Как найти угол траектории падения

Движение тела, брошенного под углом к горизонту:

Если рассмотреть движение тела, брошенного под углом относительно горизонта, можно увидеть, что тело отдаляется горизонтально от точки броска и одновременно поднимается в вертикальном направлении. Значит, тело, брошенное под углом к горизонту, участвует в двух (горизонтальном и вертикальном) видах движения. В горизонтальном направлении тело движется равномерно. В вертикальном направлении до точки максимальной высоты тело будет двигаться равнозамедленно, затем вниз будет двигаться равноускоренно (рис. 1.11).

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Траектория движения тела, брошенного под углом к горизонту, имеет вид параболы. Учитывая, что в процессе полета тело одновременно двигается в горизонтальном и вертикальном направлениях, разделим начальную скорость Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Для упрощения расчетов пренебрежем сопротивлением воздуха. В произвольный момент времени Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами перемещение тела в горизонтальном направлении находим из следующего уравнения:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

В произвольный момент времени t скорость тела в горизонтальном и вертикальном направлениях можно найти из следующих уравнений: 

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

На протяжении движения тела, брошенного под углом к горизонту, горизонтальная составляющая скорости не меняется, вертикальная составляющая при подъеме является равнозамедленной и на максимальной высоте подъема равняется нулю. Значит, тело, брошенное под углом к горизонту, имеет минимальную скорость в высшей точке траектории:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Затем из этой точки тело движется как тело, брошенное горизонтально со скоростью Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами.
Из соотношения Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами или Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами на максимальной высоте траектории находим время подъема:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Максимальная высота подъема тела определяется следующим соотношением:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Время движения тела вниз (падение) равно времени подъема, т.е. Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами. Отсюда, общее время полета:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Тело, брошенное под углом к горизонту, в горизонтальном направлении движется равномерно. По этой причине длина полета тела зависит только от горизонтальной составляющей скорости. Для определения дальности полета подставим выражение Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами времени полета в выражение Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами и получим:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

или

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Из этого выражения видно, что длина полета тела, брошенного под углом к горизонту, зависит от угла броска. На рис. 1.12 приведена зависимость длины полета и высоты подъема от угла броска. Из рисунка видно, что с увеличением угла броска увеличивается высота подъема. 

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Длина полета тела вначале растет с ростом угла броска и достигает максимального значения при 450. Затем с дальнейшим увеличением угла броска длина полета уменьшается.
Выведем уравнение траектории движения тела, брошенного под углом к горизонту. Для этого в уравнение:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

подставляем выражение для времени полета Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами из уравнения (1.29) и получаем уравнение траектории в следующем виде:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Таким образом, тело, брошенное под углом к горизонту, движется по параболе, проходящей через начало координат при Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами. В этом уравнении коэффициент перед Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами отрицательный, значит, ветви параболы направлены вниз.
В реальных условиях сопротивление воздуха сильно влияет на дальность полета. К примеру, снаряд, пущенный со скоростью 100 км/ч, в вакууме пролетает расстояние в 1000 м, а в воздухе 700 м. Из экспериментов следует, что при угле броска 30-400 тело пролетает наибольшее расстояние.
 

Образец решения задачи:

Мяч брошен со скоростью 10 м/с под углом 30° к горизонту. На какую высоту поднимется мяч?
Дано:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Найти:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Формула:

Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами

Решение:
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Ответ: 1,27 м.

Основные понятия, правила и законы

Научное наблюдение Метод научного исследования системный,
активный, направленный на цель.
Гипотеза Предположение о каком-либо процессе,
явлении.
Опыт (эксперимент) Проводится для проверки гипотезы в
специальных условиях.
Модель Упрощенная версия физического процесса,
сохраняющая его главные черты.
Научная идеализация Предсказание получаемого результата в
идеальных условиях по ранее полученным
результатам.
Научная теория Набор законов, объясняющий широкую
область явлений.
Принцип соответствия В определенных рамках соответствие новой
и старой теорий.
Криволинейное равномерное
движение
Движение, траектория которого
представляет собой кривую линию,
величина скорости не меняется, а
направление изменяется по касательной к
траектории.
Принцип независимости или
суперпозиция движения
Движения, в которых участвует тело,
независимы друг от друга, и скорости
(ускорение) их движения не зависят друг от
друга.
Вертикальное движение
вверх
Движение, противоположное силе
притяжения Земли. Уравнение движения: Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами.
Вертикальное движение
вниз
Движение в направлении силы притяжения
Земли. Уравнение движения:Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами .
Переменное вращательное
движение
Вращательное движение, при котором
с течением времени меняется угловая
скорость.
Угловое ускорение Величина, определяемая отношением
изменения угловой скорости ко времени
этого изменения Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Формула определения
угловой скорости в
произвольный момент
времени при вращательном
равнопеременном движении
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Тангенциальное ускорение Ускорение, получаемое в связи с
изменением величины скорости Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами.
Полное ускорение при
криволинейном движении
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Передача движения
фрикционным способом
Движение, передаваемое с помощью
действующих поверхностей двух колес с
разными радиусами.
Ременная передача движения Движение передается от одного колеса к
другому через туго натянутый ремень.
Передача движения через
зубчатые колеса
Передача вращательного движения путем
объединения двух зубчатых колес с
разными диаметрами.
Дальность полета и скорость
при падении горизонтально
брошенного тела.
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Минимальная скорость тела,
брошенного под углом к
горизонту
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Высота подъема тела,
брошенного под углом к
горизонту
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Время полета тела,
брошенного под углом к
горизонту
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Дальность полета тела,
брошенного под углом к
горизонту
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Уравнение траектории
движения тела, брошенного
горизонтально
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
Уравнение траектории
движения тела, брошенного
под углом к горизонту
Движение тела, брошенного под углом к горизонту в физике - формулы и определение с примерами
  • Принцип относительности Галилея
  • Движение в гравитационном поле
  • Зависимость веса тела от вида движения
  • Движение тел под воздействием нескольких сил
  • Неравномерное движение по окружности
  • Равномерное движение по окружности
  • Взаимная передача вращательного и поступательного движения
  • Движение горизонтально брошенного тела
Движение тела, брошенного горизонтально или под углом к горизонту.
  1. Это движение в плоскости, поэтому для описания движения необходимо 2 координаты.
  2. Считаем, что движение происходит вблизи поверхности Земли, поэтому ускорение тела – ускорение свободного падения (= g).
 

Так как мы пренебрегаем сопротивлением воздуха, то ускорение направлено только к поверхности Земли (g) – вдоль вертикальной оси (y), вдоль оси х движение равномерное и прямолинейное.

 

Движение тела, брошенного горизонтально.

Выразим проекции скорости и координаты через модули векторов.


Для того чтобы получить уравнение траектории, выразим время tиз уравнения координаты x и подставим в уравнение для y

   – между координатами квадратичная зависимость, траектория – парабола!

Движение тела, брошенного под углом к горизонту.

Порядок решения задачи аналогичен предыдущей.

Решим задачу для случая х0=0 и y0=0

Движение тела, брошенного под углом к горизонту.

Докажем, что траекторией движения и в этом случае будет парабола. Для этого выразим координату Y через X (получим уравнение траектории):

.

Мы получили квадратичную зависимость между координатами. Значит траектория – парабола.

 

Найдем время полета тела от начальной точки до точки падения. В точке падения координата по вертикальной оси у=0.

Время полета:

Следовательно, для решения этой задачи необходимо решить уравнение 

Оно будет иметь решение при t=0 (начало движения) и 

Зная время полета, найдем максимальное расстояние, которое пролетит тело:

Дальность полета:

Из этой формулы следует, что:

– максимальная дальность полета будет наблюдаться при бросании тела (при стрельбе, например) под углом 450;

– на одно и то же расстояние можно бросить тело (с одинаковой начальной скоростью) двумя способами – т.н. навесная и настильная баллистические траектории.

Используя то, что парабола – это симметричная кривая, найдем максимальную высоту, которой может достичь тело.
Время, за которое тело долетит до середины, равно:

Время подъема:

Тогда: 

Максимальная высота:

Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе) и равна Скорость тела в любой момент времени направлена по касательной к траектории движения (параболе)

 

Угол, под которым направлен вектор скорости в любой момент времени:

Угол, под которым направлен вектор скорости в любой момент времени

 

Что такое движение тела брошенного под углом к горизонту

Определение

Движением тела под углом к горизонту в физике называют сложное криволинейное перемещение, которое состоит из двух независимых движений, включая равномерное прямолинейное движение в горизонтальном направлении и свободное падение по вертикали.

В процессе подбрасывания объекта вверх под углом к горизонту вначале наблюдают его равнозамедленный подъем, а затем равноускоренное падение. Скорость перемещения тела, относительно поверхности земли, остается постоянной.

Направление

 

На графике изображено схематичное движение тела, которое подбросили под углом к горизонту. В этом случае α является углом, под которым объект начал свое перемещение. Характеристики такого процесса будут следующими:

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

  1. Направление вектора скорости тела, которое подбросили под определенным углом к горизонту, будет совпадать с касательной к траектории его перемещения.
  2. Начальная скорость отличается от направления горизонтальной линии, а обе ее проекции не равны нулю.
  3. Проекция скорости в начале движения на ось ОХ составляет (V_{ox}=V_{0}cos alpha).
  4. Проекция начальной скорости на ось ОУ равна (V_{oy}=V_{0}sin alpha).
  5. Проекция мгновенной скорости на ось ОХ следующая: (V_{x}=V_{0}cos alpha).
  6. Проекция мгновенной скорости на ось ОУ обладает нулевым значением и рассчитывается следующим образом: (V_{x}=V_{0}sin alpha-gt).
  7. Ускорение свободного падения на ось ОХ обладает нулевой проекцией, или (g_{x}=0).
  8. Проекция ускорения свободного падения на ось ОУ равна (–g), или (g_{y}=-g).

К числу кинематических характеристик движения тела, которое подбросили под углом к горизонту, относят модуль мгновенной скорости в определенное время t. Данный показатель можно рассчитать с помощью теоремы Пифагора:

(V=sqrt{V^{2}_{x}+V^{2}_{y}})

Минимальная скорость тела будет замечена в самой верхней точке траектории, а максимальная величина данной характеристики будет достигнута, когда объект только начинает перемещаться, а также в точке падения на поверхность земли. Время подъема представляет собой время, необходимое для достижения телом верхней точки траектории. За полное время объект совершает полет, то есть перемещается от начальной точки к точке приземления.

Дальность полета является перемещением объекта по отношению к оси ОХ. Такую кинематическую характеристику обозначают буквой l. По отношению к оси ОХ тело перемещается, сохраняя постоянство скорости.

Определение

Горизонтальным смещением тела называют смещение данного объекта, относительно оси ОХ.

Расчет горизонтального смещения тела в какой-либо момент времени t выполняют с помощью уравнения координаты х:

(x=x_{0}+V_{0x}t+frac{gxt^{2}}{2})

Зная следующие условия:

  • (x_{0}=0);
  • проекция ускорения свободного падения, относительно оси ОХ, также имеет нулевое значение;
  • проекция начальной скорости на ось ОХ составляет (V_{0}cos alpha).

Записанная формула приобретает следующий вид:

(x=V_{0}cos alpha t)

Мгновенной высотой принято считать высоту, на которой находится объект в определенный момент времени t. Наибольшей высотой подъема является расстояние от поверхности земли до верхней точки траектории движения тела под углом к горизонту.

Вывод формулы, как найти угол и дальность полета

Перемещение объекта, который был брошен под углом к горизонту, необходимо изобразить с помощью суперпозиций, характерных для двух типов движений:

  • равномерное горизонтальное движение;
  • равноускоренное перемещение в вертикальном направлении с ускорением свободного падения.

Движение тела

 

Скорость тела будет рассчитываться таким образом:

(v_{0x}=v_{x}=v_{0} cos alpha =const)

(v_{0y}=v_{0}sin alpha)

(v_{y}=v_{0}sin alpha-gt)

Уравнение координаты записывают в следующем виде:

(x=v_{0}cos alpha times t)

(y=v_{0}sin alpha times t-frac{gt^{2}}{2})

В любое время значения скорости тела будут равны:

(v=sqrt{v_{x}^{2}+v_{y}^{2}})

Определить угол между вектором скорости и осью ОХ можно таким образом:

(tan beta =frac{v_{y}}{v_{x}}=frac{v_{0}sin alpha -gt}{v_{0}cos alpha })

Время подъема на максимальную высоту составляет:

(t=frac{v_{0}sin alpha }{g})

Максимальная высота подъема будет рассчитана следующим образом:

(h_{max}=frac{v_{0}^{2}sin ^{2}alpha}{2g})

Полет тела будет длиться определенное время, которое можно рассчитать с помощью формулы:

(t=frac{2v_{0}sin alpha }{g})

Максимальная дальность полета составит:

(L_{max}=frac{v_{0}^{2}sin 2alpha }{g})

Примеры решения задач

В примерах, описывающих движение тела, на которое действует сила тяжести, следует учитывать, что а=g=9,8 м/с2.

Задача 1

Небольшой камень был брошен с ровной горизонтальной поверхности под углом к горизонту. Необходимо определить, какова максимальная высота подъема камня при условии, что, спустя 1 секунду после его начала движения, скорость тела обладала горизонтальным направлением.

Решение

Направление скорости будет горизонтальным в верхней точке перемещения камня. Таким образом, время, за которое он поднимется, составляет 1 секунду. С помощью уравнения времени подъема можно представить формулу произведения скорости в начале полета на синус угла, под которым бросили камень:

(V_{0}sin alpha =gt)

Данное равенство следует подставить в уравнение для расчета максимальной высоты, на которую поднимется камень, и выполнить вычисления:

(h=frac{V_{0}sin ^{2}alpha }{2g}=frac{(gt)^{2}}{2g}=frac{gt^{2}}{2}=frac{10times 1}{2}=5)

Ответ: максимальная высота подъема камня, который бросили под углом к горизонту, составляет 5 метров.

Задача 2

Из орудия выпустили снаряд, начальная скорость которого составляет 490 м/с, под углом 30 градусов к горизонту. Нужно рассчитать, какова высота, дальность и время полета снаряда без учета его вращения и сопротивления воздуха.

Решение

Систему координат и движение тела можно представить схематично:

Задача

 

Составляющие скорости, относительно осей ОХ и ОУ, будут совпадать во время начала движения снаряда:

(V_{0x}=V_{0} cos alpha) сохраняет стабильность значения в любой промежуток времени во время всего перемещения тела.

(V_{0y}=V_{0}sin alpha) будет меняться, согласно формуле равнопеременного движения (V_{y}=V_{0}sin alpha-gt).

В максимальной точке, на которую поднимется снаряд:

(V_{y}=V_{0}sin alpha-gt_{1}=0)

Из этого равенства следует:

(t=frac{V_{0sin alpha }}{g})

Полное время полета тела будет рассчитано по формуле:

(t=2t_{1}=frac{2V_{0}sin alpha }{g}=50)

Высота, на которую поднимется снаряд, определяется с помощью уравнения равнозамедленного перемещения тела:

(h=V_{0y}t_{1}-frac{gt_{1}^{2}}{2}=frac{V_{0}^{2}sin ^{2}alpha }{2g}=3060)

Дальность полета снаряда будет рассчитана таким образом:

(S=V_{0x}t=frac{V_{0}^{2}sin 2alpha }{g}=21000)

Ответ: высота составляет 3060 метров, дальность полета равна 21000 метров, время движения составит 50 секунд.

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря – падение в пустоте. Конечно, отсутствие сопротивления воздуха – это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения – ускорение, с которым все тела падают на Землю. 

Ускорение свободного падения приблизительно равно 9,81 мс2 и обозначается буквой g. Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 мс2.

Земля – не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения – на полюсах (≈9,83 мс2), а самое малое – на экваторе (≈9,78 мс2).

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его. 

Свободное падение – прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h=v0+gt22.

Так как начальна скорость равна нулю, перепишем:

h=gt22.

Отсюда находится выражение для времени падения тела с высоты h:

t=2hg.

Принимая во внимание, что v=gt, найдем скорость тела в момент падения, то есть максимальную скорость:

v=2hg·g=2hg.

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

v=v0-gt.

Подставив v=0, найдем время подъема тела на максимальную высоту:

t=v0g.

Время падения совпадает со временем подъема, и тело вернется на Землю через t=2v0g.

 Максимальная высота подъема тела, брошенного вертикально:

h=v022g.

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a=-g. Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10мс2.

Движение тела, брошенного вертикально вверх

Первый график – это падение тела с некоторой высоты без начальной скорости. Время падения tп=1с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h=5м.

Второй график – движение тела, брошенного вертикально вверх с начальной скоростью v0=10 мс. Максимальная высота подъема h=5м. Время подъема и время падения tп=1с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси OY тело движется равноускоренно с ускорением g, начальная скорость этого движения – v0y. Движение вдоль оси OX – равномерное и прямолинейное, с начальной скоростью v0x.

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси ОХ:

x0=0; v0x=v0cosα; ax=0.

Условия для движения вдоль оси OY:

y0=0; v0y=v0sinα; ay=-g.

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t=2v0sinαg.

Дальность полета тела:

L=v02sin2αg.

Максимальная дальность полета достигается при угле α=45°.

Lmax=v02g.

Максимальная высота подъема:

h=v02sin2α2g.

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука – баллистика.

Частным случаем равноускоренного движения является свободное
падение тел. Жизненный опыт нам подсказывает, что любое тело, если его ничего не
поддерживает, падает на поверхность Земли, постоянно увеличивая свою скорость.
При этом мы видим, что лёгкие предметы падают гораздо медленнее, чем тяжёлые.
Так и хочется сказать, что время падения зависит от массы тела — чем она
больше, тем быстрее падает тело.

Такие мысли посещали не одно поколение учёных, в том числе и
древнегреческого учёного Аристотеля, который первым указал на эту зависимость
падения тел. При этом взгляды Аристотеля казались настолько очевидными, что в
течение почти 18 веков никто не подвергал их сомнению.

Лишь в конце XVI века Галилео Галилей усомнился в этом. Согласно легенде, в
1589 году на глазах многочисленной публики он одновременно сбросил с вершины
Пизанской башни два пушечных ядра различной массы. Каково же было удивление
зевак, когда два ядра полетели вместе и вместе достигли земли.

«Глухой удар падающих ядер о землю прозвучал как похоронный
звон над старой системой физики и возвестил о зарождении новой», — позже
написал британский учёный Оливер Лодж.

Различную скорость падения других тел Галилей объяснял
наличием сопротивления воздуха. Тогда предположив, что произошло бы в случае
свободного падения тел в вакууме, великий итальянец вывел следующие законы
падения тел для идеального случая:

Все тела при падении движутся одинаково: начав падать
одновременно, они движутся с одинаковой скоростью.

Движение происходит с постоянным ускорением.

Для доказательства правоты Галилея Исаак Ньютон провёл очень
простой и убедительный опыт. Он взял стеклянную трубку, в которую поместил
дробинку, кусочек пробки, пушинку и так далее. Затем он перевернул трубку и
наблюдал, как сначала упала дробинка, затем пробка и только потом — пушинка. Но
вот когда он откачал из трубки почти весь воздух и повторил эксперимент, то
увидел, как все три предмета упали на дно трубки одновременно.

Одновременное падение тел в разреженном воздухе доказывает,
что все тела падают с одинаковым ускорением. Падение тел под действием
только гравитационного поля Земли называется свободным падением
. Поскольку
сила тяжести, действующая на тело вблизи поверхности Земли в данной её точке,
постоянна, то свободно падающее тело движется с постоянным ускорением,
называемым ускорением свободного падения. Причём для всех тел в одном и
том же месте оно одинаково и направлено по вертикали вниз.

Обратим внимание на то, что свободное падение — это не
обязательно только движение вниз. Так, если мы подбросим камень, то он при
своём свободном падении некоторое время будет двигаться вверх, уменьшая свою
скорость до нуля, и лишь потом начнёт падать.

При изучении свободного падения тел мы будем рассматривать
только такие движения, в которых сопротивлением воздуха можно пренебречь. Тогда
эти движения будут описываться уже известными нам кинематическими уравнениями:

Теперь давайте изучим движение тела, начальная скорость
которого направлена под некоторым углом к горизонту (или под углом к ускорению
свободного падения). С таким видом движения приходится встречаться довольно
часто. Например, так движется теннисный мячик после удара по нему ракеткой.
Полет пуль и снарядов также представляет собой пример движения тел, брошенных
под углом к горизонту.

Итак, найдём траекторию тела, брошенного под углом к
горизонту с некоторой начальной скоростью.

Для описания движения выберем две взаимно перпендикулярные
оси координат таким образом, чтобы векторы начальной скорости и ускорения
свободного падения лежали в одной плоскости. Начала отсчёта совместим с
начальным положением тела.

Теперь запишем кинематические уравнения равноускоренного
движения (а движение у нас действительно равноускоренное, потому что модуль и
направление ускорения с течением времени не изменяются):

Так как начало координат совмещено с точкой бросания, то
начальные координаты тела равны нулю:

В выбранной системе координат проекция вектора ускорения на
ось Х равна нулю, а на ось Y — –g.

Из полученного рисунка видно, что проекцию вектора начальной
скорости можно выразить через её модуль и косинус или синус угла, который этот
вектор образует с положительным направлением оси:

Перепишем кинематические уравнения движения с учётом
начальных условий:

Из этих формул следует, что в горизонтальном направлении
тело, брошенное под углом к горизонту, движется равномерно, а в вертикальном — равноускоренно.

В этом легко убедиться. Так, если посмотреть на такое
движение тела сверху, то мы увидим, как оно движется вдоль прямой с постоянной
скоростью. А если посмотреть на это движение сбоку, то мы сначала увидим, как
шарик замедленно поднимается вверх, а потом ускоренно падает вниз.

Для построения траектории движения найдём её уравнение (то
есть найдём зависимость у = у(х). Чтобы получить это
уравнение нам с вами необходимо исключить время из уравнений движения. Для
этого выразим из уравнения движения тела вдоль оси Х время:

И подставим его во второе уравнение:

Обратите внимание на то, что

После замены мы приходим к простой квадратичной функции,
известной нам ещё из курса алгебры. Напомним, что её графиком является
парабола. Причём ветви параболы будут направлены вниз, так как значение коэффициента
b меньше нуля.

Таким образом мы с вами показали, что тело, брошенное под
углом к горизонту, действительно движется по параболе (конечно при условии, что
ускорение свободного падения постоянно).

Теперь давайте определим время полёта. Для этого воспользуемся
уравнением движения тела вдоль оси OY. При этом учтём, что в момент падения тела на землю его
координата становится равной нулю:

Решая простое квадратное уравнение, найдём формулу, по
которой можно рассчитать время полёта тела:

Второй корень уравнения, равный нулю, соответствует моменту
броска.

Теперь легко определить дальность полёта. Для этого
подставляем найденное значение времени в уравнение движения тела вдоль оси Икс:

Полученное выражение можно упростить, если вспомнить о том,
что удвоенное произведение синуса на косинус — это синус двойного угла:

Также мы можем найти максимальную высоту подъёма и время
подъёма тела на эту высоту. Для этого воспользуемся уравнением скорости для
равноускоренного движения в проекциях на ось Y:

Теперь учтём, что в верхней точке траектории проекция
скорости на ось игрек равна нулю:

Решая простое линейное уравнение, найдём время подъёма тела
на максимальную высоту:

 Нетрудно заметить, что это время в два раза меньше
времени всего полёта. Таким образом, получается, что сколько времени тело
поднимается на максимальную высоту, столько же времени оно и опускается с неё.

Подставив полученное выражение для времени в уравнение
движения вдоль оси игрек, найдём максимальную высоту подъёма тела:

Теперь давайте рассмотрим движение тела, брошенного
горизонтально с некоторой высоты, и выясним, какой будет траектория этого тела.
Для этого опять воспользуемся уравнениями движения, записанными в координатной
форме:

Для описания движения тела выберем две взаимно
перпендикулярные о́си координат таким образом,
чтобы векторы начальной скорости и ускорения свободного падения лежали в одной
плоскости. При этом пусть положительное направление оси Y совпадает с направлением вектора
ускорения свободного падения. Начало отсчёта совместим с начальным положением
тела.

При таком выборе системы координат,
начальные координаты тела равны нулю. Также равны нулю проекция начальной
скорости на ось Y
и проекция ускорения на ось X.
Тогда:

Перепишем уравнения движения с учётом начальных условий:

Их анализ показывает, что в горизонтальном направлении тело
движется равномерно, а в вертикальном — равноускоренно
с ускорением свободного падения.

Когда скорость тела направлена горизонтально, оно движется по
ветви параболы, вершина которой находится в точке бросания.

Предлагаем вам самостоятельно определить время и максимальную
дальность полёта тела.

Таким образом, на основании рассмотренных нами примеров можно
сделать вывод о том, что любое сложное движение можно представить, как сумму
движений по двум независимым координатам.
В этом состоит суть закона
независимости движений.

Добавить комментарий