Арксинус(y = arcsin(x)) – это обратная тригонометрическая функция к синусу x = sin(y). Область определения -1 ≤ x ≤ 1 и множество значений -π/2 ≤ y ≤ +π/2.
График пересекает оси в начале координат.
arcsin(0) = 0° | arcsin(0.8660254038) = 120° | arcsin(-0.8660254038) = 240° |
arcsin(0.01745240644) = 1° | arcsin(0.8571673007) = 121° | arcsin(-0.8746197071) = 241° |
arcsin(0.0348994967) = 2° | arcsin(0.8480480962) = 122° | arcsin(-0.8829475929) = 242° |
arcsin(0.05233595624) = 3° | arcsin(0.8386705679) = 123° | arcsin(-0.8910065242) = 243° |
arcsin(0.06975647374) = 4° | arcsin(0.8290375726) = 124° | arcsin(-0.8987940463) = 244° |
arcsin(0.08715574275) = 5° | arcsin(0.8191520443) = 125° | arcsin(-0.906307787) = 245° |
arcsin(0.1045284633) = 6° | arcsin(0.8090169944) = 126° | arcsin(-0.9135454576) = 246° |
arcsin(0.1218693434) = 7° | arcsin(0.79863551) = 127° | arcsin(-0.9205048535) = 247° |
arcsin(0.139173101) = 8° | arcsin(0.7880107536) = 128° | arcsin(-0.9271838546) = 248° |
arcsin(0.156434465) = 9° | arcsin(0.7771459615) = 129° | arcsin(-0.9335804265) = 249° |
arcsin(0.1736481777) = 10° | arcsin(0.7660444431) = 130° | arcsin(-0.9396926208) = 250° |
arcsin(0.1908089954) = 11° | arcsin(0.7547095802) = 131° | arcsin(-0.9455185756) = 251° |
arcsin(0.2079116908) = 12° | arcsin(0.7431448255) = 132° | arcsin(-0.9510565163) = 252° |
arcsin(0.2249510543) = 13° | arcsin(0.7313537016) = 133° | arcsin(-0.956304756) = 253° |
arcsin(0.2419218956) = 14° | arcsin(0.7193398003) = 134° | arcsin(-0.9612616959) = 254° |
arcsin(0.2588190451) = 15° | arcsin(0.7071067812) = 135° | arcsin(-0.9659258263) = 255° |
arcsin(0.2756373558) = 16° | arcsin(0.6946583705) = 136° | arcsin(-0.9702957263) = 256° |
arcsin(0.2923717047) = 17° | arcsin(0.6819983601) = 137° | arcsin(-0.9743700648) = 257° |
arcsin(0.3090169944) = 18° | arcsin(0.6691306064) = 138° | arcsin(-0.9781476007) = 258° |
arcsin(0.3255681545) = 19° | arcsin(0.656059029) = 139° | arcsin(-0.9816271834) = 259° |
arcsin(0.3420201433) = 20° | arcsin(0.6427876097) = 140° | arcsin(-0.984807753) = 260° |
arcsin(0.3583679495) = 21° | arcsin(0.629320391) = 141° | arcsin(-0.9876883406) = 261° |
arcsin(0.3746065934) = 22° | arcsin(0.6156614753) = 142° | arcsin(-0.9902680687) = 262° |
arcsin(0.3907311285) = 23° | arcsin(0.6018150232) = 143° | arcsin(-0.9925461516) = 263° |
arcsin(0.4067366431) = 24° | arcsin(0.5877852523) = 144° | arcsin(-0.9945218954) = 264° |
arcsin(0.4226182617) = 25° | arcsin(0.5735764364) = 145° | arcsin(-0.9961946981) = 265° |
arcsin(0.4383711468) = 26° | arcsin(0.5591929035) = 146° | arcsin(-0.9975640503) = 266° |
arcsin(0.4539904997) = 27° | arcsin(0.544639035) = 147° | arcsin(-0.9986295348) = 267° |
arcsin(0.4694715628) = 28° | arcsin(0.5299192642) = 148° | arcsin(-0.999390827) = 268° |
arcsin(0.4848096202) = 29° | arcsin(0.5150380749) = 149° | arcsin(-0.9998476952) = 269° |
arcsin(0.5) = 30° | arcsin(0.5) = 150° | arcsin(-1) = 270° |
arcsin(0.5150380749) = 31° | arcsin(0.4848096202) = 151° | arcsin(-0.9998476952) = 271° |
arcsin(0.5299192642) = 32° | arcsin(0.4694715628) = 152° | arcsin(-0.999390827) = 272° |
arcsin(0.544639035) = 33° | arcsin(0.4539904997) = 153° | arcsin(-0.9986295348) = 273° |
arcsin(0.5591929035) = 34° | arcsin(0.4383711468) = 154° | arcsin(-0.9975640503) = 274° |
arcsin(0.5735764364) = 35° | arcsin(0.4226182617) = 155° | arcsin(-0.9961946981) = 275° |
arcsin(0.5877852523) = 36° | arcsin(0.4067366431) = 156° | arcsin(-0.9945218954) = 276° |
arcsin(0.6018150232) = 37° | arcsin(0.3907311285) = 157° | arcsin(-0.9925461516) = 277° |
arcsin(0.6156614753) = 38° | arcsin(0.3746065934) = 158° | arcsin(-0.9902680687) = 278° |
arcsin(0.629320391) = 39° | arcsin(0.3583679495) = 159° | arcsin(-0.9876883406) = 279° |
arcsin(0.6427876097) = 40° | arcsin(0.3420201433) = 160° | arcsin(-0.984807753) = 280° |
arcsin(0.656059029) = 41° | arcsin(0.3255681545) = 161° | arcsin(-0.9816271834) = 281° |
arcsin(0.6691306064) = 42° | arcsin(0.3090169944) = 162° | arcsin(-0.9781476007) = 282° |
arcsin(0.6819983601) = 43° | arcsin(0.2923717047) = 163° | arcsin(-0.9743700648) = 283° |
arcsin(0.6946583705) = 44° | arcsin(0.2756373558) = 164° | arcsin(-0.9702957263) = 284° |
arcsin(0.7071067812) = 45° | arcsin(0.2588190451) = 165° | arcsin(-0.9659258263) = 285° |
arcsin(0.7193398003) = 46° | arcsin(0.2419218956) = 166° | arcsin(-0.9612616959) = 286° |
arcsin(0.7313537016) = 47° | arcsin(0.2249510543) = 167° | arcsin(-0.956304756) = 287° |
arcsin(0.7431448255) = 48° | arcsin(0.2079116908) = 168° | arcsin(-0.9510565163) = 288° |
arcsin(0.7547095802) = 49° | arcsin(0.1908089954) = 169° | arcsin(-0.9455185756) = 289° |
arcsin(0.7660444431) = 50° | arcsin(0.1736481777) = 170° | arcsin(-0.9396926208) = 290° |
arcsin(0.7771459615) = 51° | arcsin(0.156434465) = 171° | arcsin(-0.9335804265) = 291° |
arcsin(0.7880107536) = 52° | arcsin(0.139173101) = 172° | arcsin(-0.9271838546) = 292° |
arcsin(0.79863551) = 53° | arcsin(0.1218693434) = 173° | arcsin(-0.9205048535) = 293° |
arcsin(0.8090169944) = 54° | arcsin(0.1045284633) = 174° | arcsin(-0.9135454576) = 294° |
arcsin(0.8191520443) = 55° | arcsin(0.08715574275) = 175° | arcsin(-0.906307787) = 295° |
arcsin(0.8290375726) = 56° | arcsin(0.06975647374) = 176° | arcsin(-0.8987940463) = 296° |
arcsin(0.8386705679) = 57° | arcsin(0.05233595624) = 177° | arcsin(-0.8910065242) = 297° |
arcsin(0.8480480962) = 58° | arcsin(0.0348994967) = 178° | arcsin(-0.8829475929) = 298° |
arcsin(0.8571673007) = 59° | arcsin(0.01745240644) = 179° | arcsin(-0.8746197071) = 299° |
arcsin(0.8660254038) = 60° | arcsin(0) = 180° | arcsin(-0.8660254038) = 300° |
arcsin(0.8746197071) = 61° | arcsin(-0.01745240644) = 181° | arcsin(-0.8571673007) = 301° |
arcsin(0.8829475929) = 62° | arcsin(-0.0348994967) = 182° | arcsin(-0.8480480962) = 302° |
arcsin(0.8910065242) = 63° | arcsin(-0.05233595624) = 183° | arcsin(-0.8386705679) = 303° |
arcsin(0.8987940463) = 64° | arcsin(-0.06975647374) = 184° | arcsin(-0.8290375726) = 304° |
arcsin(0.906307787) = 65° | arcsin(-0.08715574275) = 185° | arcsin(-0.8191520443) = 305° |
arcsin(0.9135454576) = 66° | arcsin(-0.1045284633) = 186° | arcsin(-0.8090169944) = 306° |
arcsin(0.9205048535) = 67° | arcsin(-0.1218693434) = 187° | arcsin(-0.79863551) = 307° |
arcsin(0.9271838546) = 68° | arcsin(-0.139173101) = 188° | arcsin(-0.7880107536) = 308° |
arcsin(0.9335804265) = 69° | arcsin(-0.156434465) = 189° | arcsin(-0.7771459615) = 309° |
arcsin(0.9396926208) = 70° | arcsin(-0.1736481777) = 190° | arcsin(-0.7660444431) = 310° |
arcsin(0.9455185756) = 71° | arcsin(-0.1908089954) = 191° | arcsin(-0.7547095802) = 311° |
arcsin(0.9510565163) = 72° | arcsin(-0.2079116908) = 192° | arcsin(-0.7431448255) = 312° |
arcsin(0.956304756) = 73° | arcsin(-0.2249510543) = 193° | arcsin(-0.7313537016) = 313° |
arcsin(0.9612616959) = 74° | arcsin(-0.2419218956) = 194° | arcsin(-0.7193398003) = 314° |
arcsin(0.9659258263) = 75° | arcsin(-0.2588190451) = 195° | arcsin(-0.7071067812) = 315° |
arcsin(0.9702957263) = 76° | arcsin(-0.2756373558) = 196° | arcsin(-0.6946583705) = 316° |
arcsin(0.9743700648) = 77° | arcsin(-0.2923717047) = 197° | arcsin(-0.6819983601) = 317° |
arcsin(0.9781476007) = 78° | arcsin(-0.3090169944) = 198° | arcsin(-0.6691306064) = 318° |
arcsin(0.9816271834) = 79° | arcsin(-0.3255681545) = 199° | arcsin(-0.656059029) = 319° |
arcsin(0.984807753) = 80° | arcsin(-0.3420201433) = 200° | arcsin(-0.6427876097) = 320° |
arcsin(0.9876883406) = 81° | arcsin(-0.3583679495) = 201° | arcsin(-0.629320391) = 321° |
arcsin(0.9902680687) = 82° | arcsin(-0.3746065934) = 202° | arcsin(-0.6156614753) = 322° |
arcsin(0.9925461516) = 83° | arcsin(-0.3907311285) = 203° | arcsin(-0.6018150232) = 323° |
arcsin(0.9945218954) = 84° | arcsin(-0.4067366431) = 204° | arcsin(-0.5877852523) = 324° |
arcsin(0.9961946981) = 85° | arcsin(-0.4226182617) = 205° | arcsin(-0.5735764364) = 325° |
arcsin(0.9975640503) = 86° | arcsin(-0.4383711468) = 206° | arcsin(-0.5591929035) = 326° |
arcsin(0.9986295348) = 87° | arcsin(-0.4539904997) = 207° | arcsin(-0.544639035) = 327° |
arcsin(0.999390827) = 88° | arcsin(-0.4694715628) = 208° | arcsin(-0.5299192642) = 328° |
arcsin(0.9998476952) = 89° | arcsin(-0.4848096202) = 209° | arcsin(-0.5150380749) = 329° |
arcsin(1) = 90° | arcsin(-0.5) = 210° | arcsin(-0.5) = 330° |
arcsin(0.9998476952) = 91° | arcsin(-0.5150380749) = 211° | arcsin(-0.4848096202) = 331° |
arcsin(0.999390827) = 92° | arcsin(-0.5299192642) = 212° | arcsin(-0.4694715628) = 332° |
arcsin(0.9986295348) = 93° | arcsin(-0.544639035) = 213° | arcsin(-0.4539904997) = 333° |
arcsin(0.9975640503) = 94° | arcsin(-0.5591929035) = 214° | arcsin(-0.4383711468) = 334° |
arcsin(0.9961946981) = 95° | arcsin(-0.5735764364) = 215° | arcsin(-0.4226182617) = 335° |
arcsin(0.9945218954) = 96° | arcsin(-0.5877852523) = 216° | arcsin(-0.4067366431) = 336° |
arcsin(0.9925461516) = 97° | arcsin(-0.6018150232) = 217° | arcsin(-0.3907311285) = 337° |
arcsin(0.9902680687) = 98° | arcsin(-0.6156614753) = 218° | arcsin(-0.3746065934) = 338° |
arcsin(0.9876883406) = 99° | arcsin(-0.629320391) = 219° | arcsin(-0.3583679495) = 339° |
arcsin(0.984807753) = 100° | arcsin(-0.6427876097) = 220° | arcsin(-0.3420201433) = 340° |
arcsin(0.9816271834) = 101° | arcsin(-0.656059029) = 221° | arcsin(-0.3255681545) = 341° |
arcsin(0.9781476007) = 102° | arcsin(-0.6691306064) = 222° | arcsin(-0.3090169944) = 342° |
arcsin(0.9743700648) = 103° | arcsin(-0.6819983601) = 223° | arcsin(-0.2923717047) = 343° |
arcsin(0.9702957263) = 104° | arcsin(-0.6946583705) = 224° | arcsin(-0.2756373558) = 344° |
arcsin(0.9659258263) = 105° | arcsin(-0.7071067812) = 225° | arcsin(-0.2588190451) = 345° |
arcsin(0.9612616959) = 106° | arcsin(-0.7193398003) = 226° | arcsin(-0.2419218956) = 346° |
arcsin(0.956304756) = 107° | arcsin(-0.7313537016) = 227° | arcsin(-0.2249510543) = 347° |
arcsin(0.9510565163) = 108° | arcsin(-0.7431448255) = 228° | arcsin(-0.2079116908) = 348° |
arcsin(0.9455185756) = 109° | arcsin(-0.7547095802) = 229° | arcsin(-0.1908089954) = 349° |
arcsin(0.9396926208) = 110° | arcsin(-0.7660444431) = 230° | arcsin(-0.1736481777) = 350° |
arcsin(0.9335804265) = 111° | arcsin(-0.7771459615) = 231° | arcsin(-0.156434465) = 351° |
arcsin(0.9271838546) = 112° | arcsin(-0.7880107536) = 232° | arcsin(-0.139173101) = 352° |
arcsin(0.9205048535) = 113° | arcsin(-0.79863551) = 233° | arcsin(-0.1218693434) = 353° |
arcsin(0.9135454576) = 114° | arcsin(-0.8090169944) = 234° | arcsin(-0.1045284633) = 354° |
arcsin(0.906307787) = 115° | arcsin(-0.8191520443) = 235° | arcsin(-0.08715574275) = 355° |
arcsin(0.8987940463) = 116° | arcsin(-0.8290375726) = 236° | arcsin(-0.06975647374) = 356° |
arcsin(0.8910065242) = 117° | arcsin(-0.8386705679) = 237° | arcsin(-0.05233595624) = 357° |
arcsin(0.8829475929) = 118° | arcsin(-0.8480480962) = 238° | arcsin(-0.0348994967) = 358° |
arcsin(0.8746197071) = 119° | arcsin(-0.8571673007) = 239° | arcsin(-0.01745240644) = 359° |
Таблица синусов, найти угол синуса
Тригонометрические функции: синус угла
Зачем надо знать значение синуса? Представим ситуацию: известен один из углов (А=60⁰), вписанный в прямоугольный треугольник, и длина гипотенузы. Больше нет никакой информации. Надо узнать вычислить дальний к углу (А) катет. Как поступить?
Ситуация очень простая: смотрим таблицы Брадиса, находим значение sin(60⁰)=0,866, подставляем данные в формулу тригонометрической функции и решаем линейное уравнение. Из школьного курса известно, что sin угла – это отношение дальнего к углу, в данном случае А=60⁰, катета к гипотенузе.
Произвести все расчеты проще, если воспользоваться онлайн калькулятором на сайте. Таким образом можно вычислить длину любой из сторон прямоугольного треугольника. Знаем угол – значит, знаем sin этого угла. И наоборот, знаем sin – найти угол не составит проблемы.
Таблица синусов 0°- 360°
|
|
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
|
|
|
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Как найти угол, если известен синус
Синус и косинус – пара основных тригонометрических функций, которые косвенно выражают величину угла в градусах. Всего таких функций существует больше десятка и среди них есть те, что позволяют по значению, например, синуса восстановить величину угла в градусах. Для практической работы с ними можно использовать программный калькулятор или сетевые сервисы.
Инструкция
Используйте функцию арксинус для вычисления величины угла в градусах, если известно значение синуса этого угла. Если угол обозначить буквой α, в общем виде такое решение можно записать так: α = arcsin(sin(α)).
Если у вас есть возможность пользоваться компьютером, для практических расчетов проще всего использовать встроенный калькулятор операционной системы. В последних двух версиях ОС Windows его можно запустить так: нажмите клавишу Win, наберите буквы «ка» и надавите Enter. В более ранних выпусках этой ОС ссылку «Калькулятор» ищите в подразделе «Стандартные» раздела «Все программы» главного меню системы.
После запуска приложения переключите его в режим, позволяющий работать с тригонометрическими функциями. Сделать это можно выбором строки «Инженерный» в разделе «Вид» меню калькулятора или нажатием клавиш Alt + 2.
Введите значение синуса. По умолчанию в интерфейсе калькулятора нет кнопки для вычисления арксинуса. Чтобы получить возможность использовать эту функцию, вам нужно инвертировать значения кнопок по умолчанию – кликните по клавише Inv в окне программы. В более ранних версиях эту кнопку заменяет чекбокс с таким же обозначением – поставьте в нем отметку.
Кликните по кнопке вычисления синуса – после инвертирования функций ее обозначение сменится на sin⁻¹. Калькулятор рассчитает угол и отобразит его величину.
Можно использовать в расчетах и различные онлайн-сервисы, которых более чем достаточно в интернете. Например, перейдите на страницу http://planetcalc.com/326/, прокрутите ее немного вниз и в поле Input введите значение синуса. Для запуска процедуры вычисления здесь предназначена оранжевая кнопка с надписью Calculate – кликните по ней. Результат вычислений вы найдете в первой строке таблицы под этой кнопкой. Кроме арксинуса в ней отображаются и величины арккосинуса, арктангенса и арккотангенса введенного значения.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Косинус острого угла прямоугольного треугольника
Cos (α) острого угла прямоугольного треугольника — это отношение прилежащего катета(AC) к гипотенузе(AB).Пимер:α = 40°; AC = 6,98см; AB = 9см. cos (40°) = 6,989 = 0,776
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
0° | 1 | |
1° | 0.0174524064 | 0.9998476952 |
2° | 0.0348994967 | 0.9993908270 |
3° | 0.0523359562 | 0.9986295348 |
4° | 0.0697564737 | 0.9975640503 |
5° | 0.0871557427 | 0.9961946981 |
6° | 0.1045284633 | 0.9945218954 |
7° | 0.1218693434 | 0.9925461516 |
8° | 0.1391731010 | 0.9902680687 |
9° | 0.1564344650 | 0.9876883406 |
10° | 0.1736481777 | 0.9848077530 |
11° | 0.1908089954 | 0.9816271834 |
12° | 0.2079116908 | 0.9781476007 |
13° | 0.2249510543 | 0.9743700648 |
14° | 0.2419218956 | 0.9702957263 |
15° | 0.2588190451 | 0.9659258263 |
16° | 0.2756373558 | 0.9612616959 |
17° | 0.2923717047 | 0.9563047560 |
18° | 0.3090169944 | 0.9510565163 |
19° | 0.3255681545 | 0.9455185756 |
20° | 0.3420201433 | 0.9396926208 |
21° | 0.3583679495 | 0.9335804265 |
22° | 0.3746065934 | 0.9271838546 |
23° | 0.3907311285 | 0.9205048535 |
24° | 0.4067366431 | 0.9135454576 |
25° | 0.4226182617 | 0.9063077870 |
26° | 0.4383711468 | 0.8987940463 |
27° | 0.4539904997 | 0.8910065242 |
28° | 0.4694715628 | 0.8829475929 |
29° | 0.4848096202 | 0.8746197071 |
30° | 0.5 | 0.8660254038 |
31° | 0.5150380749 | 0.8571673007 |
32° | 0.5299192642 | 0.8480480962 |
33° | 0.5446390350 | 0.8386705679 |
34° | 0.5591929035 | 0.8290375726 |
35° | 0.5735764364 | 0.8191520443 |
36° | 0.5877852523 | 0.8090169944 |
37° | 0.6018150232 | 0.7986355100 |
38° | 0.6156614753 | 0.7880107536 |
39° | 0.6293203910 | 0.7771459615 |
40° | 0.6427876097 | 0.7660444431 |
41° | 0.6560590290 | 0.7547095802 |
42° | 0.6691306064 | 0.7431448255 |
43° | 0.6819983601 | 0.7313537016 |
44° | 0.6946583705 | 0.7193398003 |
45° | 0.7071067812 | 0.7071067812 |
46° | 0.7193398003 | 0.6946583705 |
47° | 0.7313537016 | 0.6819983601 |
48° | 0.7431448255 | 0.6691306064 |
49° | 0.7547095802 | 0.6560590290 |
50° | 0.7660444431 | 0.6427876097 |
51° | 0.7771459615 | 0.6293203910 |
52° | 0.7880107536 | 0.6156614753 |
53° | 0.7986355100 | 0.6018150232 |
54° | 0.8090169944 | 0.5877852523 |
55° | 0.8191520443 | 0.5735764364 |
56° | 0.8290375726 | 0.5591929035 |
57° | 0.8386705679 | 0.5446390350 |
58° | 0.8480480962 | 0.5299192642 |
59° | 0.8571673007 | 0.5150380749 |
60° | 0.8660254038 | 0.5 |
61° | 0.8746197071 | 0.4848096202 |
62° | 0.8829475929 | 0.4694715628 |
63° | 0.8910065242 | 0.4539904997 |
64° | 0.8987940463 | 0.4383711468 |
65° | 0.9063077870 | 0.4226182617 |
66° | 0.9135454576 | 0.4067366431 |
67° | 0.9205048535 | 0.3907311285 |
68° | 0.9271838546 | 0.3746065934 |
69° | 0.9335804265 | 0.3583679495 |
70° | 0.9396926208 | 0.3420201433 |
71° | 0.9455185756 | 0.3255681545 |
72° | 0.9510565163 | 0.3090169944 |
73° | 0.9563047560 | 0.2923717047 |
74° | 0.9612616959 | 0.2756373558 |
75° | 0.9659258263 | 0.2588190451 |
76° | 0.9702957263 | 0.2419218956 |
77° | 0.9743700648 | 0.2249510543 |
78° | 0.9781476007 | 0.2079116908 |
79° | 0.9816271834 | 0.1908089954 |
80° | 0.9848077530 | 0.1736481777 |
81° | 0.9876883406 | 0.1564344650 |
82° | 0.9902680687 | 0.1391731010 |
83° | 0.9925461516 | 0.1218693434 |
84° | 0.9945218954 | 0.1045284633 |
85° | 0.9961946981 | 0.0871557427 |
86° | 0.9975640503 | 0.0697564737 |
87° | 0.9986295348 | 0.0523359562 |
88° | 0.9993908270 | 0.0348994967 |
89° | 0.9998476952 | 0.0174524064 |
90° | 1 | |
91° | 0.9998476952 | -0.0174524064 |
92° | 0.9993908270 | -0.0348994967 |
93° | 0.9986295348 | -0.0523359562 |
94° | 0.9975640503 | -0.0697564737 |
95° | 0.9961946981 | -0.0871557427 |
96° | 0.9945218954 | -0.1045284633 |
97° | 0.9925461516 | -0.1218693434 |
98° | 0.9902680687 | -0.1391731010 |
99° | 0.9876883406 | -0.1564344650 |
100° | 0.9848077530 | -0.1736481777 |
101° | 0.9816271834 | -0.1908089954 |
102° | 0.9781476007 | -0.2079116908 |
103° | 0.9743700648 | -0.2249510543 |
104° | 0.9702957263 | -0.2419218956 |
105° | 0.9659258263 | -0.2588190451 |
106° | 0.9612616959 | -0.2756373558 |
107° | 0.9563047560 | -0.2923717047 |
108° | 0.9510565163 | -0.3090169944 |
109° | 0.9455185756 | -0.3255681545 |
110° | 0.9396926208 | -0.3420201433 |
111° | 0.9335804265 | -0.3583679495 |
112° | 0.9271838546 | -0.3746065934 |
113° | 0.9205048535 | -0.3907311285 |
114° | 0.9135454576 | -0.4067366431 |
115° | 0.9063077870 | -0.4226182617 |
116° | 0.8987940463 | -0.4383711468 |
117° | 0.8910065242 | -0.4539904997 |
118° | 0.8829475929 | -0.4694715628 |
119° | 0.8746197071 | -0.4848096202 |
120° | 0.8660254038 | -0.5 |
121° | 0.8571673007 | -0.5150380749 |
122° | 0.8480480962 | -0.5299192642 |
123° | 0.8386705679 | -0.5446390350 |
124° | 0.8290375726 | -0.5591929035 |
125° | 0.8191520443 | -0.5735764364 |
126° | 0.8090169944 | -0.5877852523 |
127° | 0.7986355100 | -0.6018150232 |
128° | 0.7880107536 | -0.6156614753 |
129° | 0.7771459615 | -0.6293203910 |
130° | 0.7660444431 | -0.6427876097 |
131° | 0.7547095802 | -0.6560590290 |
132° | 0.7431448255 | -0.6691306064 |
133° | 0.7313537016 | -0.6819983601 |
134° | 0.7193398003 | -0.6946583705 |
135° | 0.7071067812 | -0.7071067812 |
136° | 0.6946583705 | -0.7193398003 |
137° | 0.6819983601 | -0.7313537016 |
138° | 0.6691306064 | -0.7431448255 |
139° | 0.6560590290 | -0.7547095802 |
140° | 0.6427876097 | -0.7660444431 |
141° | 0.6293203910 | -0.7771459615 |
142° | 0.6156614753 | -0.7880107536 |
143° | 0.6018150232 | -0.7986355100 |
144° | 0.5877852523 | -0.8090169944 |
145° | 0.5735764364 | -0.8191520443 |
146° | 0.5591929035 | -0.8290375726 |
147° | 0.5446390350 | -0.8386705679 |
148° | 0.5299192642 | -0.8480480962 |
149° | 0.5150380749 | -0.8571673007 |
150° | 0.5 | -0.8660254038 |
151° | 0.4848096202 | -0.8746197071 |
152° | 0.4694715628 | -0.8829475929 |
153° | 0.4539904997 | -0.8910065242 |
154° | 0.4383711468 | -0.8987940463 |
155° | 0.4226182617 | -0.9063077870 |
156° | 0.4067366431 | -0.9135454576 |
157° | 0.3907311285 | -0.9205048535 |
158° | 0.3746065934 | -0.9271838546 |
159° | 0.3583679495 | -0.9335804265 |
160° | 0.3420201433 | -0.9396926208 |
161° | 0.3255681545 | -0.9455185756 |
162° | 0.3090169944 | -0.9510565163 |
163° | 0.2923717047 | -0.9563047560 |
164° | 0.2756373558 | -0.9612616959 |
165° | 0.2588190451 | -0.9659258263 |
166° | 0.2419218956 | -0.9702957263 |
167° | 0.2249510543 | -0.9743700648 |
168° | 0.2079116908 | -0.9781476007 |
169° | 0.1908089954 | -0.9816271834 |
170° | 0.1736481777 | -0.9848077530 |
171° | 0.1564344650 | -0.9876883406 |
172° | 0.1391731010 | -0.9902680687 |
173° | 0.1218693434 | -0.9925461516 |
174° | 0.1045284633 | -0.9945218954 |
175° | 0.0871557427 | -0.9961946981 |
176° | 0.0697564737 | -0.9975640503 |
177° | 0.0523359562 | -0.9986295348 |
178° | 0.0348994967 | -0.9993908270 |
179° | 0.0174524064 | -0.9998476952 |
180° | -1 | |
181° | -0.0174524064 | -0.9998476952 |
182° | -0.0348994967 | -0.9993908270 |
183° | -0.0523359562 | -0.9986295348 |
184° | -0.0697564737 | -0.9975640503 |
185° | -0.0871557427 | -0.9961946981 |
186° | -0.1045284633 | -0.9945218954 |
187° | -0.1218693434 | -0.9925461516 |
188° | -0.1391731010 | -0.9902680687 |
189° | -0.1564344650 | -0.9876883406 |
190° | -0.1736481777 | -0.9848077530 |
191° | -0.1908089954 | -0.9816271834 |
192° | -0.2079116908 | -0.9781476007 |
193° | -0.2249510543 | -0.9743700648 |
194° | -0.2419218956 | -0.9702957263 |
195° | -0.2588190451 | -0.9659258263 |
196° | -0.2756373558 | -0.9612616959 |
197° | -0.2923717047 | -0.9563047560 |
198° | -0.3090169944 | -0.9510565163 |
199° | -0.3255681545 | -0.9455185756 |
200° | -0.3420201433 | -0.9396926208 |
201° | -0.3583679495 | -0.9335804265 |
202° | -0.3746065934 | -0.9271838546 |
203° | -0.3907311285 | -0.9205048535 |
204° | -0.4067366431 | -0.9135454576 |
205° | -0.4226182617 | -0.9063077870 |
206° | -0.4383711468 | -0.8987940463 |
207° | -0.4539904997 | -0.8910065242 |
208° | -0.4694715628 | -0.8829475929 |
209° | -0.4848096202 | -0.8746197071 |
210° | -0.5 | -0.8660254038 |
211° | -0.5150380749 | -0.8571673007 |
212° | -0.5299192642 | -0.8480480962 |
213° | -0.5446390350 | -0.8386705679 |
214° | -0.5591929035 | -0.8290375726 |
215° | -0.5735764364 | -0.8191520443 |
216° | -0.5877852523 | -0.8090169944 |
217° | -0.6018150232 | -0.7986355100 |
218° | -0.6156614753 | -0.7880107536 |
219° | -0.6293203910 | -0.7771459615 |
220° | -0.6427876097 | -0.7660444431 |
221° | -0.6560590290 | -0.7547095802 |
222° | -0.6691306064 | -0.7431448255 |
223° | -0.6819983601 | -0.7313537016 |
224° | -0.6946583705 | -0.7193398003 |
225° | -0.7071067812 | -0.7071067812 |
226° | -0.7193398003 | -0.6946583705 |
227° | -0.7313537016 | -0.6819983601 |
228° | -0.7431448255 | -0.6691306064 |
229° | -0.7547095802 | -0.6560590290 |
230° | -0.7660444431 | -0.6427876097 |
231° | -0.7771459615 | -0.6293203910 |
232° | -0.7880107536 | -0.6156614753 |
233° | -0.7986355100 | -0.6018150232 |
234° | -0.8090169944 | -0.5877852523 |
235° | -0.8191520443 | -0.5735764364 |
236° | -0.8290375726 | -0.5591929035 |
237° | -0.8386705679 | -0.5446390350 |
238° | -0.8480480962 | -0.5299192642 |
239° | -0.8571673007 | -0.5150380749 |
240° | -0.8660254038 | -0.5 |
241° | -0.8746197071 | -0.4848096202 |
242° | -0.8829475929 | -0.4694715628 |
243° | -0.8910065242 | -0.4539904997 |
244° | -0.8987940463 | -0.4383711468 |
245° | -0.9063077870 | -0.4226182617 |
246° | -0.9135454576 | -0.4067366431 |
247° | -0.9205048535 | -0.3907311285 |
248° | -0.9271838546 | -0.3746065934 |
249° | -0.9335804265 | -0.3583679495 |
250° | -0.9396926208 | -0.3420201433 |
251° | -0.9455185756 | -0.3255681545 |
252° | -0.9510565163 | -0.3090169944 |
253° | -0.9563047560 | -0.2923717047 |
254° | -0.9612616959 | -0.2756373558 |
255° | -0.9659258263 | -0.2588190451 |
256° | -0.9702957263 | -0.2419218956 |
257° | -0.9743700648 | -0.2249510543 |
258° | -0.9781476007 | -0.2079116908 |
259° | -0.9816271834 | -0.1908089954 |
260° | -0.9848077530 | -0.1736481777 |
261° | -0.9876883406 | -0.1564344650 |
262° | -0.9902680687 | -0.1391731010 |
263° | -0.9925461516 | -0.1218693434 |
264° | -0.9945218954 | -0.1045284633 |
265° | -0.9961946981 | -0.0871557427 |
266° | -0.9975640503 | -0.0697564737 |
267° | -0.9986295348 | -0.0523359562 |
268° | -0.9993908270 | -0.0348994967 |
269° | -0.9998476952 | -0.0174524064 |
270° | -1. | |
271° | -0.9998476952 | 0.0174524064 |
272° | -0.9993908270 | 0.0348994967 |
273° | -0.9986295348 | 0.0523359562 |
274° | -0.9975640503 | 0.0697564737 |
275° | -0.9961946981 | 0.0871557427 |
276° | -0.9945218954 | 0.1045284633 |
277° | -0.9925461516 | 0.1218693434 |
278° | -0.9902680687 | 0.1391731010 |
279° | -0.9876883406 | 0.1564344650 |
280° | -0.9848077530 | 0.1736481777 |
281° | -0.9816271834 | 0.1908089954 |
282° | -0.9781476007 | 0.2079116908 |
283° | -0.9743700648 | 0.2249510543 |
284° | -0.9702957263 | 0.2419218956 |
285° | -0.9659258263 | 0.2588190451 |
286° | -0.9612616959 | 0.2756373558 |
287° | -0.9563047560 | 0.2923717047 |
288° | -0.9510565163 | 0.3090169944 |
289° | -0.9455185756 | 0.3255681545 |
290° | -0.9396926208 | 0.3420201433 |
291° | -0.9335804265 | 0.3583679495 |
292° | -0.9271838546 | 0.3746065934 |
293° | -0.9205048535 | 0.3907311285 |
294° | -0.9135454576 | 0.4067366431 |
295° | -0.9063077870 | 0.4226182617 |
296° | -0.8987940463 | 0.4383711468 |
297° | -0.8910065242 | 0.4539904997 |
298° | -0.8829475929 | 0.4694715628 |
299° | -0.8746197071 | 0.4848096202 |
300° | -0.8660254038 | 0.5 |
301° | -0.8571673007 | 0.5150380749 |
302° | -0.8480480962 | 0.5299192642 |
303° | -0.8386705679 | 0.5446390350 |
304° | -0.8290375726 | 0.5591929035 |
305° | -0.8191520443 | 0.5735764364 |
306° | -0.8090169944 | 0.5877852523 |
307° | -0.7986355100 | 0.6018150232 |
308° | -0.7880107536 | 0.6156614753 |
309° | -0.7771459615 | 0.6293203910 |
310° | -0.7660444431 | 0.6427876097 |
311° | -0.7547095802 | 0.6560590290 |
312° | -0.7431448255 | 0.6691306064 |
313° | -0.7313537016 | 0.6819983601 |
314° | -0.7193398003 | 0.6946583705 |
315° | -0.7071067812 | 0.7071067812 |
316° | -0.6946583705 | 0.7193398003 |
317° | -0.6819983601 | 0.7313537016 |
318° | -0.6691306064 | 0.7431448255 |
319° | -0.6560590290 | 0.7547095802 |
320° | -0.6427876097 | 0.7660444431 |
321° | -0.6293203910 | 0.7771459615 |
322° | -0.6156614753 | 0.7880107536 |
323° | -0.6018150232 | 0.7986355100 |
324° | -0.5877852523 | 0.8090169944 |
325° | -0.5735764364 | 0.8191520443 |
326° | -0.5591929035 | 0.8290375726 |
327° | -0.5446390350 | 0.8386705679 |
328° | -0.5299192642 | 0.8480480962 |
329° | -0.5150380749 | 0.8571673007 |
330° | -0.5 | 0.8660254038 |
331° | -0.4848096202 | 0.8746197071 |
332° | -0.4694715628 | 0.8829475929 |
333° | -0.4539904997 | 0.8910065242 |
334° | -0.4383711468 | 0.8987940463 |
335° | -0.4226182617 | 0.9063077870 |
336° | -0.4067366431 | 0.9135454576 |
337° | -0.3907311285 | 0.9205048535 |
338° | -0.3746065934 | 0.9271838546 |
339° | -0.3583679495 | 0.9335804265 |
340° | -0.3420201433 | 0.9396926208 |
341° | -0.3255681545 | 0.9455185756 |
342° | -0.3090169944 | 0.9510565163 |
343° | -0.2923717047 | 0.9563047560 |
344° | -0.2756373558 | 0.9612616959 |
345° | -0.2588190451 | 0.9659258263 |
346° | -0.2419218956 | 0.9702957263 |
347° | -0.2249510543 | 0.9743700648 |
348° | -0.2079116908 | 0.9781476007 |
349° | -0.1908089954 | 0.9816271834 |
350° | -0.1736481777 | 0.9848077530 |
351° | -0.1564344650 | 0.9876883406 |
352° | -0.1391731010 | 0.9902680687 |
353° | -0.1218693434 | 0.9925461516 |
354° | -0.1045284633 | 0.9945218954 |
355° | -0.0871557427 | 0.9961946981 |
356° | -0.0697564737 | 0.9975640503 |
357° | -0.0523359562 | 0.9986295348 |
358° | -0.0348994967 | 0.9993908270 |
359° | -0.0174524064 | 0.9998476952 |
360° | 1 |
Как найти синус определенного угла в градусах? Нужна сама формула, а не таблица Брадиса
Во-первых, переведите угол из градусов в радианы по формуле x = alpha * pi / 180 а потом воспользуйтесь разложением в ряд Тейлора. С достаточно хорощей степенью точности можно ограничиться формулой sin(x) = x — x^3 / 3
такой формулы нет. только брадис или инженерный калькулятор ой!
Константин! Sin x = x — x^3/6
Синус угла A минут B = (3.14/180) + B * (3.14/(180*60))) Так будет точнее. В некоторых случаях минуты (B) равны нулю, тогда остается только первая часть. В интернете есть готовые калькуляторы, например: <a rel=»nofollow» href=»http:///bradis/tablica-sinusov/» target=»_blank»>http:///bradis/tablica-sinusov/</a> или что-нибудь подобное
Видео
Навигация по записям
Предыдущая статьяРешение слау при помощи обратной матрицы – Решение систем линейных алгебраических уравнений с помощью обратной матрицы.
Следующая статья Тесты по математике с 1 11 класс – Тест по математике 1 — 11 классы
Теги
Как найти угол,зная синус либо косинус этого угла?
Знаток
(334),
закрыт
14 лет назад
Наталья
Гений
(53571)
14 лет назад
Для нахождения угла по его синусу, косинусу и т. д. используются так называемые аркфункции: арксинус, арккосинус и т. д. Их обозначают arcsin a, arccos a и т. д.
На Вашем калькуляторе над кнопками с синусом и косинусом есть надписи: sin в степени -1 и cos в степени -1.Это создатели калькулятора так кратко обозначили аркфункции. Чтобы ими воспользоваться, надо набрать число ( например, 0,4965), нажать клавишу SHIFT или 2nd, а затем клавишу, над которой написано cos в степени -1 и равно. У Вас получится угол, косинус которого равен 0,4965.
Понятно?
Sleeper
Знаток
(267)
5 лет назад
Здравствуйте! Я тоже столкнулся с аналогичной проблемой ( учусь программированию языку MQL4), и вот Европа вся сидит на радианах, а нам углы подавай. Вот, я зашел в справочник и там ка-раз все функции в радианах, я сделал свои функции перевода углов в радианы и радианы в углы (они очень просты и не какой сложности), и вот только что написал как по катету и гипотенузе находить косинус, и теперь мне надо найти по косинусу угол, то есть, зная катет и гипотенузу я буду знать угол и наоборот. И хочу использовать в своих расчетах функцию арккосинус которая вернет мне радиану и которую я своей (ранее созданной функцией), переведу в угол. Вот, по ходу и все. Логика понятна?! До свидание. Извините: и совсем не знаю зачем она Вам?! И выпалил, как из пушки – весь свой негатив на Европу. Да будет так – они нам не товарищи. А так я только что был на каком-то сайте и там забиваешь значения и он тебе выводит ответ. Сайты где-то в самом начале поисковиков.
Дмитрий Маштаков
Ученик
(182)
2 года назад
Тут вопрос точности – зная только косинус угла, вы не сможете уверенно вычислить угол, если этот угол маленький. Также и знание синуса вряд ли поможет, если угол близок к 90 градусам. Но если вы знаете одновременно и синус и косинус угла, то
Вот подпрограмма, которая сделает это –
Public Function Usc() As Integer ‘
Dim A As Single, U As Integer
If Abs(Caa) > Abs(Saa) Then
A = Atn(Saa / Caa) * 57.29578
If Caa < 0 Then If Saa > 0 Then A = 180 + A Else A = A – 180
Else: A = Atn(Caa / Saa) * 57.29578
If Saa < 0 Then A = -90 – A Else A = 90 – A
End If: U = A
Usc = U
End Function
‘========
здесь Caa и Saa – косинус и синус, а U это искомое значение угла.
Gras Deus
Профи
(658)
8 месяцев назад
Челу на 2 сообщения выше: хошь прикол? Sin(x)² + Cos(x)² = 1 а знаешь, что это значит? Правильно, это очень простое уравнение, решение которого можно вбить даже в просто компьютер