Как найти угол треугольника зная два угла


Загрузить PDF


Загрузить PDF

Найти третий угол треугольника, если вам известны значения двух других углов, очень легко. Все, что вам нужно сделать,- это вычесть сумму двух известных углов из 180°. Тем не менее, есть несколько других способов нахождения третьего угла треугольника (в зависимости от заданной вам задачи).

  1. Изображение с названием Find the Third Angle of a Triangle Step 1

    1

    Сложите известные значения двух углов. Запомните: сумма углов в треугольнике всегда равна 180°. Поэтому, если вы знаете два из трех углов треугольника, то вы легко вычислите третий угол. Первое, что нужно сделать,- это сложить известные значения двух углов. Например, даны углы 80° и 65°. Сложите их: 80° + 65° = 145°.

  2. Изображение с названием Find the Third Angle of a Triangle Step 2

    2

    Вычтите сумму из 180°. Сумма углов в треугольнике равна 180°. Поэтому третий угол равен: 180° – 145° = 35°.

  3. Изображение с названием Find the Third Angle of a Triangle Step 3

    3

    Запишите ответ. Теперь вы знаете, что третий угол равен 35°. Если вы сомневаетесь, просто проверьте ответ. Сумма трех углов должна быть равна 180°: 80° + 65° + 35° = 180°.

    Реклама

  1. Изображение с названием Find the Third Angle of a Triangle Step 4

    1

    Запишите задачу. Иногда вместо точных значений двух углов треугольника в задаче даны только несколько переменных, или переменные и значение угла. Например: найдите угол «х», если два других угла треугольника равны 2x и 24°.

  2. Изображение с названием Find the Third Angle of a Triangle Step 5

    2

    Сложите все значения (переменные и числа). х + 2x + 24° = 3x + 24

  3. Изображение с названием Find the Third Angle of a Triangle Step 6

    3

    Вычтите сумму из 180°. Приравняйте полученное уравнение к 0. Вот как это делается:

    • 180° – (3x + 24°) = 0
    • 180° – 3x – 24° = 0
    • 156° – 3x = 0
  4. Изображение с названием Find the Third Angle of a Triangle Step 7

    4

    Найдите х. Для этого обособьте члены с переменной на одной стороне уравнения, а числа – на другой: 156° = 3x. Теперь разделите обе части уравнения на 3, чтобы получить х = 52°. Это означает, что третий угол треугольника равен 52°. Другой угол, данный в условии как 2x, равен: 2*52° = 104°.

  5. Изображение с названием Find the Third Angle of a Triangle Step 8

    5

    Проверьте ответ. Для этого сложите числовые значения всех трех углов (сумма должна быть равна 180°): 52° + 104° + 24° = 180°.

    Реклама

  1. Изображение с названием Find the Third Angle of a Triangle Step 9

    1

    Найдите третий угол равнобедренного треугольника. Равнобедренные треугольники имеют две равные стороны и два равных угла, прилежащих к этим сторонам. Если вы знаете один из равных углов в равнобедренном треугольнике, то вы можете найти угол между равными сторонами. Вот как это сделать:

    • Если один из равных углов 40°, то и другой равный угол 40°. Вы можете найти третий угол, вычтя сумму 40° + 40° = 80° из 180°: 180° – 80° = 100°.
  2. Изображение с названием Find the Third Angle of a Triangle Step 10

    2

    Найдите третий угол равностороннего треугольника. В равностороннем треугольнике все стороны равны и все углы равны. Это означает, что любой угол в равностороннем треугольнике равен 60°. Проверьте это: 60° + 60° + 60° = 180°.

  3. Изображение с названием Find the Third Angle of a Triangle Step 11

    3

    Найдите третий угол прямоугольного треугольника. Например, дан прямоугольный треугольник, в котором один из углов равен 30°. Если это прямоугольный треугольник, то один из его углов равен 90°. Все, что вам нужно сделать, это сложить известные углы (30° + 90° = 120°) и вычесть эту сумму из 180°, то есть 180° – 120° = 60°. Третий угол равен 60°.

    Реклама

Предупреждения

  • Ошибка при сложении или вычитании приведет к неправильному ответу. Поэтому обязательно проверяйте ответ, даже когда вы уверены, что он правильный.

Реклама

Об этой статье

Эту страницу просматривали 82 823 раза.

Была ли эта статья полезной?

Эль А



Гуру

(4568),
закрыт



11 лет назад

Как найти 3ий угол треугольника, зная его 2 других угла? Если есть какая-то формула, подскажите, пожалуйста! Заранее спасибо!

Лучший ответ

Елена Хусаинова

Мудрец

(14191)


11 лет назад

сумма всех трех углов=180 градусов
угол3=180-угол1-угол2

Остальные ответы

Наталия Байдакова

Знаток

(400)


11 лет назад

сумма углов треугольника – 180
простым вычитанием и находится=)

Nebelyng

Мыслитель

(7613)


11 лет назад

Сумма углов 180 градусов, вычти два известных

злато-серебро

Оракул

(87902)


11 лет назад

Полезно запомнить теорему:

Сумма углов n-угольника равна 180°(n-2), где n – количество сторон.

В треугольнике сторон три. 180° (3-2)=180°

В четырехугольнике сторон четыре. 180°(4-2)=360. И так далее.. .

Исторический термин «решение треугольников» (лат. solutio triangulorum) обозначает решение следующей тригонометрической задачи: найти остальные стороны и/или углы треугольника по уже известным[1]. Существуют также обобщения этой задачи на случай, когда заданы другие элементы треугольника (например, медианы, биссектрисы, высоты, площадь и т. д.), а также на случай, когда треугольник располагается не на евклидовой плоскости, а на сфере (сферический треугольник), на гиперболической плоскости (гиперболический треугольник) и т. п. Данная задача часто встречается в тригонометрических приложениях — например, в геодезии, астрономии, строительстве, навигации.

Решение плоских треугольников[править | править код]

Стандартные обозначения в треугольнике

У треугольника[2] общего вида имеется 6 основных элементов: 3 линейные (длины сторон a,b,c) и 3 угловые (alpha ,beta ,gamma ). Сторону, противолежащую углу при вершине, традиционно обозначают той же буквой, что и эта вершина, но не заглавной, а строчной (см. рисунок). В классической задаче плоской тригонометрии заданы 3 из этих 6 характеристик, и нужно определить 3 остальные. Очевидно, если известны только 2 или 3 угла, однозначного решения не получится, так как любой треугольник, подобный данному, тоже будет решением, поэтому далее предполагается, что хотя бы одна из известных величин — линейная[3].

Алгоритм решения задачи зависит от того, какие именно характеристики треугольника считаются известными. Поскольку вариант «заданы три угла» исключён из рассмотрения, остаются 5 различных вариантов[4]:

  • три стороны;
  • две стороны и угол между ними;
  • две стороны и угол напротив одной из них;
  • сторона и два прилежащих угла;
  • сторона, противолежащий угол и один из прилежащих.

Основные теоремы[править | править код]

Стандартным методом решения задачи является использование нескольких фундаментальных соотношений, выполняющихся для всех плоских треугольников[5]:

Теорема косинусов
{displaystyle a^{2}=b^{2}+c^{2}-2bccdot cos alpha }
{displaystyle b^{2}=a^{2}+c^{2}-2accdot cos beta }
{displaystyle c^{2}=a^{2}+b^{2}-2abcdot cos gamma }
Теорема синусов
{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}
Сумма углов треугольника
alpha +beta +gamma =180^{circ }

Из других иногда полезных на практике универсальных соотношений следует упомянуть теорему тангенсов, теорему котангенсов, теорему о проекциях и формулы Мольвейде.

Замечания[править | править код]

  1. Для нахождения неизвестного угла надёжнее использовать теорему косинусов, а не синусов, потому что значение синуса угла при вершине треугольника не определяет однозначно самого угла, поскольку смежные углы имеют один и тот же синус[6]. Например, если sin beta =0{,}5, то угол beta может быть как 30^{circ }, так и 150^{circ }, потому что синусы этих углов совпадают. Исключением является случай, когда заранее известно, что в данном треугольнике тупых углов быть не может — например, если треугольник прямоугольный. С косинусом такие проблемы не возникают: в интервале от 0^{circ } до 180^{circ } значение косинуса определяет угол однозначно.
  2. При построении треугольников важно помнить, что зеркальное отражение построенного треугольника тоже будет решением задачи. Например, три стороны однозначно определяют треугольник с точностью до отражения.
  3. Все треугольники подразумеваются невырожденными, то есть длина стороны не может быть нулевой, а величина угла — положительное число, меньшее, чем 180^{circ }.

Три стороны[править | править код]

Пусть заданы длины всех трёх сторон a,b,c. Условие разрешимости задачи — выполнение неравенства треугольника, то есть каждая длина должна быть меньше, чем сумма двух других длин:

{displaystyle a<b+c,quad b<a+c,quad c<a+b.}

Чтобы найти углы alpha ,beta , надо воспользоваться теоремой косинусов[7]:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}},quad beta =arccos {frac {a^{2}+c^{2}-b^{2}}{2ac}}.}

Третий угол сразу находится из правила, что сумма всех трёх углов должна быть равна {displaystyle 180^{circ }colon }

{displaystyle gamma =180^{circ }-(alpha +beta ).}

Не рекомендуется второй угол находить по теореме синусов, потому что, как указано в замечании 1, существует опасность спутать тупой угол с острым. Этой опасности не возникнет, если первым определить, по теореме косинусов, наибольший угол (он лежит против наибольшей из сторон) — два других угла точно являются острыми, и применение к ним теоремы синусов безопасно.

Ещё один метод вычисления углов по известным сторонам — использование теоремы котангенсов.

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть для определённости известны длины сторон a,b и угол gamma между ними. Этот вариант задачи всегда имеет единственное решение. Для определения длины стороны c применяется теорема косинусов[8]:

{displaystyle c={sqrt {a^{2}+b^{2}-2abcos gamma }}.}

Фактически задача сведена к предыдущему случаю. Далее ещё раз применяется теорема косинусов для нахождения второго угла:

{displaystyle alpha =arccos {frac {b^{2}+c^{2}-a^{2}}{2bc}}=arccos {frac {b-acos gamma }{sqrt {a^{2}+b^{2}-2abcos gamma }}}.}

Третий угол находится из теоремы о сумме углов треугольника: beta =180^{circ }-alpha -gamma .

Заданы две стороны и угол не между ними

Две стороны и угол напротив одной из них[править | править код]

В этом случае решений может быть два, одно или ни одного. Пусть известны две стороны b,c и угол beta . Тогда уравнение для угла gamma находится из теоремы синусов[9]:

{displaystyle sin gamma ={frac {c}{b}}sin beta .}

Для краткости обозначим {displaystyle D={frac {c}{b}}sin beta } (правая часть уравнения). Это число всегда положительно. При решении уравнения возможны 4 случая, во многом зависящие от D[10][11].

  1. Задача не имеет решения (сторона b «не достаёт» до линии BC) в двух случаях: если D>1 или если угол beta geqslant 90^{circ } и при этом bleqslant c.
  2. Если {displaystyle D=1,} существует единственное решение, причём треугольник прямоугольный: {displaystyle gamma =arcsin D=90^{circ }.}

  1. Если {displaystyle D<1,} то возможны 2 варианта.
    1. Если b<c, то угол gamma имеет два возможных значения: острый угол {displaystyle gamma =arcsin D} и тупой угол {displaystyle gamma '=180^{circ }-gamma }. На рисунке справа первому значению соответствуют точка C, сторона b и угол gamma , а второму значению — точка C', сторона {displaystyle b'=b} и угол gamma '.
    2. Если bgeqslant c, то beta geqslant gamma (большей стороне треугольника соответствует больший противолежащий угол). Поскольку в треугольнике не может быть двух тупых углов, тупой угол для gamma исключён и решение {displaystyle gamma =arcsin D} единственно.

Третий угол определяется по формуле {displaystyle alpha =180^{circ }-beta -gamma }. Третью сторону можно найти по теореме синусов:

a=b {frac {sin alpha }{sin beta }}

В данном случае заданы сторона и прилежащие к ней углы. Аналогичные рассуждения имеют смысл, даже если один из известных углов противоположен стороне.

Сторона и два угла[править | править код]

Пусть задана сторона c и два угла. Эта задача имеет единственное решение, если сумма двух углов меньше 180^{circ }. В противном случае задача решения не имеет.

Вначале определяется третий угол. Например, если даны углы alpha ,beta , то {displaystyle gamma =180^{circ }-alpha -beta }. Далее обе неизвестные стороны находятся по теореме синусов[12]:

{displaystyle a=c {frac {sin alpha }{sin gamma }},quad b=c {frac {sin beta }{sin gamma }}.}

Решение прямоугольных треугольников[править | править код]

Прямоугольный треугольник

В этом случае известен один из углов — он равен 90°. Необходимо знать ещё два элемента, хотя бы один из которых — сторона. Возможны следующие случаи:

  • два катета;
  • катет и гипотенуза;
  • катет и прилежащий острый угол;
  • катет и противолежащий острый угол;
  • гипотенуза и острый угол.

Вершину прямого угла традиционно обозначают буквой C, гипотенузу — c. Катеты обозначаются a и b, а величины противолежащих им углов — alpha и beta соответственно.

Расчётные формулы существенно упрощаются, так как вместо теорем синусов и косинусов можно использовать более простые соотношения — теорему Пифагора:

c^{2}=a^{2}+b^{2}

и определения основных тригонометрических функций:

sin alpha =cos beta ={frac {a}{c}},quad cos alpha =sin beta ={frac {b}{c}},
{displaystyle operatorname {tg} alpha =operatorname {ctg} beta ={frac {a}{b}},quad operatorname {ctg} alpha =operatorname {tg} beta ={frac {b}{a}}.}

Ясно также, что углы alpha и beta  — острые, так как их сумма равна 90^{circ }. Поэтому любой из неизвестных углов однозначно определяется по любой из его тригонометрических функций (синусу, косинусу, тангенсу и др.) путём вычисления соответствующей обратной тригонометрической функции.

При корректной постановке задачи (если заданы гипотенуза и катет, то катет должен быть меньше гипотенузы; если задан один из двух непрямых углов, то он должен быть острый) решение всегда существует и единственно.

Два катета[править | править код]

Гипотенуза находится по теореме Пифагора:

c={sqrt {a^{2}+b^{2}}}.

Углы могут быть найдены с использованием функции арктангенса:

{displaystyle alpha =operatorname {arctg} {frac {a}{b}},quad beta =operatorname {arctg} {frac {b}{a}}}

или же по только что найденной гипотенузе:

alpha =arcsin {frac {a}{c}}=arccos {frac {b}{c}},quad beta =arcsin {frac {b}{c}}=arccos {frac {a}{c}}.

Катет и гипотенуза[править | править код]

Пусть известны катет b и гипотенуза c — тогда катет a находится из теоремы Пифагора:

a={sqrt {c^{2}-b^{2}}}.

После этого углы определяются аналогично предыдущему случаю.

Катет и прилежащий острый угол[править | править код]

Пусть известны катет b и прилежащий к нему угол alpha .

Гипотенуза c находится из соотношения

c={frac {b}{cos alpha }}.

Катет a может быть найден либо по теореме Пифагора аналогично предыдущему случаю, либо из соотношения

a=b mathrm {tg} ,alpha .

Острый угол beta может быть найден как

beta =90^{circ }-alpha .

Катет и противолежащий острый угол[править | править код]

Пусть известны катет b и противолежащий ему угол beta .

Гипотенуза c находится из соотношения

c={frac {b}{sin beta }}.

Катет a и второй острый угол alpha могут быть найдены аналогично предыдущему случаю.

Гипотенуза и острый угол[править | править код]

Пусть известны гипотенуза c и острый угол beta .

Острый угол alpha может быть найден как

alpha =90^{circ }-beta .

Катеты определяются из соотношений

a=csin alpha =ccos beta ,
b=csin beta =ccos alpha .

Решение сферических треугольников[править | править код]

Стороны сферического треугольника a,b,c измеряют величиной опирающихся на них центральных углов

Сферический треугольник общего вида полностью определяется тремя из шести своих характеристик (3 стороны и 3 угла). Стороны сферического треугольника a,b,c принято измерять не линейными единицами, а величиной опирающихся на них центральных углов.

Решение треугольников в сферической геометрии имеет ряд отличий от плоского случая. Например, сумма трёх углов alpha +beta +gamma зависит от треугольника; кроме того, на сфере не существует неравных подобных треугольников, и поэтому задача построения треугольника по трём углам имеет единственное решение. Но основные соотношения: две сферические теоремы косинусов и сферическая теорема синусов, — используемые для решения задачи, аналогичны плоскому случаю.

Из других соотношений могут оказаться полезными формулы аналогии Непера[13] и формула половины стороны[14].

Три стороны[править | править код]

Если даны (в угловых единицах) стороны a,b,c, то углы треугольника определяются из теоремы косинусов[15]:

alpha =arccos left({frac {cos a-cos b cos c}{sin b sin c}}right),
beta =arccos left({frac {cos b-cos c cos a}{sin c sin a}}right),
gamma =arccos left({frac {cos c-cos a cos b}{sin a sin b}}right),

Заданы две стороны и угол между ними

Две стороны и угол между ними[править | править код]

Пусть заданы стороны a,b и угол gamma между ними. Сторона c находится по теореме косинусов[15]:

c=arccos left(cos acos b+sin asin bcos gamma right)

Углы alpha ,beta можно найти так же, как в предыдущем случае, можно также использовать формулы аналогии Непера:

{displaystyle alpha =operatorname {arctg}  {frac {2sin a}{operatorname {tg} ({frac {gamma }{2}})sin(b+a)+operatorname {ctg} ({frac {gamma }{2}})sin(b-a)}},}
{displaystyle beta =operatorname {arctg}  {frac {2sin b}{operatorname {tg} ({frac {gamma }{2}})sin(a+b)+operatorname {ctg} ({frac {gamma }{2}})sin(a-b)}}.}

Заданы две стороны и угол не между ними

Две стороны и угол не между ними[править | править код]

Пусть заданы стороны b,c и угол beta . Чтобы решение существовало, необходимо выполнение условия:

{displaystyle b>arcsin(sin c,sin beta ).}

Угол gamma получается из теоремы синусов:

{displaystyle gamma =arcsin left({frac {sin c,sin beta }{sin b}}right).}

Здесь, аналогично плоскому случаю, при b<c получаются два решения: gamma и {displaystyle 180^{circ }-gamma }.

Остальные величины можно найти из формул аналогии Непера[16]:

a=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(b-c)right){frac {sin left({frac {1}{2}}(beta +gamma )right)}{sin left({frac {1}{2}}(beta -gamma )right)}}right},
alpha =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(beta -gamma )right){frac {sin left({frac {1}{2}}(b+c)right)}{sin left({frac {1}{2}}(b-c)right)}}right}.

Заданы сторона и прилежащие углы

Сторона и прилежащие углы[править | править код]

В этом варианте задана сторона c и углы alpha ,beta . Угол gamma определяется по теореме косинусов[17]:

{displaystyle gamma =arccos(sin alpha sin beta cos c-cos alpha cos beta ).}

Две неизвестные стороны получаются из формул аналогии Непера:

a=operatorname {arctg} left{{frac {2sin alpha }{operatorname {ctg} (c/2)sin(beta +alpha )+operatorname {tg} (c/2)sin(beta -alpha )}}right}
b=operatorname {arctg} left{{frac {2sin beta }{operatorname {ctg} (c/2)sin(alpha +beta )+operatorname {tg} (c/2)sin(alpha -beta )}}right}

или, если использовать вычисленный угол gamma , по теореме косинусов:

{displaystyle a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),}
{displaystyle b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right).}

Заданы два угла и сторона не между ними

Два угла и сторона не между ними[править | править код]

В отличие от плоского аналога данная задача может иметь несколько решений.

Пусть заданы сторона a и углы alpha ,beta . Сторона b определяется по теореме синусов[18]:

{displaystyle b=arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Если угол для стороны a острый и alpha >beta , существует второе решение:

{displaystyle b=pi -arcsin left({frac {sin a,sin beta }{sin alpha }}right).}

Остальные величины определяются из формул аналогии Непера:

{displaystyle c=2operatorname {arctg} left{operatorname {tg} left({frac {1}{2}}(a-b)right){frac {sin left({frac {1}{2}}(alpha +beta )right)}{sin left({frac {1}{2}}(alpha -beta )right)}}right}.}
{displaystyle gamma =2operatorname {arcctg} left{operatorname {tg} left({frac {1}{2}}(alpha -beta )right){frac {sin left({frac {1}{2}}(a+b)right)}{sin left({frac {1}{2}}(a-b)right)}}right}.}

Три угла[править | править код]

Если заданы три угла, стороны находятся по теореме косинусов:

a=arccos left({frac {cos alpha +cos beta cos gamma }{sin beta sin gamma }}right),
b=arccos left({frac {cos beta +cos gamma cos alpha }{sin gamma sin alpha }}right),
c=arccos left({frac {cos gamma +cos alpha cos beta }{sin alpha sin beta }}right).

Другой вариант: использование формулы половины угла[19].

Решение прямоугольных сферических треугольников[править | править код]

Изложенные алгоритмы значительно упрощаются, если известно, что один из углов треугольника (например, угол C) прямой. Прямоугольный сферический треугольник полностью определяется двумя элементами, остальные три находятся при помощи мнемонического правила Непера или из нижеприведённых соотношений[20]:

{displaystyle sin a=sin ccdot sin alpha =operatorname {tg} bcdot operatorname {ctg} beta ,}
{displaystyle sin b=sin ccdot sin beta =operatorname {tg} acdot operatorname {ctg} alpha ,}
{displaystyle cos c=cos acdot cos b=operatorname {ctg} alpha cdot operatorname {ctg} beta ,}
{displaystyle operatorname {tg} a=sin bcdot operatorname {tg} alpha ,}
{displaystyle operatorname {tg} b=operatorname {tg} ccdot cos alpha ,}
{displaystyle cos alpha =cos acdot sin beta =operatorname {tg} bcdot operatorname {ctg} c,}
{displaystyle cos beta =cos bcdot sin alpha =operatorname {tg} acdot operatorname {ctg} c.}

Вариации и обобщения[править | править код]

Во многих практически важных задачах вместо сторон треугольника задаются другие его характеристики — например, длина медианы, высоты, биссектрисы, радиус вписанного или описанного круга и т. д. Аналогично вместо углов при вершинах треугольника в задаче могут фигурировать иные углы. Алгоритмы решения подобных задач чаще всего комбинируются из рассмотренных выше теорем тригонометрии.

Примеры:

Примеры практического применения[править | править код]

Триангуляция[править | править код]

Чтобы определить расстояние d от берега до недоступной точки — например, до удалённого корабля,— нужно отметить на берегу две точки, расстояние l между которыми известно, и измерить углы alpha и beta между линией, соединяющей эти точки, и направлением на корабль. Из формул варианта «сторона и два угла» можно найти длину высоты треугольника[23]:

d={frac {sin alpha ,sin beta }{sin(alpha +beta )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} alpha +operatorname {tg} beta }},l

Этот метод используется в каботажном судоходстве. Углы alpha ,beta при этом оцениваются наблюдениями с корабля известных ориентиров на земле. Аналогичная схема используется в астрономии, чтобы определить расстояние до близкой звезды: измеряются углы наблюдения этой звезды с противоположных точек земной орбиты (то есть с интервалом в полгода) и по их разности (параллаксу) вычисляют искомое расстояние[23].

Другой пример: требуется измерить высоту h горы или высокого здания. Известны углы alpha ,beta наблюдения вершины из двух точек, расположенных на расстоянии l. Из формул того же варианта, что и выше, получается[24]:

h={frac {sin alpha ,sin beta }{sin(beta -alpha )}},l={frac {operatorname {tg} alpha ,operatorname {tg} beta }{operatorname {tg} beta -operatorname {tg} alpha }},l

Расстояние между двумя точками на поверхности земного шара[править | править код]

Distance on earth.png

Надо вычислить расстояние между двумя точками на земном шаре[25]:

Точка A: широта lambda _{mathrm {A} }, долгота L_{mathrm {A} },
Точка B: широта lambda _{mathrm {B} }, долгота L_{mathrm {B} },

Для сферического треугольника ABC, где C — северный полюс, известны следующие величины:

{displaystyle a=90^{mathrm {o} }-lambda _{mathrm {B} }}
{displaystyle b=90^{mathrm {o} }-lambda _{mathrm {A} }}
{displaystyle gamma =L_{mathrm {A} }-L_{mathrm {B} }}

Это случай «две стороны и угол между ними». Из приведенных выше формул получается:

mathrm {AB} =Rarccos left{sin lambda _{mathrm {A} },sin lambda _{mathrm {B} }+cos lambda _{mathrm {A} },cos lambda _{mathrm {B} },cos left(L_{mathrm {A} }-L_{mathrm {B} }right)right},

где R — радиус Земли.

История[править | править код]

Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[26]

Общая постановка задачи решения треугольников (как плоских, так и сферических) появилась в древнегреческой геометрии[27]. Во второй книге «Начал» Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[28]:

В тупоугольных треугольниках квадрат на стороне, стягивающей тупой угол, больше [суммы] квадратов на сторонах, содержащих тупой угол, на дважды взятый прямоугольник, заключённый между одной из сторон при тупом угле, на которую падает перпендикуляр, и отсекаемым этим перпендикуляром снаружи отрезком при тупом угле.

Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Аналога теоремы синусов у греков не было, это важнейшее открытие было сделано гораздо позднее[29]: древнейшее из дошедших до нас доказательств теоремы синусов на плоскости описано в книге Насир ад-Дин Ат-Туси «Трактат о полном четырёхстороннике», написанной в XIII веке[30].

Первые тригонометрические таблицы составил, вероятно, Гиппарх в середине II века до н. э. для астрономических расчётов. Позднее астроном II века Клавдий Птолемей в «Альмагесте» дополнил результаты Гиппарха. Первая книга «Альмагеста» — самая значимая тригонометрическая работа всей античности. В частности, «Альмагест» содержит обширные тригонометрические таблицы хорд для острых и тупых углов, с шагом 30 угловых минут. В таблицах Птолемей приводит значение длин хорд с точностью до трех шестидесятиричных знаков[31]. Такая точность примерно соответствует пятизначной десятичной таблице синусов с шагом 15 угловых минут[1].

Птолемей явно не формулирует теорему синусов и косинусов для треугольников. Тем не менее он всегда справляется с задачей решения треугольников, разбивая треугольник на два прямоугольных[32].

Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию[33]. Решающим этапом в развитии теории стала монография «Сферика» в трёх книгах, которую написал Менелай Александрийский (около 100 года н. э.). В первой книге он изложил теоремы о сферических треугольниках, аналогичные теоремам Евклида о плоских треугольниках (см. I книгу «Начал»). По сообщению Паппа, Менелай первым ввёл понятие сферического треугольника как фигуры, образованной отрезками больших кругов[34]. Несколько десятилетий спустя Клавдий Птолемей в своих трудах «География», «Аналемма» и «Планисферий» даёт подробное изложение тригонометрических приложений к картографии, астрономии и механике.

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[35]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен. В частности, индийцы первыми ввели в использование косинус[36]. Кроме того, индийцы знали формулы для кратных углов sin nvarphi , cos nvarphi для n=2,3,4,5. В «Сурья-сиддханте» и в трудах Брахмагупты при решении задач фактически используется сферический вариант теоремы синусов, однако общая формулировка этой теоремы в Индии так и не появилась[37].

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались «зиджи»; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[38]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век), которые рассмотрели, наряду с известными ещё индийцам синусом и косинусом, новые тригонометрические функции: тангенс, котангенс, секанс и косеканс[36].

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[29]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[39]. Сферическая теорема косинусов в общем виде сформулирована в странах ислама не была, однако в трудах Сабита ибн Курры, ал-Баттани и других астрономов имеются эквивалентные ей утверждения[40].

Фундаментальное изложение тригонометрии как самостоятельной науки (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[41]. Его «Трактат о полном четырёхстороннике» содержит практические способы решения типичных задач, в том числе труднейших, решенных самим ат-Туси — например, построение сторон сферического треугольника по заданным трём углам[42]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для эффективного решения треугольников.

В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10″[43]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций. Среди других открытий Непера — эффективный алгоритм решения сферических треугольников, получивший название «формулы аналогии Непера»[44]. Алгебраизация тригонометрии, начатая Франсуа Виетом, была завершена Леонардом Эйлером в XVIII веке, после чего алгоритмы решения треугольников приобрели современный вид.

См. также[править | править код]

  • Признаки подобия треугольников
  • Площадь треугольника
  • Сферическая тригонометрия
  • Сферический треугольник
  • Триангуляция
  • Тригонометрические тождества
  • Тригонометрические функции
  • Формулы Мольвейде

Примечания[править | править код]

  1. 1 2 Выгодский М. Я., 1978, с. 266—268.
  2. Плоский треугольник иногда называют прямолинейным.
  3. Элементарная математика, 1976, с. 487.
  4. Solving Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 июня 2019 года.
  5. Элементарная математика, 1976, с. 488.
  6. Степанов Н. Н., 1948, с. 133.
  7. Solving SSS Triangles. Maths is Fun. Дата обращения: 23 Jule 2012. Архивировано 30 сентября 2012 года.
  8. Solving SAS Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  9. Solving SSA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012). Архивировано 30 сентября 2012 года.
  10. Выгодский М. Я., 1978, с. 294.
  11. Элементарная математика, 1976, с. 493—496.
  12. Solving ASA Triangles. Maths is Fun. Дата обращения: 24 Jule 2012. Архивировано 30 сентября 2012 года.
  13. Степанов Н. Н., 1948, с. 87—90.
  14. Степанов Н. Н., 1948, с. 102—104.
  15. 1 2 Энциклопедия элементарной математики, 1963, с. 545.
  16. Степанов Н. Н., 1948, с. 121—128.
  17. Степанов Н. Н., 1948, с. 115—121.
  18. Степанов Н. Н., 1948, с. 128—133.
  19. Степанов Н. Н., 1948, с. 104—108.
  20. Основные формулы физики, 1957, с. 14—15.
  21. Цейтен Г. Г., 1932, с. 223—224.
  22. Цейтен Г. Г., 1938, с. 126—127.
  23. 1 2 Геометрия: 7—9 классы, 2009, с. 260—261.
  24. Геометрия: 7—9 классы, 2009, с. 260.
  25. Степанов Н. Н., 1948, с. 136—137.
  26. van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
  27. Глейзер Г. И., 1982, с. 77.
  28. Глейзер Г. И., 1982, с. 94—95.
  29. 1 2 Матвиевская Г. П., 2012, с. 92—96.
  30. Berggren, J. Lennart. Mathematics in Medieval Islam // The Mathematics of Egypt, Mesopotamia, China, India, and Islam: A Sourcebook (англ.). — Princeton University Press, 2007. — P. 518. — ISBN 9780691114859.
  31. История математики, том I, 1970, с. 143.
  32. Ван дер Варден. Пробуждающаяся наука. Математика древнего Египта, Вавилона и Греции. — М.: Наука, 1959. — С. 366. — 456 с.
  33. Матвиевская Г. П., 2012, с. 25—27.
  34. Матвиевская Г. П., 2012, с. 33—36.
  35. Матвиевская Г. П., 2012, с. 40—44.
  36. 1 2 Сираждинов С. Х., Матвиевская Г. П., 1978, с. 79.
  37. Юшкевич А. П. История математики в Средние века. — М.: ГИФМЛ, 1961. — С. 160. — 448 с.
  38. Матвиевская Г. П., 2012, с. 51—55.
  39. Матвиевская Г. П., 2012, с. 111.
  40. Матвиевская Г. П., 2012, с. 96—98.
  41. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  42. Рыбников К. А., 1960, с. 105.
  43. История математики, том I, 1970, с. 320.
  44. Степанов Н. Н. § 42. Формулы «аналогии Непера» // Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948. — С. 87—90. — 154 с.

Литература[править | править код]

Теория и алгоритмы
  • Атанасян Л. С., Бутузов В. Ф., Кадомцев С. Б., Позняк Э. Г., Юдина И. И. Геометрия: 7—9 классы. Учебник для общеобразовательных учреждений. — 19-е изд. — М.: Просвещение, 2009. — 384 с. — ISBN 978-5-09-021136-9.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Гельфанд И. М., Львовский С. М., Тоом А. Л. Тригонометрия, учебник для 10 класса. — М.: МЦНМО, 2002. — ISBN 5-94057-050-X.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Мензел Д. (ред.). Основные формулы физики. Глава 1. Основные математические формулы. — М.: Изд. иностранной литературы, 1957. — 658 с.
  • Основные понятия сферической геометрии и тригонометрии // Энциклопедия элементарной математики (в 5 томах). — М.: Физматгиз, 1963. — Т. 4. — С. 518—557. — 568 с.
  • Степанов Н. Н. Сферическая тригонометрия. — М.Л.: ОГИЗ, 1948.
История
  • Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
  • Глейзер Г. И. История математики в школе. IX-X классы. Пособие для учителей. — М.: Просвещение, 1983. — 352 с.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
    • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
    • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
    • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.
  • Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I.
  • Сираждинов С. Х., Матвиевская Г. П. Абу Райхан Беруни и его математические труды. Пособие для учащихся. — М.: Просвещение, 1978. — 95 с. — (Люди науки).
  • Цейтен Г. Г. История математики в древности и в средние века. — М.Л.: ГТТИ, 1932. — 230 с.
  • Цейтен Г. Г. История математики в XVI и XVII веках. — М.Л.: ОНТИ, 1938. — 456 с.


Download Article


Download Article

Finding the third angle of a triangle when you know the measurements of the other two angles is easy. All you’ve got to do is subtract the other angle measurements from 180° to get the measurement of the third angle. However, there are a few other ways to find the measurement of the third angle of a triangle, depending on the problem you’re working with. If you want to know how to find that elusive third angle of a triangle, see Step 1 to get started.

  1. Image titled Find the Third Angle of a Triangle Step 1

    1

    Add up the two known angle measurements. All you have to know is that all of the angles in a triangle always add up to 180°. This is true 100% of the time. So, if you know two of the three measurements of the triangle, then you’re only missing one piece of the puzzle. The first thing you can do is add up the angle measurements you know. In this example, the two angle measurements you know are 80° and 65°. Add them up (80° + 65°) to get 145°.[1]

  2. Image titled Find the Third Angle of a Triangle Step 2

    2

    Subtract this number from 180°. The angles in a triangle add up to 180°. Therefore, the remaining angle must make the sum up the angles up to 180°. In this example, 180° – 145° = 35°.[2]

    Advertisement

  3. Image titled Find the Third Angle of a Triangle Step 3

    3

    Write down your answer. You now know that the third angle measures 35°. If you’re doubting yourself, just check your work. The three angles should add up to 180° for the triangle to exist. 80° + 65° + 35° = 180°. You’re all done.[3]

  4. Advertisement

  1. Image titled Find the Third Angle of a Triangle Step 4

    1

    Write down the problem. Sometimes, instead being lucky enough to know the measurements of two of the angles of a triangle, you’ll only be given a few variables, or some variables and an angle measurement. Let’s say you’re working with this problem: Find the measurements of angle “x” of the triangle whose measurements are “x,” “2x,” and 24. First, just write it down.[4]

  2. Image titled Find the Third Angle of a Triangle Step 5

    2

    Add up all of the measurements. It’s the same principle that you would follow if you did know the measurements of the two angles. Simply add up the measurements of the angles, combining the variables. So, x + 2x + 24° = 3x + 24°.[5]

  3. Image titled Find the Third Angle of a Triangle Step 6

    3

    Subtract the measurements from 180°. Now, subtract these measurements from 180° to get closer to solving the problem. Make sure you set the equation equal to 0. Here’s what it would look like:

    • 180° – (3x + 24°) = 0
    • 180° – 3x – 24° = 0
    • 156° – 3x = 0
  4. Image titled Find the Third Angle of a Triangle Step 7

    4

    Solve for x. Now, just put the variables on one side of the equation and the numbers on the other side. You’ll get 156° = 3x. Now, divide both sides of the equation by 3 to get x = 52°. This means that the measurement of the third angle of the triangle is 52°. The other angle, 2x, is 2 x 52°, or 104°.[6]

  5. Image titled Find the Third Angle of a Triangle Step 8

    5

    Check your work. If you want to make sure that this is a valid triangle, just add up the three angle measurements to make sure that they add up to 180°. That’s 52° + 104° + 24° = 180°. You’re all done.

  6. Advertisement

  1. Image titled Find the Third Angle of a Triangle Step 9

    1

    Find the third angle of an isosceles triangle. Isosceles triangles have two equal sides and two equal angles. The equal sides are marked by one hash mark on each of them, indicating that the angles across from each side are equal. If you know the angle measurement of one equal angle of an isosceles triangle, then you’ll know the measurement of the other equal angle. Here’s how to find it:[7]

    • If one of the equal angles is 40°, then you’ll know that the other angle is also 40°. You can find the third side, if needed, by subtracting 40° + 40° (which is 80°) from 180°. 180° – 80° = 100°, which is the measurement of the remaining angle.
  2. Image titled Find the Third Angle of a Triangle Step 10

    2

    Find the third angle of an equilateral triangle. An equilateral triangle has all equal sides and all equal angles. It will typically be marked by two hash marks in the middle of each of its sides. This means that the angle measurement of any angle in an equilateral triangle is 60°. Check your work. 60° + 60° + 60° = 180°.[8]

  3. Image titled Find the Third Angle of a Triangle Step 11

    3

    Find the third angle of a right triangle. Let’s say you know you have a right triangle, with one of the other angles being 30°. If it’s a right triangle, then you know that one of the angles measures exactly 90°. The same principles apply. All you have to do is add up the measurements of the sides you know (30° + 90° = 120°) and subtract that number from 180°. So, 180° – 120° = 60°. The measurement of that third angle is 60°.[9]

  4. Advertisement

Add New Question

  • Question

    In a right angle triangle, if one of the other two angles is 35 degrees, find the remaining angle.

    Community Answer

    Take the 90, add it to 35. This gives you 125 degrees. Triangles can only ever add up to 180, thus take the difference of 125 and 180 (180-125). This will give you the third remaining angle, which in this case is 55.

  • Question

    If one angle of a right triangle is 50 degrees, what will be the measurement of the third angle?

    Community Answer

    A right angle triangle always consists of one 90 degree angle, and every triangle must equal 180 degrees. Here is the work for this problem: 90 degrees (representing the right angle) + 50 degrees equals 140 degrees. 180 minus 140 equals 40. Therefore, the remaining angle would be 40 degrees.

  • Question

    What if there is only one number?

    Community Answer

    Substitute a letter, and work it out like an algebraic equation that you have to solve.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

Thanks for submitting a tip for review!

  • Making a mistake with addition and subtraction will result in a wrong answer. It’s always a good idea to check, even if it doesn’t appear to be wrong.

Advertisement

References

About This Article

Article SummaryX

To find the third angle of a triangle, start by adding the other 2 angles together. Then, subtract that number from 180 to find the third angle. If the 2 known angles have variables, start by adding all of the measurements, including the variable used for the unknown angle. Then, subtract those numbers and variables from 180 and set the equation equal to 0. Finally, solve for the variable to find the third angle. If you want to learn the angles are on specific kinds of triangles, keep reading the article!

Did this summary help you?

Thanks to all authors for creating a page that has been read 262,790 times.

Did this article help you?

Решение треугольников онлайн

С помощю этого онлайн калькулятора можно решить треугольники, т.е. найти неизвестные элементы (стороны, углы) треугольника. Теоретическую часть и численные примеры смотрите ниже.

Решение треугольников − это нахождение всех его элементов (трех сторон и трех углов) по трем известным элементам (сторонам и углам). В статье Треугольники. Признаки равенства треугольников рассматриваются условия, при которых два треугольника оказываются равными друг друга. Как следует из статьи, треугольник однозначно определяется тремя элементами. Это:

  1. Три стороны треугольника.
  2. Две стороны треугольника и угол между ними.
  3. Две стороны и угол противостоящий к одному из этих сторон треугольника.
  4. Одна сторона и любые два угла.

Заметим, что если у треугольника известны два угла, то легко найти третий угол, т.к. сумма всех углов треугольника равна 180°.

Решение треугольника по трем сторонам

Пусть известны три стороны треугольника a, b, c (Рис.1). Найдем .

Решение:

Из теоремы косинусов имеем:

Откуда

Из (1) и (2) находим cosA, cosB и углы A и B (используя калькулятор). Далее, угол C находим из выражения

Пример 1. Известны стороны треугольника ABC: Найти (Рис.1).

Решение. Из формул (1) и (2) находим:

Используя онлайн калькулятор для arcsin и arccos находим углы A и B:

И, наконец, находим угол C:

Решение треугольника по двум сторонам и углу между ними

Пусть известны стороны треугольника a и b и угол между ними C (Рис.2). Найдем сторону c и углы A и B.

Решение:

Найдем сторону c используя теорему косинусов:

Далее, из формулы

найдем cosA:

Далее из (3) с помощью калькулятора находим угол A.

Поскольку уже нам известны два угла то находим третий:

Пример 2. Известны две стороны треугольника ABC: и (Рис.2). Найти сторону c и углы A и B.

Решение. Иcпользуя теорму косинусов найдем сторону c:

Вычисления выше легко производить инженерным онлайн калькулятором.

Из формулы (3) найдем cosA:

Используя онлайн калькулятор для arcsin и arccos или инженерный онлайн калькулятор находим угол A:

Поскольку уже нам известны два угла то находим третий:

Решение треугольника по стороне и любым двум углам

Пусть известна сторона треугольника a и углы A и B (Рис.4). Найдем стороны b и c и угол C.

Решение:

Так как, уже известны два угла, то можно найти третий:

Далее, для находждения сторон b и c воспользуемся тероемой синусов:

Откуда

Пример 3. Известна одна сторона треугольника ABC: и углы (Рис.3). Найти стороны b и c и угол С.

Решение. Поскольку известны два угла, то легко можно найти третий угол С:

Найдем сторону b. Из теоремы синусов имеем:

Найдем сторону с. Из теоремы синусов имеем:

Ответ:

Добавить комментарий