Углы многоугольника
Внутренний угол многоугольника — это угол, образованный двумя смежными сторонами многоугольника. Например, ∠ABC является внутренним углом.
Внешний угол многоугольника — это угол, образованный одной стороной многоугольника и продолжением другой стороны. Например, ∠LBC является внешним углом.
Количество углов многоугольника всегда равно количеству его сторон. Это относится и к внутренним углам и к внешним. Несмотря на то, что для каждой вершины многоугольника можно построить два равных внешних угла, из них всегда принимается во внимание только один. Следовательно, чтобы найти количество углов любого многоугольника, надо посчитать количество его сторон.
Сумма внутренних углов
Сумма внутренних углов выпуклого многоугольника равна произведению 180° и количеству сторон без двух.
где s — это сумма углов, 2d — два прямых угла (то есть 2 · 90 = 180°), а n — количество сторон.
Если мы проведём из вершины A многоугольника ABCDEF все возможные диагонали, то разделим его на треугольники, количество которых будет на два меньше, чем сторон многоугольника:
Следовательно, сумма углов многоугольника будет равна сумме углов всех получившихся треугольников. Так как сумма углов каждого треугольника равна 180° (2d), то сумма углов всех треугольников будет равна произведению 2d на их количество:
Из этой формулы следует, что сумма внутренних углов является постоянной величиной и зависит от количества сторон многоугольника.
Сумма внешних углов
Сумма внешних углов выпуклого многоугольника равна 360° (или 4d).
где s — это сумма внешних углов, 4d — четыре прямых угла (то есть 4 · 90 = 360°).
Сумма внешнего и внутреннего угла при каждой вершине многоугольника равна 180° (2d), так как они являются смежными углами. Например, ∠1 и ∠2:
Следовательно, если многоугольник имеет n сторон (и n вершин), то сумма внешних и внутренних углов при всех n вершинах будет равна 2dn. Чтобы из этой суммы 2dn получить только сумму внешних углов, надо из неё вычесть сумму внутренних углов, то есть 2d(n – 2):
Центральные и вписанные углы
О чем эта статья:
Центральный угол и вписанный угол
Окружность — замкнутая линия, все точки которой равноудалены от ее центра.
Определение центрального угла:
Центральный угол — это угол, вершина которого лежит в центре окружности.
Центральный угол равен градусной мере дуги, на которую он опирается.
На рисунке: центральный угол окружности EOF и дуга, на которую он опирается EF
Определение вписанного угла:
Вписанный угол — это угол, вершина которого лежит на окружности.
Вписанный угол равен половине дуги, на которую опирается.
На рисунке: вписанный в окружность угол ABC и дуга, на которую он опирается AC
Свойства центральных и вписанных углов
Углы просты только на первый взгляд. Свойства центрального угла и свойства вписанного угла помогут решать задачки легко и быстро.
- Вписанный угол в два раза меньше, чем центральный угол, если они опираются на одну и ту же дугу:
Угол AOC — центральный, угол ABC — вписанный. Оба угла опираются на дугу AC, в этом случае центральный угол равен дуге AC, а угол ABC равен половине угла AOC.
- Теорема о центральном угле: центральный угол равен градусной мере дуги, на которую он опирается:
- Вписанные углы окружности равны друг другу, если опираются на одну дугу:
ㄥADC = ㄥABC = ㄥAEC, поскольку все три угла, вписанные в окружность, опираются на одну дугу AC.
- Вписанный в окружность угол, опирающийся на диаметр, — всегда прямой:
ㄥACB опирается на диаметр и на дугу AB, диаметр делит окружность на две равные части. Значит дуга AB = 180 ํ, ㄥCAB равен половине дуги, на которую он опирается, значит ㄥCAB = 90 ํ.
Если есть вписанный, обязательно найдется и описанный угол. Описанный угол — это угол, образованный двумя касательными к окружности. Вот так:
На рисунке: ㄥCAB, образованный двумя касательными к окружности. AO — биссектриса ㄥCAB, значит центр окружности лежит на биссектрисе описанного угла.
Для решения задачек мало знать, какой угол называется вписанным, а какой — описанным. Нужно знать, что такое хорда и ее свойство.
Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!
Хорда — отрезок, соединяющий две точки на окружности.
- Если две хорды в окружности пересекаются, то произведения отрезков одной равно произведению отрезков другой.
AB * AC = AE * AD
Получается, что стороны вписанного в окружность угла — это хорды.
- Если вписанные углы опираются на одну и ту же хорду — они равны, если их вершины находятся по одну сторону от хорды.
ㄥBAC = ㄥCAB, поскольку лежат на хорде BC.
- Если два вписанных угла опираются на одну и ту же хорду, то их суммарная градусная мера равна 180°, если их вершины находятся по разные стороны от хорды.
ㄥBAC + ㄥBDC = 180°
Примеры решения задач
Центральный, вписанные и описанные углы, как и любые другие, требуют тренировок в решении. Рассмотрите примеры решения задач и потренируйтесь самостоятельно.
Задачка 1. Дана окружность, дуга AC = 200°, дуга BC = 80°. Найдите, чему равен вписанный угол, опирающийся на дугу AB. ㄥACB = ?
Как решаем: окружность 360° − AC − CB = 360° − 200° − 80° = 80°
По теореме: вписанный угол равен дуге ½.
ㄥACB = ½ AB = 40°
Задачка 2. Дана окружность, ㄥAOC = 140°, найдите, чему равна величина вписанного угла.
Мы уже потренировались и знаем, как найти вписанный угол.
На рисунке в окружности центральный угол и дуга AC = 140°
Мы знаем, что вписанный угол равен половине центрального, то ㄥABC = ½ AC = 140/2 = 70°
Задачка 3. Чему равен вписанный в окружность угол, опирающийся на дугу, если эта дуга = ⅕ окружности?
СB = ⅕ от 360° = 72°
Вписанный угол равен половине дуги, поэтому ㄥCAB = ½ от CB = 72° / 2 = 36°
Правильный многоугольник
Формулы, признаки и свойства правильного многоугольника
Многоугольником называется часть площади, которая ограничена замкнутой ломаной линией, не пересекающей сама себя.
Многоугольники отличаются между собой количеством сторон и углов.
Правильный многоугольник — это многоугольник, у которого все стороны и углы одинаковые.
Признаки правильного многоугольника
Многоугольник будет правильным, если выполняется следующее условие: все стороны и углы одинаковы.
a 1 = a 2 = a 3 = … = a n-1 = a n ,
α 1 = α 2 = α 3 = … = α n-1 = α n
где a1 … an — длины сторон правильного многоугольника,
α 1 … α n — внутренние углы между стронами правильного многоугольника.
Основные свойства правильного многоугольника
- Все стороны равны: a 1 = a 2 = a 3 = … = a n-1 = a n
- Все углы равны: α 1 = α 2 = α 3 = … = α n-1 = α n
- Центр вписанной окружности Oв совпадает с центром описанной окружности Oо, что и образуют центр многоугольникаO.
- Сумма всех углов n-угольника равна: 180° · n – 2
- Сумма всех внешних углов n-угольника равна 360°: β 1 + β 2 + β 3 + … + β n-1 + β n = 360°
- Количество диагоналей (Dn) n-угольника равна половине произведения количества вершин на количество диагоналей, выходящих из каждой вершины: D n = n · n – 3 2
- В любой многоугольник можно вписать окружность и описать круг; при этом площадь кольца, образованная этими окружностями, зависит только от длины стороны многоугольника: S = π 4 · a 2
- Все биссектрисы углов между сторонами равны и проходят через центр правильного многоугольника O .
Формулы правильного n-угольника
Формулы длины стороны правильного n-угольника
Формула стороны правильного n-угольника через радиус вписанной окружности
a = 2 · r · tg 180° n (через градусы),
a = 2 · r · tg π n (через радианы)
Формула стороны правильного n-угольника через радиус описанной окружности
a = 2 · R · sin 180° n (через градусы),
a = 2 · R · sin π n (через радианы)
Формулы радиуса вписанной окружности правильного n-угольника
Формула радиуса вписанной окружности n-угольника через длину стороны
r = a : 2 · tg 180° n (через градусы),
r = a : 2 · tg π n (через радианы)
Формула радиуса описанной окружности правильного n-угольника
Формула радиуса описанной окружности n-угольника через длину стороны
R = a : 2 · sin 180° n (через градусы),
R = a : 2 · sin π n (через радианы)
Формулы площади правильного n-угольника
Формула площади n-угольника через длину стороны
Формула площади n-угольника через радиус вписанной окружности
Формула площади n-угольника через радиус описанной окружности
Формула периметра правильного многоугольника
Формула периметра правильного n-угольника
Периметр правильного n-угольника равен произведению длины одной стороны правильного n-угольника на количество его сторон.
Формула определения угла между сторонами правильного многоугольника
Формула угла между сторонами правильного n-угольника
Правильный треугольник
Правильный треугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного треугольника равны между собой, все углы также равны и составляют 60°.
Формулы правильного треугольника
Формула стороны правильного треугольника через радиус вписанной окружности
Сторона правильного треугольника равна удвоенному произведению радиуса вписанной окружности на корень из трёх.
Формула стороны правильного треугольника через радиус описанной окружности
Сторона правильного треугольника равна произведению радиуса описанной окружности на корень из трёх.
Формула площади правильного треугольника через длину стороны
Формула площади правильного треугольника через радиус вписанной окружности
Формула площади правильного треугольника через радиус описанной окружности
Углы между сторонами правильного треугольника
Правильный четырехугольник
Правильный четырехугольник — это квадрат.
Формулы правильного четырехугольника
Формула стороны правильного четырехугольника через радиус вписанной окружности
Сторона правильного четырехугольника равна двум радиусам вписанной окружности.
Формула стороны правильного четырехугольника через радиус описанной окружности
Сторона правильного четырехугольника равна произведению радиуса описанной окружности на корень из двух.
Формула радиуса вписанной окружности правильного четырехугольника через длину стороны
Радиус вписанной окружности правильного четырехугольника равен половине стороны четырехугольника.
Формула радиуса описанной окружности правильного четырехугольника через длину стороны
Радиус описанной окружности правильного четырехугольника равен половине произведения стороны четырехугольника на корень из двух.
Формула площади правильного четырехугольника через длину стороны
Площадь правильного четырехугольника равна квадрату стороны четырехугольника.
Формула площади правильного четырехугольника через радиус вписанной окружности
Площадь правильного четырехугольника равна четырем радиусам вписанной окружности четырехугольника.
Формула площади правильного четырехугольника через радиус описанной окружности
Площадь правильного четырехугольника равна двум квадратам радиуса описанной окружности.
Углы между сторонами правильного четырехугольника
Правильный шестиугольник
Правильный шестиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного шестиугольника равны между собой, все углы также равны и составляют 120°.
Формулы правильного шестиугольник
Формула стороны правильного шестиугольника через радиус вписанной окружности
Формула стороны правильного шестиугольника через радиус описанной окружности
Длина стороны правильного шестиугольника равна радиусу описанной окружности.
Формула радиуса вписанной окружности правильного шестиугольника через длину стороны
Формула радиуса описанной окружности правильного шестиугольника через длину стороны
Формула площади правильного шестиугольника через длину стороны
Формула площади правильного шестиугольника через радиус вписанной окружности
Формула площади правильного шестиугольника через радиус описанной окружности
Углы между сторонами правильного шестиугольника
Правильный восьмиугольник
Правильный восьмиугольник — это правильный многоугольник с тремя сторонами. Все стороны правильного восьмиугольник равны между собой, все углы также равны и составляют 135°.
[spoiler title=”источники:”]
http://skysmart.ru/articles/mathematic/centralnye-i-vpisannye-ugly
http://urokmatematiki.ru/reference-information/formuly-po-geometrii/pravilny-mnogougolnik.php
[/spoiler]
План урока:
Понятие правильного многоугольника
Описанная и вписанная окружности правильного многоугольника
Формулы для правильного многоугольника
Построение правильных многоугольников
Понятие правильного многоугольника
У выпуклого многоугольника могут быть одинаковы одновременно и все стороны, и все углы. В таком случае он именуется правильным многоугольником.
Нам уже известны некоторые правильные многоуг-ки. Например, правильным является равносторонний треугольник. У него все стороны одинаковы по его определению, а все углы составляют по 60°. Поэтому иногда его так и называют – правильный треугольник. Среди четырехугольников правильной фигурой является квадрат, у которого также по определению одинаковы стороны, а углы составляют уже по 90°.
Заметим, что бывают фигуры, у которых одинаковы все стороны, а углы различны. Примером такой фигуры является ромб. Возможна и обратная ситуация – все углы у фигуры одинаковы, но стороны отличаются своей длиной. Таковым является прямоугольник. Важно понимать, такие фигуры (в частности, ромб и прямоугольник) НЕ являются правильными.
Для любого заданного числа n, начиная от n = 3, можно построить правильный n-угольник. На рисунке ниже показано несколько примеров таких n-угольников:
Существует зависимость, которая позволяет определить величину угла правильного многоугольника. Мы уже знаем, что в любом выпуклом n-угольнике сумма углов равна величине 180°(n– 2). Обозначим угол правильного многоуг-ка буквой α. Так как у n-угольника ровно n углов, и все они одинаковы, мы можем записать равенство:
Легко проверить, что эта формула верна для равностороннего треуг-ка и квадрата и позволяет правильно определить углы в этих фигурах. Для треугольника n = 3, поэтому мы получаем 60°:
Задание. Какова величина углов в правильном пятиугольнике, шестиугольнике, восьмиугольнике, пятидесятиугольнике?
Решение. Надо просто подставить в формулу число сторон правильного многоугольник. Сначала считаем для пятиугольника:
Задание. Сколько сторон должно быть у правильного многоуг-ка, чтобы каждый угол в нем был равен 179°?
Решение. В формулу
Задание. Может ли существовать правильный многоуг-к, угол которого равен 145°?
Решение. Предположим, что он существует. Тогда по аналогии с предыдущей задачей найдем количество его сторон:
Получили не целое, а дробное количество сторон. Естественно, что это невозможно, а потому такой многоуг-к существовать не может.
Ответ: не может.
Описанная и вписанная окружности правильного многоугольника
Докажем важную теорему о правильном многоуг-ке.
Для доказательства обозначим вершины произвольного правильного n-угольника буквами А1, А2, А3…Аn. Далее проведем биссектрисы углов ∠А1 и ∠А2. Они пересекутся в некоторой точке О. Соединим О с другими вершинами многоуг-ка отрезками ОА3, ОА4 и т. д.
∠А1 и ∠А2 одинаковы по определению правильного многоуг-ка:
Из этого факта вытекает два равенства:
Получается, что ОА3 – это также биссектриса ∠А3. Тогда, повторив все предыдущие рассуждения, мы можем доказать равенство, аналогичное (1):
Это равенство означает, что точка О равноудалена от вершин многоуг-ка. Значит, можно построить окружность с центром в О, на которой будут лежать все вершины многоуг-ка:
Естественно, существует только одна такая описанная окружность, ведь через любые три точки, в частности, через А1, А2 и А3, можно провести только одну окружность, ч. т. д.
Продолжим рассматривать выполненное нами построение с описанной окружностью. Ясно, что ∆ОА1А2, ∆ОА2А3, ∆ОА3А4, …, равны, ведь у них одинаковы по 3 стороны. Опустим из О высоты ОН1, ОН2, ОН3… на стороны многоуг-ка.
Так как высоты проведены в равных треуг-ках, то и сами они равны:
Теперь проведем окружность, центр которой находится в О, а радиус – это отрезок ОН1. Он должен будет пройти и через точки Н2, Н3, … Нn. Причем отрезки ОН1, ОН2, ОН3 окажутся радиусами. Так как они перпендикулярны сторонам многоуг-ка, то эти самые стороны будут касательными к окружности (по признаку касательной). Стало быть, эта окружность является вписанной:
Ясно, что такая окружность будет единственной вписанной. Если бы существовала вторая вписанная окружность, то ее центр был бы равноудален от сторон многоуг-ка, а потому лежал бы в точке пересечения биссектрис углов ∠А1, ∠А2, ∠А3, то есть в точке О. Так как расстояние от О до А1А2 – это отрезок ОН1, то именно такой радиус был бы у второй окружности. Получается, что вторая окружность полностью совпала бы с первой, так как их центр находился бы в одной точке, и радиусы были одинаковы.
Примечание. Точка, которая центром и вписанной, и описанной окружности, именуется центром правильного многоуг-ка.
Ещё раз вернемся к приведенному доказательству и заметим, что высоты ОН1, ОН2, ОН3,… проведены в равнобедренных треуг-ках∆ОА1А2, ∆ОА2А3, ∆ОА3А4,… Следовательно, эти высоты являются ещё и медианами, то есть точки Н1, Н2, Н3,… – это середины сторон многоуг-ка.
Задание. Могут ли две биссектрисы, проведенные в правильном многоуг-ке, быть параллельными друг другу?
Решение. Центр правильного многоуг-ка находится в точке пересечения всех его биссектрис. То есть любые две биссектрисы будут иметь хотя бы одну общую точку. Параллельные же прямые общих точек не имеют. Получается, что биссектрисы не могут быть параллельными.
Ответ: не могут.
Примечание. Аналогичное утверждение можно доказать и для серединных перпендикуляров, проведенных к сторонам правильного многоуг-ка.
Формулы для правильного многоугольника
Правильный многоуг-к, как и любая другая плоская фигура, имеет площадь (она обозначается буквой S) и периметр (обозначается как Р). Длина стороны многоуг-ка традиционно обозначается буквой an, где n– число сторон у многоуг-ка. Например a4– это сторона квадрата, a6– сторона шестиугольника. Наконец, мы выяснили, что для каждого правильного многоуг-ка можно построить описанную и вписанную окружность. Радиус описанной окружности обозначается большой буквой R, а вписанной – маленькой буквой r.
Оказывается, все эти величины взаимосвязаны друг с другом. Ранее мы уже получили формулу
для многоуг-ка, в который вписана окружность. Подходит она и для правильного многоуг-ка.
Для вывода остальных формул правильного многоугольника построим n-угольники соединим две его вершины с центром:
Теперь можно найти и ∠А1ОН1, рассмотрев ∆А1ОН1:
Теперь у нас есть формула, связывающая друг с другом Rи r. Наконец, прямо из определения периметра следует ещё одна формула:
С их помощью, зная только один из параметров правильного n-угольника, легко найти и все остальные параметры (если известно и число n).
Задание. Докажите, что сторона правильного шестиугольника равна радиусу описанной около него окружности.
Решение. Запишем следующую формулу:
Это равенство как раз и надо было доказать в этом задании.
Задание. Около окружности описан квадрат. В свою очередь и около квадрата описана окружность радиусом 4. Найдите длину стороны квадрата и радиус вписанной окружности.
Решение. Запишем формулу:
Задание. Вычислите площадь правильного многоугольника с шестью углами, длина стороны которого составляет единицу.
Решение.
Найдем периметр шестиугольника:
Задание. Около правильного треугольника описана окружность. В ту же окружность вписан и квадрат. Какова длина стороны этого квадрата, если периметр треугольника составляет 18 см?
Решение. Зная периметр треуг-ка, легко найдем и его сторону:
Далее вычисляется радиус описанной около треугольника окружности:
Задание. Необходимо изготовить болт с шестигранной головкой, причем размер под ключ (так называется расстояние между двумя параллельными гранями головки болта) должен составлять 17 мм. Из прутка какого диаметра может быть изготовлен такой болт, если диаметр прутков измеряется целым числом?
Решение. Здесь надо найти диаметр окружности, описанной около шестиугольника. Ранее мы уже доказывали, что у шестиугольника длина этого радиуса совпадает с длиной его стороны:
Осталось найти сторону шестиугольника. Для этого соединим две его вершины (обозначим их А и С) так, как это показано на рисунке:
Отрезок АС как раз и будет расстоянием между двумя параллельными гранями, что легко доказать. Каждый угол шестиугольника будет составлять 120°:
В частности ∠АВС = 120°. Так как АВ = ВС, то ∆АВС – равнобедренный, и углы при его основании одинаковы:
Аналогично можно показать, что и ∠ACD – прямой. Таким образом, АС перпендикулярен сторонам AF и CD, а значит является расстоянием между ними, и по условию равно 17 мм:
AC = 17 мм
∆АВС – равнобедренный. Опустим в нем высоту НВ, которая одновременно будет и медианой. Тогда АН окажется вдвое короче АС:
AH = AC/2 = 17/2 = 8,5 мм
Теперь сторону АВ можно найти из ∆АВН, являющегося прямоугольным:
Здесь мы округлили ответ до ближайшего большего целого числа, так как по условию можно использовать лишь пруток с целым диаметром.
Ответ: 20 мм.
Построение правильных многоугольников
При использовании транспортира или иного прибора, позволяющего откладывать заранее заданные углы, построение правильного многоуг-ка проблем не вызывает. Например, пусть надо построить пятиугольник со стороной, равной 5 см. Сначала по известной формуле вычисляем величину его угла:
Однако напомним, что в геометрии большой интерес вызывают задачи, связанные с построением с помощью всего двух инструментов – циркуля и линейки, то есть без использования транспортира. В таком случае построение многоугольников правильной формы становится значительно более сложной задачей. Если речь идет не о таких простых фигурах, как квадрат и равносторонний треугольник, то при построении обычно приходится использовать описанную окружность.
Сначала рассмотрим построение правильного шестиугольника по заранее заданной стороне. Ранее мы уже узнали, что его сторона имеет такую же длину, как и радиус описанной окружности:
a6 = R
На основе этого факта предложен следующий метод построения шестиугольника. Сначала строится описанная окружность, причем в качестве ее радиуса берется заданная сторона а6. Далее на окружности отмечается произвольная точка А, которая будет первой вершиной шестиугольника. Из нее проводится ещё одна окружность радиусом а6. Точки, где она пересечет описанную окружность (В и F), будут двумя другими вершинами шестиугольника. Наконец, и из точек B и F проводим ещё две окружности, которые пересекутся с исходной окружностью в точках С и F. Наконец, из С (можно и из F)провести последнюю окружность и получить точку D. Осталось лишь соединить все точки на окружности (А, В, С, D, Еи F):
Данное построение довольно просто. Однако для пятиугольника построение несколько более сложное, а для семиугольника и девятиугольника вообще невозможно осуществить точное построение. Этот факт был доказан только в 1836 г. Пьером Ванцелем.
Если удалось возможно построить правильный n-угольник, вписанный в окружность, то несложно на его основе построить многоуг-к, у которого будет в два раза больше сторон (его можно назвать 2n-угольником) и который будет вписан в ту же окружность. Рассмотрим это построение на примере квадрата и восьмиугольника.
Изначально дан квадрат, вписанный в окружность. Надо построить восьмиугольник, вписанный в ту же окружность. Обозначим любые две вершины квадрата буквами А и В. Для начала нам надо разбить дугу ⋃АВ на две равные дуги. Для этого мы проводим из А и В окружности радиусом АВ. Они пересекутся в некоторых точках С и D. Соединяем их отрезком, который в свою очередь пересечется с исходной окружностью в точке Е.
Е – это середина дуги ⋃АВ. Точки А, В и Е как раз являются тремя первыми точками восьмиугольника. Для получения остальных точек необходимо из вершин квадрата строить окружности радиусом АЕ. Точки, где эти окружности пересекутся с исходной окружностью, и будут вершинами восьмиугольника. Также его вершинами являются вершины самого квадрата:
Аналогичным образом можно из шестиугольника получить 12-угольник, из восьмиугольника – 16-угольник, из 16-угольника – 32-угольник. То есть можно удвоить число сторон многоуг-ка.
Древние греки умели строить правильные многоуг-ки с 3, 4, 5, 6 и 15 сторонами, а также умели на их основе строить многоуг-ки с вдвое большим числом сторон. Лишь в 1796 г. Карл Гаусс смог построить 17-угольник. Также удалось найти способ построения 257-угольника и 65537-угольника, причем описание построения 65537-угольника занимает более 200 страниц.
В этом уроке мы узнали о правильных многоуг-ках и их свойствах. Особенно важно то, что для каждого такого многоуг-ка можно построить описанную и вписанную окружность, причем их центры совпадают. Это позволяет использовать правильные многоуг-ки для более глубокого исследования свойств окружности.
Правильные вписанные и описанные многоугольники
Правильный многоугольник. Правильным называется такой многоугольник, у которого все стороны и все углы равны.
Правильный треугольник есть равносторонний треугольник, каждый угол которого равен (2/3)d или 60°.
Правильный четырехугольник есть квадрат, каждый угол которого равен прямому углу или 90°.
Правильный многоугольник, имеющий n сторон, есть многоугольник, каждый угол которого равен .
Таким образом, полагая n = 3, 4, 5, 6, мы имеем для каждого угла величину (2/3)d, d, (6/5)d, (4/3)d и т. д.
Угол правильного пятиугольника равен (6/5)d = 108°, угол правильного шестиугольника равен (4/3)d = 120° и т. д.
Одноименные многоугольники. Все многоугольники, имеющие одинаковое число углов, называются одноименными многоугольниками.
Все правильные одноименные многоугольники имеют одинаковые углы и различаются только величиной сторон.
Подобие правильных многоугольников. Одноименные правильные многоугольники подобны, ибо у них углы равны и стороны пропорциональны.
Из подобия их вытекает, что периметры одноименных правильных многоугольников относятся как стороны.
Теорема 117. Около правильного многоугольника всегда можно описать окружность.
Дан правильный многоугольник ABCDEF (черт. 192). Стороны его и углы равны между собой:
AB = BC = CD = DE = EF = AF и
A = B = C = D = E = F
Требуется доказать, что существует точка, равноотстоящая от всех его вершин.
Доказательство. Проведем через три точки A, B, C окружность. Для этого из середины линий AB и BC восставляем перпендикуляры до взаимного их пересечения в точке O. Точка O есть центр круга, проходящего через три точки A, B, C. Докажем, что эта окружность пройдет и через точки D, E, F. Для этого соединим точку O с вершинами многоугольника отрезками AO, BO, CO, DO, EO, FO.
1. Все эти отрезки разделяют углы многоугольника пополам.
Из равнобедренных треугольников AOB и BOC видно, что
∠α = ∠β, ∠γ = ∠δ
Так как ΔABO = ΔBCO, то
∠β = ∠γ = ½B,
т. е. угол B делится пополам.
Из равенств
∠δ = ½B = ½C
следует, что угол C тоже делится пополам.
Точно также легко доказать, что угол D тоже делится пополам.
Треугольники BOC и COD равны, ибо OC сторона общая, BC = CD как стороны правильного многоугольника, ∠δ = ∠ε, следовательно, ∠γ = ∠η.
Так как ∠γ = ½B = ½C = ½D, то и угол η = ½D, т. е. угол D делится тоже пополам.
Подобным образом легко доказать, что все углы многоугольника делятся пополам отрезками, соединяющими точку O с вершинами многоугольника.
2. Все отрезки OA, OB, OC, OD, OE, OF равны.
Действительно, по построению следует, что
OA = OB = OC
Из равенства треугольников BOC и COD следует, что
OC = OD
Из равенства треугольников COD и DOE следует, что
OD = OE и т. д.
Таким образом точка O находится на равном расстоянии от всех вершин многоугольника, т. е. окружность, описанная радиусом OA, пройдет через все вершины многоугольника, и точка O будет центром описанного многоугольника (ЧТД).
Теорема 118. Центр описанного круга будет также центром круга, вписанного в правильный многоугольник.
Доказательство. Из точки O центра описанного многоугольника (черт. 192) опустим перпендикуляры Oa, Ob, Oc, Od, Oe, Of на стороны многоугольника. Так как треугольники ABO, BCO равнобедренные и многоугольники правильные, то
Aa = aB = Bb = bC = Cc = cD = …
Два прямоугольных треугольника aBO и BbO равны, ибо BO сторона общая
aB = Bb
следовательно, Oa = Ob.
Точно также легко доказать, что Ob = Oc и т. д.
Следовательно, вообще Oa = Ob = Oc = Od = Oe = Of.
Если мы радиусом Oa опишем окружность, то она коснется сторон правильного многоугольника в точках a, b, c, … т. е. она будет вписана в многоугольник.
Точки a, b, c, … делят стороны многоугольника пополам.
Таким образом точка O, будучи центром описанного, есть в то же время и центр круга, вписанного в правильный многоугольник (ЧТД).
Апофема. Перпендикуляр, опущенный из центра на сторону правильного многоугольника, называется апофемой.
Теорема 119. Периметры одноименных правильных многоугольников относятся как радиусы описанных и вписанных кругов.
Даны два правильных одноименных многоугольника (черт. 193). Из центров O и O’ проведем радиусы кругов описанных и вписанных.
Требуется доказать, что
(AB + BC + CD + DE + EA) / (ab + bc + cd + de + ea) = OA/O’a = OG/O’g
Доказательство. Два треугольника GOB и gOb подобны, ибо они прямоугольны и ∠GBO = ∠gbO’, следовательно,
GB/gb = OB/O’b = GO/gO’
Так как GB = ½AB, gb = ½ab, то
AB/ab = OB/O’b = GO/gO’ (a)
Кроме того имеют место следующие равенства отношений:
AB/ab = BC/bc = CD/cd = DE/de = EA/ea
откуда по свойству пропорций имеем:
(AB + BC + CD + DE + EA) / (ab + bc + cd + de + ea) = AB/ab
Обозначим периметры этих многоугольников через P и p, имеем:
P/p = AB/ab (b)
Сравнивая пропорции (a) и (b), получаем равные отношения:
P/p = AB/ab = OB/O’b = GO/gO’ (ЧТД).
Теорема 120. Если углы описанного многоугольника равны, то и стороны равны, т. е. равноугольный описанный есть многоугольник правильный.
Дано. В описанном многоугольнике ABCDE углы равны (черт. 194):
A = B = C = D = E.
Требуется доказать, что AB = BC = CD = DE = EA.
Доказательство. Соединим вершины описанного многоугольника и точки прикосновения с центром круга O.
1. Два прямоугольных треугольника aBO и BbO равны, ибо у них BO сторона общая, aO = bO как радиусы, следовательно, ∠aOB = ∠Bob и ∠aBO = ∠bBO, т. е. отрезки, соединяющие вершины описанного многоугольника с центром, делят углы многоугольника пополам.
2. Треугольники AOB и BOC равны, ибо BO сторона общая, ∠ABO = ∠CBO по доказанному, ∠BAO = ∠BCO по условию, следовательно, AB = BC.
Таким образом можно доказать равенство остальных сторон описанного многоугольника, имеющего равные углы (ЧТД).
Теорема 121. По данному вписанному правильному многоугольнику можно описать правильный многоугольник того же числа сторон.
Дан правильный вписанный многоугольник (черт. 195) ABCDEF, следовательно, стороны и углы его равны.
AB = BC = CD = DE = EF = FA и
◡AB = ◡BC = ◡CD = ◡DE = ◡EF = ◡FA
Для построения правильного описанного многоугольника по данному вписанному применяют два способа.
Первый способ. Нужно центр правильного вписанного многоугольника соединить с вершинами и в вершинах провести к этим отрезкам перпендикуляры, которые, пересекаясь, образуют правильный описанный многоугольник.
Проведем радиусы AO, BO, CO, и т. д. и в вершинах A, B, C, D, E, F проведем перпендикуляры к этим радиусам до взаимного их пересечения в точках a, b, c, d, e, f. Образуется многоугольник abcdef.
Требуется доказать, что многоугольник abcdef будет правильным описанным многоугольником.
Доказательство. Многоугольник abcdef будет описанным многоугольником, потому что ab, bc, … будут касательными к окружности, так как они проведены перпендикулярно к радиусам из их концов.
2. Треугольники AaB, BbC … равнобедренны, ибо
∠aAB = ∠aBA
∠bBC = ∠bCB и т. д.
так как они измеряются половиной одной и той же дуги, следовательно, и соответствующие стороны равны
aA = aB, bB = bC, cC = Dc и т. д.
3. Треугольники AaB и BbC равны, ибо AB = BC как стороны правильного вписанного многоугольника
∠aAB = ∠bCB
∠aBA = ∠bBC
ибо они измеряются половиной равных дуг.
Из равенства треугольников AaB и BbC вытекает, что aB = Bb, т. е.
Каждая сторона таким образом описанного многоугольника делится в точке прикосновения пополам.
4. Кроме того,
aA = aB, или ½af = ½ab = ½bc и т. д.
следовательно,
af = ab = bc = cd и т. д.,
т. е. все стороны многоугольника равны.
5. Наконец, ∠a = ∠b, следовательно и все углы многоугольника abcdef равны. Поэтому этот многоугольник правильный (ЧТД).
Второй способ. Нужно из центра на стороне правильного вписанного многоугольника опустить перпендикуляры, продолжить их до пересечения с окружностью и в точках пересечения провести касательные прямые до взаимного их пересечения. Эти точки пересечения и будут вершинами правильного описанного многоугольника.
Дан правильный вписанный многоугольник ABCDEF (черт. 196).
Из центра O опустим перпендикуляр на стороны вписанного многоугольника и в точках m, n, p, q, r, s их встречи с окружностью проведем касательные до их взаимного пересечения в точках a, b, c, d, e, f.
Требуется доказать, что abcdef есть правильный описанный многоугольник.
Доказательство. 1. Стороны многоугольника abcdef касательны к окружности, следовательно, abcdef есть многоугольник описанный.
2. Его стороны параллельны сторонам правильного вписанного многоугольника, поэтому его углы равны
∠a = ∠b = ∠c = ∠d = ∠e = ∠f.
3. Соединим точки m, n, p, q … прямыми линиями.
Точки m, n, p, q … суть середины дуг AB, BC и т. д., следовательно, для дуг и хорд имеют место равенства:
sm = mn = np = pq = qr = rs.
4. Треугольники sam, mbn, ncp … равнобедренны, ибо
∠asm = ∠ams, ∠bmn = ∠bnm и т. д.
следовательно,
as = am, bm = bn, cn = cp и т. д.
5. Треугольники sam и mbn равны, ибо
∠ams = ∠bmn
∠asm = ∠bnm
следовательно, am = bm, т. е. стороны описанного многоугольника делятся в точках прикосновения пополам.
6. Наконец из равенства as = am следует равенство
½af = ½ab или af = ab, т. е.
стороны описанного многоугольника равны.
Таким образом многоугольник abcdef есть правильный описанный многоугольник (ЧТД).
Теорема 122. По данному правильному описанному можно вписать правильный многоугольник того же числа сторон.
Здесь тоже имеют место два способа.
Первый способ. Чтобы по данному правильному описанному вписать правильный многоугольник, нужно соединить точки прикосновения описанного многоугольника между собой.
Дан описанный правильный многоугольник abcdef, следовательно,
ab = bc = cd = de = ef = fa и
∠a = ∠b = ∠c = ∠d = ∠e = ∠f.
Стороны правильного описанного многоугольника (черт. 195) делятся в точках прикосновения пополам, следовательно,
aB = bB = bC = Cc = …
Соединим точки прикосновения A, B, C, D, E, F между собой.
Требуется доказать, что ABCDEF есть правильный вписанный многоугольник, т. е.
AB = BC = CD = DE = EF = FA и
∠A = ∠B = ∠C = ∠D = ∠E = ∠F.
Доказательство. 1. Треугольники AaB и BbC равны, ибо они имеют по равному углу, содержащемуся между двумя равными сторонами. Действительно,
aA = bC
aB = bB
∠a = ∠b
следовательно, AB = BC.
Точно также можно доказать, что
BC = CD = DE = EF = FA,
следовательно, и стороны и дуги AB, BC, CD … равны.
Таким образом стороны вписанного многоугольника равны.
2. Сравнивая две дуги BCDEF и CDEFA, мы находим, что
BCDEF = окружности – AB – AF
CDEFA = окружности – AB – BC.
Так как ◡AF = ◡BC, то
◡BCDEF = ◡CDEFA
следовательно,
∠A = ∠B.
Подобным же образом можно доказать равенство других углов, следовательно,
∠A = ∠B = ∠C = ∠D = ∠E = ∠F
Таким образом углы вписанного многоугольника как и стороны тоже равны, следовательно, ABCDEF правильный вписанный многоугольник (ЧТД).
Второй способ. Чтобы по данному правильному описанному многоугольнику вписать правильный одноименный многоугольник, соединим его вершины с центром круга и точки пересечения этих отрезков с окружностью соединим между собой.
Дан правильный описанный многоугольник ABCDEFA (черт. 197), следовательно,
AB = BC = CD = DE = EF = FA
∠A = ∠B = ∠C = ∠D = ∠E = ∠F
и стороны его делятся в точках прикосновения пополам, т. е.
As = Bs = Cm = Cn = Dn = и т. д.
Соединим вершины его с центром и означим точки пересечения этих линий с окружностью через a, b, c, d, e, f.
Требуется доказать, что многоугольник abcdef правильный.
Доказательство. 1. Углы при центре AOB, BOC, COD и т. д. равны, а следовательно и дуги ab, bc, de, ef, fa равны.
Отсюда вытекает, что стороны тоже равны
ab = bc = cd = de = ef = fa
2. Углы многоугольника тоже равны, ибо измеряются дугами одинаковой величины.
Теорема 123. По данной стороне правильного вписанного многоугольника можно определить сторону описанного многоугольника того же числа сторон.
Означим длину стороны вписанного правильного многоугольника имеющего n сторон через an и одноименного описанного многоугольника через An, а радиус круга через r (черт. 195)
AB = BC = CD = DE = … = an
ab = bc = cd = de = … An
Соединим точку a с O, тогда
aB = ½An, BQ = ½an
Из треугольника aBO имеем:
формулу, определяющую сторону правильного вписанного многоугольника по стороне одноименного правильного описанного многоугольника.
Удвоение числа сторон правильного вписанного многоугольника
Чтобы удвоить число сторон правильного вписанного многоугольника, опускают из центра перпендикуляры на его стороны, соединяют с вершинами данного многоугольника точки пересечения их с окружностью.
1. Полученный таким образом многоугольник будет правильным (черт. 198).
Доказательство. Стороны его равны, ибо перпендикуляры делят как хорды, так и дуги AB, BC, … пополам, следовательно,
Aa = aB = Bb = bC = Cc = …
Углы тогда равны, ибо измеряются одинаковыми дугами.
2. Периметр многоугольника при удвоении числа сторон увеличивается.
Действительно,
Aa + aB > AB
Bb + bC > BC и т. д.
Складывая эти неравенства, получим
Aa + aB + Bb + bC + … > AB + BC + …
Обозначив периметр правильного многоугольника, имеющего n сторон, через pn, имеем:
p2n >pn
Теорема 124. Можно определить длину стороны вписанного многоугольника с удвоенным числом сторон по радиусу и стороне данного многоугольника.
Из треугольника AaO (черт. 198) длина стороны Aa, как стороны, лежащей против острого угла, выражается равенством:
Aa2 = AO2 + aO2 – 2aO · PO.
Из треугольника APO имеем:
Обозначив через r радиус круга, an длину стороны правильного вписанного многоугольника, имеющего n сторон, и через a2n сторону многоугольника с удвоенным числом сторон, мы имеем по формуле (a)
Удвоение числа сторон правильного описанного многоугольника
Чтобы удвоить число сторон правильного описанного многоугольника нужно разделить дуги ab, bc, cd, … пополам и провести через точки деления отрезки mn, pg, rs, … до пересечения их со сторонами данного многоугольника (черт. 199).
В этом случае образуется многоугольник равноугольный, ибо его углы измеряются одинаковой мерой. В равноугольном же описанном многоугольнике стороны равны (теорема 120).
Периметр описанного многоугольника с удвоенным числом сторон уменьшается.
Действительно,
An > αn
Bp > βp, следовательно,
AB > αn + np + pβ
Такие же равенства имеют место и для сторон BC, CD, … и т. д. Сложив их, находим, что
AB + BC + CD + … > mn + np + pq + …
или Pn > P2n
где Pn и P2n означают периметры правильных описанных многоугольников, имеющих n и 2n сторон.
Теорема 125. Сторона правильного вписанного шестиугольника равна радиусу (a6 = r).
Дано. Пусть AB сторона правильного шестиугольника (черт. 200), вписанного в круг, радиус которого обозначим через r.
Требуется доказать, что AB = a6 = r.
Доказательство. Дуга AB равна 60°. Соединив A и B с центром O, имеем треугольник ABO, у которого угол AOB имеет 60° = (2/3)d.
Углы A и B равны, следовательно, из равенства A + B + O = 2d, имеем:
2A + (2/3)d = 2d, откуда A = B = (2/3)d
Таким образом треугольник ABO равносторонний и следовательно AB = AO = r.
Теорема 126. Сторона правильного вписанного треугольника равна радиусу, умноженному на √3 (a3 = r√3).
Дан правильный вписанный треугольник ABC (черт. 201).
Требуется доказать, что AB = r√3.
Доказательство. Из центра O опустим перпендикуляр OD к стороне AB и соединим D с вершинами A и B. Стороны AD и DB как стороны правильного вписанного шестиугольника равны радиусу. Четырехугольник ADBO есть ромб, ибо у него все стороны равны радиусу. Диагонали ромба перпендикулярны и делятся пополам, следовательно,
AE = EB = DE = EO и AB ⊥ DO.
Из треугольника AEO вытекает равенство
AE2 = AO2 – EO2
Так как AE = AB/2, EO = DO/2 = r/2, то это равенство дает
AB2/4 = r2 – r2/4 = (3/4)r2, откуда
AB = a3 = r√3 (ЧТД).
Теорема 127. Сторона вписанного квадрата равна радиусу, умноженному на √2.
Дан правильный вписанный четырехугольник или квадрат ABCD (черт. 202).
Требуется доказать, что AB = r√2.
Доказательство. Соединим B с D. Отрезок BD есть диаметр, ибо прямой угол B опирается на концы диаметра.
Из прямоугольного треугольника ABD вытекает равенство
AB2 + AD2 = BD2
Так как AB = AD, BD = 2r, то
2AB2 = 4r2, откуда AB = a4 = r√2 (ЧТД).
Теорема 128. Сторона правильного вписанного десятиугольника равна большей части радиуса, разделенного в крайнем и среднем отношении.
Дано. Положим AB есть сторона правильного вписанного десятиугольника (черт. 203), следовательно, дуга AB = 1/10 окружности и
∠AOB = (4d)/10 = (2/5)d.
Требуется доказать, что AB есть большая часть радиуса среднепропорциональная между целым радиусом и меньшей его частью.
Доказательство. Соединим точки A и B с центром и разделим угол BAO пополам.
∠AOB = (2/5)d
В равенстве ∠BAO + ∠ABO + ∠AOB = 2d
∠BAO = ∠ABO, следовательно, ∠BAO = ∠ABO = (4/5)d.
Так как ∠α = ∠β по построению, то из равенства
∠α + ∠β = (4/5)d следует, что ∠α = ∠β = (2/5)d
Треугольник ABC равнобедренный, ибо
∠α = (2/5)d, ∠B = (4/5)d,
следовательно, из равенства
∠α + ∠B + ∠ACB = 2d имеем:
(2/5)d + (4/5)d + ∠ACB = 2d и ∠ACB = (4/5)d.
Таким образом
∠ACB = ∠ABC = (4/5)d
следовательно,
AB = AC
Треугольник ACO тоже равнобедренный, ибо
∠β = (2/5)d и ∠AOB = (2/5)d
следовательно, AC = CO и таким образом AB = AC = CO.
Так как отрезок AC делит угол треугольника пополам, то имеет место пропорция (теорема 98)
AO/AB = OC/CB
Так как AB = OC и AO = OB, то
OB/OC = OC/CB
откуда видно, что OC равно большей части радиуса OB, разделенного в крайнем и среднем отношении. Так как OC = AB, то и сторона десятиугольника обладает тем же свойством.
Обозначив ее через a10, а радиус через r, имеем пропорцию
r/a10 = a10/(r – a10)
откуда положительное решение квадратного уравнения, определяющее сторону правильного вписанного десятиугольника, будет:
a10 = ((√5 – 1)/2)r.
Углы правильного многоугольника делятся на :
- центральный угол;
- внутренний угол;
- внешний угол.
Сумма внутреннего и внешнего угла равна (180°).
Сумма внутренних углов правильного многоугольника с (n) сторонами равна:
((n – 2)180°)
Для нахождения внутреннего угла используют формулу:
(alpha = frac{{{{180}^o}(n – 2)}}{n})
(n)– число сторон
Для нахождения внешнего угла используют формулу:
(varphi = frac{{{{360}^o}}}{n})
(n)– число сторон
Для нахождения центрального угла используют формулу:
(beta = frac{{{{360}^o}}}{n})
(n)– число сторон
Больше уроков и заданий по всем школьным предметам в онлайн-школе “Альфа”. Запишитесь на пробное занятие прямо сейчас!
Запишитесь на бесплатное тестирование знаний!
Правильный многоугольник
Угол
Многоугольник представляет плоскую замкнутую геометрическую фигуру, у которой может быть три, четыре и более сторон, пересекающихся в трех, четырех и более точках, называющихся вершинами. Называются они в соответствии с количеством сторон или вершин. Например, многоугольник с пятью сторонами называется пятиугольник, с шестью — шестиугольник и т. д. Правильным называют многоугольник с равными углами и сторонами. Например, квадрат. Если в задании известна одна из этих величин, несложно узнать остальные. В равностороннем n-угольнике, сумма всех углов рассчитывается как:
(n — 2) 180°
а сумма всех его сторон будет равна:
P = na
P — периметр;
а — сторона;
n — количество сторон.
Определяем угол правильного n-угольника:
А = (n — 2) / n х 180°
Если в задании имеется радиус вписанной окружности ®, тогда сторону (а) правильного n-угольника определяет по формуле:
a = 2r · tg · 180° / n
a = 2r · tg · π / n
Если задан радиус ® описанной окружности, то находим сторону по формуле:
a = 2 R · sin · 180° / n
a = 2 R · sin · π / n
Соответственно, если известна сторона правильного n-угольника, находим r вписанной окружности:
r = a / (2 tg · 180° / n)
r = a / (2 tg · π / n)
и R описанной окружности n-угольника по его стороне:
R= a / (2 sin · 180° / n)
R= a / (2 sin · π / n)
Онлайн калькулятор поможет вам быстро и правильно определить число и величину сторон правильного многоугольника, размер его внешнего и внутреннего углов, а также другие показатели.