Как найти угол сектора через длину

Информация по назначению калькулятора

Сектор круга – это часть окружности внутри круга, состоящая из дуги вместе с ее двумя радиусами. Часть окружности (также известная как дуга) и 2 радиуса окружности встречаются в обеих конечных точках дуги, образуя сектор. Форма сектора круга выглядит как кусочек пиццы или пирога. В геометрии круг – одна из самых совершенных фигур. Форма сектора окружности – самая простая форма в геометрии. У него есть свои собственные различные части. Например, диаметр, радиус, окружность, сегмент, сектор.

Круг разделен на два сектора, и разделенные части известны как второстепенные сектора и главные сектора.

Большая часть круга является основным сектором, в то время как меньшая часть является второстепенным сектором.

В случае полукругов окружность делится на два сектора одинакового размера.

2 радиуса встречаются в части окружности круга, известной как дуга, образуя сектор окружности.

Онлайн калькулятор предназначен для нахождения параметров сектора круга, таких как:

  • Площадь сектора
  • – это объем пространства, занимаемого в пределах границы сектора круга. Сектор всегда начинается с центра круга. Полукруг также является сектором круга, в данном случае круг имеет два сектора одинакового размера.
    Можно найти зная радиус и центральный угол в градусах (Ssek = ( α / 360° ) * πr2)

  • Длина дуги
  • – находится путем умножения радиуса на центральный угол сектора в радианах (L = r * α)

  • Радиус
  • Периметр сектора
  • – равен сумме длины дуги и двум радиусам (Psek = L + r + r)

  • Центральный угол сектора в градусах и радианах

Радиус и угол сектора круга

Свойства

Сектор круга является его частью, ограниченной двумя радиусами. Поскольку радиус является неизменным показателем для круга и его сектора, то сам сектор будет зависеть от длины дуги или центрального угла сектора, измеренного в градусах. Зная радиус и угол сектора круга, вычислить площадь сектора круга представляется возможным, разделив площадь самого круга на 360 градусов и умножив на данный угол. S=πr^2 α/〖360〗^° =(r^2 α)/2

Теперь через площадь сектора круга можно найти и длину дуги, разделив удвоенное значение на радиус. После подстановки приведенной для площади формулы сокращается радиус и число π, и остается произведение радиуса на угол сектора круга. p=2S/r=2πr α/〖360〗^° =rα

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента
Площадь круга

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Длина окружности

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

Нахождение длины дуги сектора круга

В данной публикации мы рассмотрим формулы, с помощью которых можно вычислить длину дуги сектора круга, а также разберем примеры решения задач для демонстрации их применения на практике.

Определение дуги сектора круга

Дуга – это участок между двумя точками на окружности.

Дуга сектора круга – это участок между двумя точками на окружности, которые получены в результате пересечения этой окружности двумя радиусами, образовавшими сектор круга.

На рисунке ниже: AB – это дуга зеленого сектора круга с радиусом R (или r).

  • OA = OB = R (r);
  • α – угол сектора или центральный угол.

Формулы для нахождения длины дуги сектора

Через центральный угол в градусах и радиус

Длина (L) дуги сектора равняется числу π , умноженному на радиус круга (r), умноженному на центральный угол в градусах ( α°), деленному на 180°.

Примечание: в расчетах используется число π , приблизительно равное 3,14.

Через угол сектора в радианах и радиус

Длина (L) дуги сектора равна произведению радиуса (r) и центрального угла, выраженного в радианах (aрад).

Примеры задач

Задание 1
Дан круг с радиусом 15 см. Найдите длину дуги сектора, угол которого равен 30°.

Решение
Воспользуемся формулой расчета, в которой используется центральный угол в градусах:

Задание 2
Длина дуги сектора равняется 24 см. Найдите, чему равен его угол (в радианах и градусах), если радиус круга составляет 12 см.

Решение
Для начала вычислим угол в радианах:

1 радиан ≈ 57,2958°

Следовательно, центральный угол приблизительно равняется 114,59 ° (2 рад ⋅ 57,2958°).

[spoiler title=”источники:”]

http://www.resolventa.ru/demo/diaggia6.htm

[/spoiler]

Данный сайт находится в режиме тестирования, обо всех выявленных проблемах Вы можете сообщить на почту

Формулы сектора круга

Для расчёта всех основных параметров сектора круга воспользуйтесь калькулятором.

Формула площади сектора круга через длину дуги

$$
S = {1 over 2} * L * R
$$

Формула площади сектора круга через угол α

$$
S = {pi * R^2 * α° over 360°}
$$

Формула длины дуги

$$
L = {2 * pi * R * α° over 360°}
$$

Формула угола α

$$
α = {S * 360° over pi * R^2}
$$

Этот калькулятор позволит быстро найти центральный угол сектора круга! Для того чтобы им воспользоваться, вначале нужно заполнить любую ячейку первого калькулятора – калькулятора окружности. После этого ввести любое известное значение из следующих: периметр, длина дуги, площадь сектора круга в слот калькулятора сектора окружности и нажать на кнопку расчета.
Также калькулятор рассчитывает величины сегмента, если известно какое-либо одно значение из следующих: угол сегмента, длина дуги, длина хорды или высота сегмента, а также радиус окружности.

Калькулятор окружности:

Достаточно заполнить только одну ячейку — остальное калькулятор посчитает сам.

Периметр или длина окружности (P)

Калькулятор сектора окружности:

Достаточно ввести только одно значение и указать радиус окружности — остальное калькулятор посчитает сам.

Центральный угол сектора в градусах (α)

Площадь сектора окружности (S1)

Калькулятор сегмента окружности:

Достаточно ввести только одно* значение и указать радиус окружности — остальное калькулятор посчитает сам.
Исключения:
* – при известном периметре (P2) нужно дополнительно указать длину дуги (l1) или хорды (c).
* – при известной площади (S2) нужно дополнительно указать длину хорды (c) или высоты (h).

Угол сегмента в градусах (α1)

Площадь сегмента окружности (S2)

Округление:

* – обязательно заполнить

Центральный угол сектора круга можно быстро определить при помощи данного калькулятора. Для начала нужно ввести любое известное значение в калькулятор окружности, будь то радиус, диаметр, площадь или периметр. Затем нужно заполнить любую ячейку калькулятора для нахождения значений сектора окружности и нажать на кнопку “Рассчитать”. Таким образом в результате появится значение не только для центрального угла сектора круга, но и для всех остальных величин.

Калькулятор окружности:

Достаточно заполнить только одну ячейку — остальное калькулятор посчитает сам.

Периметр или длина окружности (P)

Калькулятор сектора окружности:

Достаточно ввести только одно значение и указать радиус окружности — остальное калькулятор посчитает сам.

Центральный угол сектора в градусах (α)

Площадь сектора окружности (S1)

Калькулятор сегмента окружности:

Достаточно ввести только одно* значение и указать радиус окружности — остальное калькулятор посчитает сам.
Исключения:
* – при известном периметре (P2) нужно дополнительно указать длину дуги (l1) или хорды (c).
* – при известной площади (S2) нужно дополнительно указать длину хорды (c) или высоты (h).

Угол сегмента в градусах (α1)

Площадь сегмента окружности (S2)

Округление:

* – обязательно заполнить

Добавить комментарий