед ударом кинетическая энергия шарика равна:
EkB=mv22
Согласно закону сохранения энергии:
EpA=EpB+EkB
mgH=mgl1+mv22
Отсюда высота H равна:
H=mgl1mg+mv22mg=l1+v22g
Относительно точки В шарик поднимется на высоту h – l1. Но данный участок движения можно рассматривать как движение тела, брошенного под углом к горизонту. В таком случае высота полета определяется формулой:
h−l1=v2sin2β2g=v2sin2(90−2α)o2g
Отсюда:
l1=h−v2sin2(90−2α)o2g
Шарик падал в течение времени t, поэтому мы можем рассчитать высоту шарика над плитой и его скорость в точке В:
v=gt
Следовательно:
H=l1+v22g=h−(gt)2sin2(90−2α)o2g+(gt)22g
H=h−gt2sin2(90−2α)2+gt22=h−gt22(sin2(90−2α)o−1)
H=1,4−10·0,422(sin2(90−60)o−1)
H=1,4−5·0,16(sin230o−1)
H=1,4−0,8((12)2−1)=1,4−0,8(14−1)
H=1,4+0,6=2 (м)
Ответ: 20
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17980
В момент t=0 мячик бросают с начальной скоростью v0 под углом α к горизонту с балкона высотой h (см. рисунок).
Графики А и Б представляют собой зависимости физических величин, характеризующих движение мячика в процессе полёта, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять. (Сопротивлением воздуха пренебречь. Потенциальная энергия мячика отсчитывается от уровня y=0).
К каждой позиции графика подберите соответствующую позицию утверждения и запишите выбранные цифры в порядке АБ.
Алгоритм решения
- Установить вид механического движения, исходя из условий задачи.
- Записать формулы для физических величин, указанных в таблице, в соответствии с установленным видом механического движения.
- Определить, как зависят эти величины от времени.
- Установить соответствие между графиками и величинами.
Решение
Исходя из условия задачи, мячик движется неравномерно. Этот случай соответствует движению тела, брошенного под углом к горизонту.
Записываем формулы для физических величин из таблицы, учитывая, что речь идет о движении тела, брошенного под углом к горизонту.
Координата x меняется согласно уравнению координаты x:
Так как начальная координата нулевая, а проекция ускорения свободного падения тоже равна нулю, это уравнение принимает вид:
Проекция скорости мячика на ось ОХ равна произведению начальной скорости на время и косинус угла, под которым мячик был брошен. Поэтому уравнение координаты x принимает вид:
В этом уравнении начальная скорость и угол α — постоянные величины. Меняется только время. И оно может только расти. Поэтому и координата x может только расти. В этом случае ей может соответствовать график, представляющий собой прямую линии, не параллельную оси времени. Но графики А и Б не могут описывать изменение этой координаты.
Формула проекции скорости мячика на ось ОХ:
Начальная скорость и угол α — постоянные величины. И больше ни от чего проекция скорости на ось ОХ не зависит. Поэтому ее может охарактеризовать график в виде прямой линии, параллельной оси времени. Такой график у нас есть — это Б.
Кинетическая энергия мячика равна половине произведения массы мячика на квадрат его мгновенной скорости. По мере приближения к верхней точке полета скорость тела уменьшается, а затем растет. Поэтому кинетическая энергия также сначала уменьшается, а затем растет. Но на графике А величина наоборот — сначала увеличивается, потом уменьшается. Поэтому он не может быть графиком зависимости кинетической энергии мячика от времени.
Остается последний вариант — координата y. Уравнение этой координаты имеет вид:
Это квадратическая зависимость, поэтому графиком зависимости координаты y от времени может быть только парабола. Так как мячик сначала движется вверх, а потом — вниз, то и график должен сначала расти, а затем — убывать. График А полностью соответствует этому описанию.
Теперь записываем установленные соответствия в порядке АБ: 42.
Ответ: 42
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18741
Мальчик бросил стальной шарик вверх под углом к горизонту. Пренебрегая сопротивлением воздуха, определите, как меняются по мере приближения к Земле модуль ускорения шарика и горизонтальная составляющая его скорости?
Для каждой величины определите соответствующий характер изменения:
- увеличивается
- уменьшается
- не изменяется
Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.
Алгоритм решения
- Сделать чертеж, иллюстрирующий ситуацию.
- Записать формулы, определяющие указанные в условии задачи величины.
- Определить характер изменения физических величин, опираясь на сделанный чертеж и формулы.
Решение
Выполняем чертеж:
Модуль ускорения шарика |g| — величина постоянная, так как ускорение свободного падения не меняет ни направления, ни модуля. Поэтому модуль ускорения не меняется (выбор «3»).
Горизонтальная составляющая скорости шарика определяется формулой:
vx = v0 cosα
Угол, под которым было брошено тело, поменяться не может. Начальная скорость броска тоже. Больше ни от каких величин горизонтальная составляющая скорости не зависит. Поэтому проекция скорости на ось ОХ тоже не меняется (выбор «3»).
Ответом будет следующая последовательность цифр — 33.
Ответ: 33
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 43k
Движение тела, брошенного под углом к горизонту:
Если рассмотреть движение тела, брошенного под углом относительно горизонта, можно увидеть, что тело отдаляется горизонтально от точки броска и одновременно поднимается в вертикальном направлении. Значит, тело, брошенное под углом к горизонту, участвует в двух (горизонтальном и вертикальном) видах движения. В горизонтальном направлении тело движется равномерно. В вертикальном направлении до точки максимальной высоты тело будет двигаться равнозамедленно, затем вниз будет двигаться равноускоренно (рис. 1.11).
Траектория движения тела, брошенного под углом к горизонту, имеет вид параболы. Учитывая, что в процессе полета тело одновременно двигается в горизонтальном и вертикальном направлениях, разделим начальную скорость
Для упрощения расчетов пренебрежем сопротивлением воздуха. В произвольный момент времени перемещение тела в горизонтальном направлении находим из следующего уравнения:
В произвольный момент времени t скорость тела в горизонтальном и вертикальном направлениях можно найти из следующих уравнений:
На протяжении движения тела, брошенного под углом к горизонту, горизонтальная составляющая скорости не меняется, вертикальная составляющая при подъеме является равнозамедленной и на максимальной высоте подъема равняется нулю. Значит, тело, брошенное под углом к горизонту, имеет минимальную скорость в высшей точке траектории:
Затем из этой точки тело движется как тело, брошенное горизонтально со скоростью .
Из соотношения или на максимальной высоте траектории находим время подъема:
Максимальная высота подъема тела определяется следующим соотношением:
Время движения тела вниз (падение) равно времени подъема, т.е. . Отсюда, общее время полета:
Тело, брошенное под углом к горизонту, в горизонтальном направлении движется равномерно. По этой причине длина полета тела зависит только от горизонтальной составляющей скорости. Для определения дальности полета подставим выражение времени полета в выражение и получим:
или
Из этого выражения видно, что длина полета тела, брошенного под углом к горизонту, зависит от угла броска. На рис. 1.12 приведена зависимость длины полета и высоты подъема от угла броска. Из рисунка видно, что с увеличением угла броска увеличивается высота подъема.
Длина полета тела вначале растет с ростом угла броска и достигает максимального значения при 450. Затем с дальнейшим увеличением угла броска длина полета уменьшается.
Выведем уравнение траектории движения тела, брошенного под углом к горизонту. Для этого в уравнение:
подставляем выражение для времени полета из уравнения (1.29) и получаем уравнение траектории в следующем виде:
Таким образом, тело, брошенное под углом к горизонту, движется по параболе, проходящей через начало координат при . В этом уравнении коэффициент перед отрицательный, значит, ветви параболы направлены вниз.
В реальных условиях сопротивление воздуха сильно влияет на дальность полета. К примеру, снаряд, пущенный со скоростью 100 км/ч, в вакууме пролетает расстояние в 1000 м, а в воздухе 700 м. Из экспериментов следует, что при угле броска 30-400 тело пролетает наибольшее расстояние.
Образец решения задачи:
Мяч брошен со скоростью 10 м/с под углом 30° к горизонту. На какую высоту поднимется мяч?
Дано:
Найти:
Формула:
Решение:
Ответ: 1,27 м.
Основные понятия, правила и законы
Научное наблюдение | Метод научного исследования системный, активный, направленный на цель. |
Гипотеза | Предположение о каком-либо процессе, явлении. |
Опыт (эксперимент) | Проводится для проверки гипотезы в специальных условиях. |
Модель | Упрощенная версия физического процесса, сохраняющая его главные черты. |
Научная идеализация | Предсказание получаемого результата в идеальных условиях по ранее полученным результатам. |
Научная теория | Набор законов, объясняющий широкую область явлений. |
Принцип соответствия | В определенных рамках соответствие новой и старой теорий. |
Криволинейное равномерное движение |
Движение, траектория которого представляет собой кривую линию, величина скорости не меняется, а направление изменяется по касательной к траектории. |
Принцип независимости или суперпозиция движения |
Движения, в которых участвует тело, независимы друг от друга, и скорости (ускорение) их движения не зависят друг от друга. |
Вертикальное движение вверх |
Движение, противоположное силе притяжения Земли. Уравнение движения: . |
Вертикальное движение вниз |
Движение в направлении силы притяжения Земли. Уравнение движения: . |
Переменное вращательное движение |
Вращательное движение, при котором с течением времени меняется угловая скорость. |
Угловое ускорение | Величина, определяемая отношением изменения угловой скорости ко времени этого изменения |
Формула определения угловой скорости в произвольный момент времени при вращательном равнопеременном движении |
|
Тангенциальное ускорение | Ускорение, получаемое в связи с изменением величины скорости . |
Полное ускорение при криволинейном движении |
|
Передача движения фрикционным способом |
Движение, передаваемое с помощью действующих поверхностей двух колес с разными радиусами. |
Ременная передача движения | Движение передается от одного колеса к другому через туго натянутый ремень. |
Передача движения через зубчатые колеса |
Передача вращательного движения путем объединения двух зубчатых колес с разными диаметрами. |
Дальность полета и скорость при падении горизонтально брошенного тела. |
|
Минимальная скорость тела, брошенного под углом к горизонту |
|
Высота подъема тела, брошенного под углом к горизонту |
|
Время полета тела, брошенного под углом к горизонту |
|
Дальность полета тела, брошенного под углом к горизонту |
|
Уравнение траектории движения тела, брошенного горизонтально |
|
Уравнение траектории движения тела, брошенного под углом к горизонту |
- Принцип относительности Галилея
- Движение в гравитационном поле
- Зависимость веса тела от вида движения
- Движение тел под воздействием нескольких сил
- Неравномерное движение по окружности
- Равномерное движение по окружности
- Взаимная передача вращательного и поступательного движения
- Движение горизонтально брошенного тела
Движение тела под углом к горизонту, теория и онлайн калькуляторы
Движение тела под углом к горизонту
Начальные условия
Рассмотрим движение тела (материальной точки) брошенного под углом к горизонту с некоторой высоты $h_0$. Начальная
скорость тела равна ${overline{v}}_0$, вектор ${overline{v}}_0$ составляет угол $alpha $ с горизонтом (рис.1). Систему отсчета, в которой движется тело, свяжем с Землей. Ось X направим параллельно земле, ось Y вертикально вверх.
Движение тела под углом к горизонту происходит в поле тяжести Земли под воздействием силы тяжести. Силой сопротивления воздуха пренебрежём. В этом случае ускорение тела ($overline{a}$) совпадает с ускорением свободного падения ($overline{g}$):
[overline{a}=overline{g}left(1right),]
где $g=9,8 frac{м}{с^2}$.
Запишем начальные условия движения тела (рис.1):
[ left{ begin{array}{c}
xleft(t=0 right)=0, \
yleft(t=0 right)=h, \
v_xleft(t=0 right){=v}_{0x}=v_0{cos alpha , } \
v_yleft(t=0 right){=v}_{0y}=v_0{sin alpha . } end{array}
right.left(2right).]
Уравнение для перемещения тела, брошенного под углом к горизонту. Траектория его движения
Перемещение тела, которое бросили под углом к горизонту является равноускоренным, следовательно, для написания уравнения движения воспользуемся векторным уравнением для перемещения ($overline{s}$) при равнопеременном движении в виде, учтем равенство (1):
[overline{s}(t)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(3right).]
Векторное уравнение (3) в проекции на оси координат X и Y даст нам два скалярных уравнения:
[left{ begin{array}{c}
x(t)=v_0{cos alpha }t \
y(t)=h_0+v_0{sin alpha }t-frac{gt^2}{2} end{array}
right.left(4right).]
Из системы уравнений (4) мы видим, что при рассматриваемом нами движении происходит наложение двух прямолинейных движений.
Причем по оси X тело под углом к горизонту движется с постоянной скоростью ${ v}_{0x}=v_0{cos alpha , }$ а по оси Y материальная точка перемещается с постоянным ускорением $overline{g}$. Уравнение траектории движения тела можно получить, если из первого уравнения системы (4) выразить время ($t$) полученный результат подставить во вторую формулу системы:
[t=frac{x}{v_0{cos alpha }};; ]
[y(x)=h_0 tg alpha -frac{g}{2}{left(frac{x}{v_0{cos б }}right)}^2left(5right).]
Уравнение $y(x)$ (функция (5)) показывает, что тело движется по параболе в плоскости, в которой лежат векторы $overline{g}$ и ${overline{v}}_0.$
Уравнение скорости движения тела брошенного под углом к горизонту
В векторном виде уравнение для скорости движения рассматриваемого нами тела в произвольный момент времени запишем:
[overline{v}(t)={overline{v}}_0+overline{g}tleft(6right).]
В скалярном виде уравнение (6) представим в виде системы уравнений:
[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha }-gt end{array}
right.left(7right).]
В системе уравнений (7) мы еще раз видим, что движение тела под углом к горизонту по оси X равномерное, по оси Y равнопеременное. Причем, двигаясь вверх, тело уменьшает свою скорость от $v_{0y}$ до нуля, затем падая вниз скорость тела увеличивается.
Модуль вектора скорости в производный момент времени для рассматриваемого нами движения найдем как:
[v=sqrt{v^2_x{+v}^2_y left(8right).}]
Время подъема и полета тела
Время, которое тело тратит на полет вверх в рассматриваемом движении можно найти из второго уравнения системы (7). В точке максимального подъема вектор скорости точки параллелен оси X, значит $v_y=0$, тогда время подъема ($t_p$):
[t_p=frac{v_0{sin alpha }}{g}left(9right).]
Время, которое тело находилось в воздухе (время полета($t_{pol}$)) получим из второго уравнения системы (4), приравняв ординату $y$ к нулю:
[t_{pol}=frac{v_0{sin alpha +sqrt{v^2_0{sin}^2alpha +2gh_0} }}{g}left(10right).]
При $h_0=0$ мы видим, что $t_{pol}=2t_p.$
Дальность полета и высота подъема
Для того чтобы найти горизонтальную дальность полета тела ($s$) при заданных нами условиях в уравнение координаты $x$ системы уравнений (4) подставим время полета ($t_{pol}$) (10). При $h_0=0,$ дальность полета равна:
[s=frac{v^2_0{sin left(2alpha right) }}{g}left(11right).]
Максимальную высоту подъема тела под углом к горизонту ($h_{max}$) находят из второго уравнения системы (4), подставляя в него время подъема ($t_p$) (9):
[h_{max}=h_0+frac{{v_0}^2{{sin}^2 б }}{2g}left(12right).]
Примеры задач с решением
Пример 1
Задание. Каким будет угол ($alpha $) под которым бросили тело к горизонту, если оказалось, что максимальная высота подъема ($h$) тела в четыре раза меньше, чем дальность его полета ($s$)? Сопротивление воздуха можно не учитывать.
Решение. Выберем систему отсчета связанную с Землей. Будем считать, что тело бросили из начала координат (рис.2).
Запишем кинематические уравнения движения тела в поле тяжести земли:
[overline{s}(t)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(1.1right).]
[overline{v}(t)={overline{v}}_0+overline{g}tleft(1.2right)]
Исходя из начальных условий, нашей задачи:
[left{ begin{array}{c}
{overline{s}}_0=0 \
v_{0x}=v_0{cos alpha , } \
v_{0y}=v_0{sin alpha } end{array}
right. left(1.3right).]
В проекциях на оси уравнения (1.1) и (1.2)предстанут в виде:
[left{ begin{array}{c}
x(t)=v_0{cos alpha }t \
y(t)=v_0{sin alpha }t-frac{gt^2}{2} end{array}
right.left(1.4right).]
[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha }-gt end{array}
right.left(1.5right).]
Время подъема из второго уравнения системы (1.5) равно:
[t_p=frac{v_0{sin alpha }}{g} left(1.6right).]
Тогда максимальная высота подъема равна:
[h=yleft(t_pright)=frac{v^2_0{sin}^2alpha }{2g}left(1.7right).]
Если тело бросили из начала координат, то $t_{pol}=2t_p,$ дальность полета найдем, подставив время полета в первое уравнение системы (1.4):
[s=xleft(t_{pol}right)=2v^2_0frac{{{cos alpha }sin alpha }}{g} left(1.8right).]
По условию задачи: $h=frac{s}{4}$, используем уравнения (1.7) и (1.8):
[frac{v^2_0{sin}^2alpha }{2g}=v^2_0frac{{{cos alpha }sin alpha }}{2g}to {sin alpha }={cos alpha }to alpha =frac{pi }{4}.]
Ответ. $alpha =frac{pi }{4}$
Пример 2
Задание. Какова скорость падения тела брошенного под углом горизонта $alpha $ со скоростью $v_0$? Если тело бросили с земли. Сопротивление воздуха можно не учитывать.
Решение. За основу решения задачи примем кинематическое уравнение для скорости движения тела в поле тяжести Земли:
[overline{v}left(tright)={overline{v}}_0+overline{g}tleft(2.1right).]
Начальные условия движения нашего тела:
[left{ begin{array}{c}
{overline{s}}_0=0 \
v_{0x}=v_0{cos alpha , } \
v_{0y}=v_0{sin alpha } end{array}
right. left(2.2right).]
В проекциях на оси X и Y уравнение (2.1):
[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha }-gt end{array}
right.left(2.3right).]
Время подъёма тела, принимая во внимание, что $v_yleft(t_pright)=0$ из второго уравнения (2.3) равно:
[t_p=frac{v_0{sin alpha }}{g} left(2.4right).]
Если тело бросили из начала координат, то $t_{pol}=2t_p:$
[t_{pol}=frac{2v_0{sin alpha }}{g}left(2.5right).]
Зная время полета, найдем $v_yleft(t_{pol}right)$, подставив его во второе уравнение (2.3):
[v_yleft(t_{pol}right)=-v_0{sin alpha left(2.6right). }]
Модуль вектора скорости в момент падения найдем как:
[v(t_{pol})=sqrt{v^2_x{+v}^2_y }=v_0.]
Ответ. При заданных условиях величина скорости падения равна модулю скорости бросания.
Читать дальше: динамика прямолинейного движения связанных тел.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!