Арккосинус(y = arccos(x)) – это обратная тригонометрическая функция к косинусу x = cos(y). Область определения -1 ≤ x ≤ 1 и множество значений 0 ≤ y ≤ π.
arccos(1) = 0° | arccos(-0.5) = 120° | arccos(-0.5) = 240° |
arccos(0.9998476952) = 1° | arccos(-0.5150380749) = 121° | arccos(-0.4848096202) = 241° |
arccos(0.999390827) = 2° | arccos(-0.5299192642) = 122° | arccos(-0.4694715628) = 242° |
arccos(0.9986295348) = 3° | arccos(-0.544639035) = 123° | arccos(-0.4539904997) = 243° |
arccos(0.9975640503) = 4° | arccos(-0.5591929035) = 124° | arccos(-0.4383711468) = 244° |
arccos(0.9961946981) = 5° | arccos(-0.5735764364) = 125° | arccos(-0.4226182617) = 245° |
arccos(0.9945218954) = 6° | arccos(-0.5877852523) = 126° | arccos(-0.4067366431) = 246° |
arccos(0.9925461516) = 7° | arccos(-0.6018150232) = 127° | arccos(-0.3907311285) = 247° |
arccos(0.9902680687) = 8° | arccos(-0.6156614753) = 128° | arccos(-0.3746065934) = 248° |
arccos(0.9876883406) = 9° | arccos(-0.629320391) = 129° | arccos(-0.3583679495) = 249° |
arccos(0.984807753) = 10° | arccos(-0.6427876097) = 130° | arccos(-0.3420201433) = 250° |
arccos(0.9816271834) = 11° | arccos(-0.656059029) = 131° | arccos(-0.3255681545) = 251° |
arccos(0.9781476007) = 12° | arccos(-0.6691306064) = 132° | arccos(-0.3090169944) = 252° |
arccos(0.9743700648) = 13° | arccos(-0.6819983601) = 133° | arccos(-0.2923717047) = 253° |
arccos(0.9702957263) = 14° | arccos(-0.6946583705) = 134° | arccos(-0.2756373558) = 254° |
arccos(0.9659258263) = 15° | arccos(-0.7071067812) = 135° | arccos(-0.2588190451) = 255° |
arccos(0.9612616959) = 16° | arccos(-0.7193398003) = 136° | arccos(-0.2419218956) = 256° |
arccos(0.956304756) = 17° | arccos(-0.7313537016) = 137° | arccos(-0.2249510543) = 257° |
arccos(0.9510565163) = 18° | arccos(-0.7431448255) = 138° | arccos(-0.2079116908) = 258° |
arccos(0.9455185756) = 19° | arccos(-0.7547095802) = 139° | arccos(-0.1908089954) = 259° |
arccos(0.9396926208) = 20° | arccos(-0.7660444431) = 140° | arccos(-0.1736481777) = 260° |
arccos(0.9335804265) = 21° | arccos(-0.7771459615) = 141° | arccos(-0.156434465) = 261° |
arccos(0.9271838546) = 22° | arccos(-0.7880107536) = 142° | arccos(-0.139173101) = 262° |
arccos(0.9205048535) = 23° | arccos(-0.79863551) = 143° | arccos(-0.1218693434) = 263° |
arccos(0.9135454576) = 24° | arccos(-0.8090169944) = 144° | arccos(-0.1045284633) = 264° |
arccos(0.906307787) = 25° | arccos(-0.8191520443) = 145° | arccos(-0.08715574275) = 265° |
arccos(0.8987940463) = 26° | arccos(-0.8290375726) = 146° | arccos(-0.06975647374) = 266° |
arccos(0.8910065242) = 27° | arccos(-0.8386705679) = 147° | arccos(-0.05233595624) = 267° |
arccos(0.8829475929) = 28° | arccos(-0.8480480962) = 148° | arccos(-0.0348994967) = 268° |
arccos(0.8746197071) = 29° | arccos(-0.8571673007) = 149° | arccos(-0.01745240644) = 269° |
arccos(0.8660254038) = 30° | arccos(-0.8660254038) = 150° | arccos(0) = 270° |
arccos(0.8571673007) = 31° | arccos(-0.8746197071) = 151° | arccos(0.01745240644) = 271° |
arccos(0.8480480962) = 32° | arccos(-0.8829475929) = 152° | arccos(0.0348994967) = 272° |
arccos(0.8386705679) = 33° | arccos(-0.8910065242) = 153° | arccos(0.05233595624) = 273° |
arccos(0.8290375726) = 34° | arccos(-0.8987940463) = 154° | arccos(0.06975647374) = 274° |
arccos(0.8191520443) = 35° | arccos(-0.906307787) = 155° | arccos(0.08715574275) = 275° |
arccos(0.8090169944) = 36° | arccos(-0.9135454576) = 156° | arccos(0.1045284633) = 276° |
arccos(0.79863551) = 37° | arccos(-0.9205048535) = 157° | arccos(0.1218693434) = 277° |
arccos(0.7880107536) = 38° | arccos(-0.9271838546) = 158° | arccos(0.139173101) = 278° |
arccos(0.7771459615) = 39° | arccos(-0.9335804265) = 159° | arccos(0.156434465) = 279° |
arccos(0.7660444431) = 40° | arccos(-0.9396926208) = 160° | arccos(0.1736481777) = 280° |
arccos(0.7547095802) = 41° | arccos(-0.9455185756) = 161° | arccos(0.1908089954) = 281° |
arccos(0.7431448255) = 42° | arccos(-0.9510565163) = 162° | arccos(0.2079116908) = 282° |
arccos(0.7313537016) = 43° | arccos(-0.956304756) = 163° | arccos(0.2249510543) = 283° |
arccos(0.7193398003) = 44° | arccos(-0.9612616959) = 164° | arccos(0.2419218956) = 284° |
arccos(0.7071067812) = 45° | arccos(-0.9659258263) = 165° | arccos(0.2588190451) = 285° |
arccos(0.6946583705) = 46° | arccos(-0.9702957263) = 166° | arccos(0.2756373558) = 286° |
arccos(0.6819983601) = 47° | arccos(-0.9743700648) = 167° | arccos(0.2923717047) = 287° |
arccos(0.6691306064) = 48° | arccos(-0.9781476007) = 168° | arccos(0.3090169944) = 288° |
arccos(0.656059029) = 49° | arccos(-0.9816271834) = 169° | arccos(0.3255681545) = 289° |
arccos(0.6427876097) = 50° | arccos(-0.984807753) = 170° | arccos(0.3420201433) = 290° |
arccos(0.629320391) = 51° | arccos(-0.9876883406) = 171° | arccos(0.3583679495) = 291° |
arccos(0.6156614753) = 52° | arccos(-0.9902680687) = 172° | arccos(0.3746065934) = 292° |
arccos(0.6018150232) = 53° | arccos(-0.9925461516) = 173° | arccos(0.3907311285) = 293° |
arccos(0.5877852523) = 54° | arccos(-0.9945218954) = 174° | arccos(0.4067366431) = 294° |
arccos(0.5735764364) = 55° | arccos(-0.9961946981) = 175° | arccos(0.4226182617) = 295° |
arccos(0.5591929035) = 56° | arccos(-0.9975640503) = 176° | arccos(0.4383711468) = 296° |
arccos(0.544639035) = 57° | arccos(-0.9986295348) = 177° | arccos(0.4539904997) = 297° |
arccos(0.5299192642) = 58° | arccos(-0.999390827) = 178° | arccos(0.4694715628) = 298° |
arccos(0.5150380749) = 59° | arccos(-0.9998476952) = 179° | arccos(0.4848096202) = 299° |
arccos(0.5) = 60° | arccos(-1) = 180° | arccos(0.5) = 300° |
arccos(0.4848096202) = 61° | arccos(-0.9998476952) = 181° | arccos(0.5150380749) = 301° |
arccos(0.4694715628) = 62° | arccos(-0.999390827) = 182° | arccos(0.5299192642) = 302° |
arccos(0.4539904997) = 63° | arccos(-0.9986295348) = 183° | arccos(0.544639035) = 303° |
arccos(0.4383711468) = 64° | arccos(-0.9975640503) = 184° | arccos(0.5591929035) = 304° |
arccos(0.4226182617) = 65° | arccos(-0.9961946981) = 185° | arccos(0.5735764364) = 305° |
arccos(0.4067366431) = 66° | arccos(-0.9945218954) = 186° | arccos(0.5877852523) = 306° |
arccos(0.3907311285) = 67° | arccos(-0.9925461516) = 187° | arccos(0.6018150232) = 307° |
arccos(0.3746065934) = 68° | arccos(-0.9902680687) = 188° | arccos(0.6156614753) = 308° |
arccos(0.3583679495) = 69° | arccos(-0.9876883406) = 189° | arccos(0.629320391) = 309° |
arccos(0.3420201433) = 70° | arccos(-0.984807753) = 190° | arccos(0.6427876097) = 310° |
arccos(0.3255681545) = 71° | arccos(-0.9816271834) = 191° | arccos(0.656059029) = 311° |
arccos(0.3090169944) = 72° | arccos(-0.9781476007) = 192° | arccos(0.6691306064) = 312° |
arccos(0.2923717047) = 73° | arccos(-0.9743700648) = 193° | arccos(0.6819983601) = 313° |
arccos(0.2756373558) = 74° | arccos(-0.9702957263) = 194° | arccos(0.6946583705) = 314° |
arccos(0.2588190451) = 75° | arccos(-0.9659258263) = 195° | arccos(0.7071067812) = 315° |
arccos(0.2419218956) = 76° | arccos(-0.9612616959) = 196° | arccos(0.7193398003) = 316° |
arccos(0.2249510543) = 77° | arccos(-0.956304756) = 197° | arccos(0.7313537016) = 317° |
arccos(0.2079116908) = 78° | arccos(-0.9510565163) = 198° | arccos(0.7431448255) = 318° |
arccos(0.1908089954) = 79° | arccos(-0.9455185756) = 199° | arccos(0.7547095802) = 319° |
arccos(0.1736481777) = 80° | arccos(-0.9396926208) = 200° | arccos(0.7660444431) = 320° |
arccos(0.156434465) = 81° | arccos(-0.9335804265) = 201° | arccos(0.7771459615) = 321° |
arccos(0.139173101) = 82° | arccos(-0.9271838546) = 202° | arccos(0.7880107536) = 322° |
arccos(0.1218693434) = 83° | arccos(-0.9205048535) = 203° | arccos(0.79863551) = 323° |
arccos(0.1045284633) = 84° | arccos(-0.9135454576) = 204° | arccos(0.8090169944) = 324° |
arccos(0.08715574275) = 85° | arccos(-0.906307787) = 205° | arccos(0.8191520443) = 325° |
arccos(0.06975647374) = 86° | arccos(-0.8987940463) = 206° | arccos(0.8290375726) = 326° |
arccos(0.05233595624) = 87° | arccos(-0.8910065242) = 207° | arccos(0.8386705679) = 327° |
arccos(0.0348994967) = 88° | arccos(-0.8829475929) = 208° | arccos(0.8480480962) = 328° |
arccos(0.01745240644) = 89° | arccos(-0.8746197071) = 209° | arccos(0.8571673007) = 329° |
arccos(0) = 90° | arccos(-0.8660254038) = 210° | arccos(0.8660254038) = 330° |
arccos(-0.01745240644) = 91° | arccos(-0.8571673007) = 211° | arccos(0.8746197071) = 331° |
arccos(-0.0348994967) = 92° | arccos(-0.8480480962) = 212° | arccos(0.8829475929) = 332° |
arccos(-0.05233595624) = 93° | arccos(-0.8386705679) = 213° | arccos(0.8910065242) = 333° |
arccos(-0.06975647374) = 94° | arccos(-0.8290375726) = 214° | arccos(0.8987940463) = 334° |
arccos(-0.08715574275) = 95° | arccos(-0.8191520443) = 215° | arccos(0.906307787) = 335° |
arccos(-0.1045284633) = 96° | arccos(-0.8090169944) = 216° | arccos(0.9135454576) = 336° |
arccos(-0.1218693434) = 97° | arccos(-0.79863551) = 217° | arccos(0.9205048535) = 337° |
arccos(-0.139173101) = 98° | arccos(-0.7880107536) = 218° | arccos(0.9271838546) = 338° |
arccos(-0.156434465) = 99° | arccos(-0.7771459615) = 219° | arccos(0.9335804265) = 339° |
arccos(-0.1736481777) = 100° | arccos(-0.7660444431) = 220° | arccos(0.9396926208) = 340° |
arccos(-0.1908089954) = 101° | arccos(-0.7547095802) = 221° | arccos(0.9455185756) = 341° |
arccos(-0.2079116908) = 102° | arccos(-0.7431448255) = 222° | arccos(0.9510565163) = 342° |
arccos(-0.2249510543) = 103° | arccos(-0.7313537016) = 223° | arccos(0.956304756) = 343° |
arccos(-0.2419218956) = 104° | arccos(-0.7193398003) = 224° | arccos(0.9612616959) = 344° |
arccos(-0.2588190451) = 105° | arccos(-0.7071067812) = 225° | arccos(0.9659258263) = 345° |
arccos(-0.2756373558) = 106° | arccos(-0.6946583705) = 226° | arccos(0.9702957263) = 346° |
arccos(-0.2923717047) = 107° | arccos(-0.6819983601) = 227° | arccos(0.9743700648) = 347° |
arccos(-0.3090169944) = 108° | arccos(-0.6691306064) = 228° | arccos(0.9781476007) = 348° |
arccos(-0.3255681545) = 109° | arccos(-0.656059029) = 229° | arccos(0.9816271834) = 349° |
arccos(-0.3420201433) = 110° | arccos(-0.6427876097) = 230° | arccos(0.984807753) = 350° |
arccos(-0.3583679495) = 111° | arccos(-0.629320391) = 231° | arccos(0.9876883406) = 351° |
arccos(-0.3746065934) = 112° | arccos(-0.6156614753) = 232° | arccos(0.9902680687) = 352° |
arccos(-0.3907311285) = 113° | arccos(-0.6018150232) = 233° | arccos(0.9925461516) = 353° |
arccos(-0.4067366431) = 114° | arccos(-0.5877852523) = 234° | arccos(0.9945218954) = 354° |
arccos(-0.4226182617) = 115° | arccos(-0.5735764364) = 235° | arccos(0.9961946981) = 355° |
arccos(-0.4383711468) = 116° | arccos(-0.5591929035) = 236° | arccos(0.9975640503) = 356° |
arccos(-0.4539904997) = 117° | arccos(-0.544639035) = 237° | arccos(0.9986295348) = 357° |
arccos(-0.4694715628) = 118° | arccos(-0.5299192642) = 238° | arccos(0.999390827) = 358° |
arccos(-0.4848096202) = 119° | arccos(-0.5150380749) = 239° | arccos(0.9998476952) = 359° |
Лучший ответ
Бенцион Гопник
Оракул
(57326)
13 лет назад
есть разные инженерные калькуляторы и везде по разному. . Ну обычно над кнопкой cos наверху написано cos -1 -имеется ввиду арккосинус. Так вот надо нажать на кнопку которая переключает с того что написано на кнопках на то, что написано над кнопками. обычно 2-ndf -вторичная функция. и потом нажать на косинус
Остальные ответы
Николай Михалевич
Знаток
(298)
13 лет назад
арккосинус тебе в помощь
иван пастухов
Ученик
(214)
13 лет назад
зависит от калькулятора)
иногда есть арки, иногда нет
если нет, то подбором)
Yupi
Мыслитель
(9606)
13 лет назад
набираешь известное число и жмешь кнопку архкосинус
alfer
Мастер
(1338)
13 лет назад
написать число, поставить галку на inv и жать на коминус
Таблица косинусов, найти значения угла косинусов
Косинус угла представляет собой одну из тригонометрических функций. Является соотношением ближнего к углу прямоугольного треугольника катета к гипотенузе. Записывается следующим образом: cos (А) = АС/АВ, где АС – ближний катет угла (А), АВ – гипотенуза.
Зачем необходимо производить такие сложные на первый взгляд вычисления? Еще с древних времен известна аксиома: знаю угол – знаю его тригонометрическую функцию. Соответственно, если известен cos любого угла, в таблице Брадиса можно найти этот угол. И наоборот – зная угол, не сложно вычислить косинус. Отсюда можно найти следующие данные: длина катетов и гипотенузы.
Эти данные используются не только в голых математических вычислениях. Невозможно составить даже элементарный план местности, не зная тригонометрических функций. Посредством онлайн калькулятора можно облегчить задачу и получать требуемые данные за доли секунды.
Таблица косинусов от 0° – 360°
|
|
|
|
|
|
|
|
|
|
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»
Треугольник – это форма многоугольника, которая имеет три угла, образованных тремя сторонами. Каждая
из трех точек, в которых пересекаются стороны треугольника, называется его вершиной и образует
определенный угол. Стороны треугольника иногда еще называют линейными длинами, а углы – угловыми.
Сторону, противоположную определенному углу, обозначают той же буквой, что характеризует угол как
прилегающий. Стороны обозначаются латинскими буквами a, b, c, а углы – греческими α, β, γ. Зная
определенные параметры треугольника, можно найти его стороны и углы. При этом можно использовать как
линейные формулы, так и обращаться к различным теоремам, например, теореме синусов и косинусов.
- Угол треугольника через три стороны
- Угол прямоугольного треугольника через две стороны
- Угол треугольника через высоту и катет
- Угол при основании равнобедренного треугольника через
биссектрису и боковую сторону - Угол при основании равнобедренного треугольника через
биссектрису и основание - Угол между боковыми сторонами равнобедренного треугольника
через биссектрису и боковую сторону - Острый угол прямоугольного треугольника через катет и
площадь - Острый угол между боковыми сторонами равнобедренного
треугольника через площадь и боковую сторону
Угол треугольника через три стороны
Для того, чтобы найти угол по трем сторонам, нужно вычислить косинус определенного угла. Согласно
теореме косинусов, «квадрат длины стороны треугольника равен сумме квадратов двух других длин его
сторон, минус удвоенное произведение этих длин сторон на косинус угла между ними». Если взять за
предмет вычисления угол β, соответственно, получаем формулу: a² = b² + c² — 2 · b · c · cos (β).
Из полученного равенства можно вычислить
cos(α) = (a² + c² — b²) / 2ac
cos(β) = (a² + b² — c²) /
2ab
cos(γ) = (b² + c² — a²) / 2cb
где a, b, c — стороны треугольника.
Цифр после
запятой:
Результат в:
Пример. Пусть a = 3, b = 7, c = 6. Cos (β) = (7² + 6² — 3²) : (2 · 7 · 6) = 19/21.
Зная косинус, нужно воспользоваться таблицей Брадиса и по ней найти угол. По таблице Брадиса, если
Cos (β) = 19/21, то β = 58,4°.
Угол прямоугольного треугольника через две стороны
Если известен катет и гипотенуза, угол вычисляется через синус. Если известны катеты и нужно найти
один из острых углов, то можно сделать это через вычисление тангенса.
sin(α) = cos (β) = a / c
sin(β) = cos (α) = b / c
tg(α) = ctg(β) = a
/ b
tg(β) = ctg(α) = b / a
где a, b — катеты, c — гипотенуза.
Цифр после запятой:
Результат в:
Пример. В прямоугольном треугольнике есть два катета a = 12, b = 9 и гипотенуза c =
15. Если известны катеты и нужно найти один из острых углов, то можно сделать это через вычисление
тангенса: tg(α) = a / b, то есть tg(α) = 12 / 9. По таблице Брадиса, угол
α = 53, 13°. Если известен катет и гипотенуза, угол вычисляется через синус sin(α) = a / c = 12 / 15 = 0,8. В
этом случае по таблице Брадиса для синусов и косинусов, значение угла – 36, 87°.
Острый угол прямоугольного треугольника через катет и площадь
Для того, чтобы вычислить размер острого угла, нужно образовать обратную формулу от площади
прямоугольного треугольника, которая вычисляется через катет и острый угол. Выглядит она следующим
образом: S = (a² * tg β) / 2. Из этих показателей известный площадь S и катет a. Отсюда формула для
нахождения угла будет следующая:
tg(α) = a² / 2S
где a — катет, S — площадь прямоугольного треугольника.
Цифр после
запятой:
Результат в:
Пример. Пусть S = 34, a = 8. Получается следующее уравнение: tg(α) = a² / 2S = 8² + 2 * 34 = 132.
Таким образом выходит, что по таблице Брадиса, угол с таким тангенсом равен 43°.
Угол треугольника через высоту и катет
В некоторых прямоугольных треугольниках, в основании которых один острый угол, а второй 90°, один из
катетов (вертикальная прямая, образующая прямой угол) называется также высотой и обозначается как h.
Второй катет a остается со своим обычным названием.
sin α = h / a
где h — высота, a — катет.
Цифр после запятой:
Результат в:
Пример. Если высота h = 8, а катет a = 10, то угол α находится по формуле sin α = h / a = 8 / 10 = 0.8 то по таблице Брадиса составляет 53°
Угол при основании равнобедренного треугольника через биссектрису и основание
Равнобедренный треугольник ABC с основанием AC имеет биссектрису L (она же CK, делящая основание AC
на два отрезка AK и KB). Также биссектриса L делит угол BCA (он же γ) пополам (каждый из этих
половинок угла γ обозначается как x). То есть γ = 2х. Угол BAC (он же α) = BCA (он же γ), то есть α
= γ. При этом биссектриса L (она же CK) образовала в равнобедренном треугольнике ABC новый
равнобедренный треугольник AKC, в котором AK – это основание, а углы KAC и AKC равны между собой и
равны значению угла γ. Учитывая то, что угол γ равен 2х (то есть двум половинкам угла), то для
треугольника AKC, чтобы вычислить углы при основании, формула будет следующая:
tg α = L / (a/2)
где L — биссектриса, a — основание.
Цифр после
запятой:
Результат в:
Пример. Пусть биссектриса L равна 15, основание а равно 45, подставив в формулу
получим tg α = L / (a/2) = 15 / (45/2) = 33.69º
Угол при основании равнобедренного треугольника через биссектрису и боковую сторону
Допустим, что у равнобедренного треугольника ABC углы при основании A (α) и C (γ) равны. Также AB =
BC. Биссектриса L берет начало из вершины А и пересекается с основанием АС, образуя точку
пересечения K, поэтому биссектрису L также можно называть АK. L разделила угол А пополам и основание
поделила на два отрезка: BK и KC. Образовался угол AKC = α (внешний угол для треугольника ABK).
Согласно свойствам внешнего угла:
sin α = L / b
где L — биссектриса, b — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. Пусть биссектриса L равна 15, боковая сторона b равна 30, подставив в
формулу получим sin α = L / b = 15/30 = 30º.
Угол между боковыми сторонами равнобедренного треугольника через биссектрису и боковую сторону
В равнобедренном треугольнике угол ABC (он же β) – это вершина треугольника. Стороны AB и BC равны, и
углы у основания BAC (α) и BCA (γ) тоже равны между собой. Биссектриса L берет начало из вершины B и
пересекается с основанием AC в точке K. Биссектриса BK разделила угол β пополам. Кроме того,
биссектриса разделила треугольник ABC на два прямоугольных треугольника ABK и CBK, так как углы BKA
и BKC – прямые и оба по 90°. Так как треугольники ABK и CBK зеркально одинаковые, для определения
угла β можно взять любой из них. В свою очередь биссектриса BK разделила угол β пополам, например,
на два равных угла х. Оба треугольника, образовавшихся внутри равнобедренного из-за биссектрисы,
прямоугольные, поэтому, чтобы вычислить угол β (он же 2х), нужно взять за правило вычисление угла
через высоту (она в данном случая является также биссектрисой) и катет (это отрезок AK или KC,
которые также равны между собой, так как биссектриса и основание равнобедренного треугольника также
поделила пополам).
2cos(β) = L / b
где L — биссектриса, b — боковая сторона.
Цифр после
запятой:
Результат в:
Пример. В треугольнике BKC известна биссектриса L = 47 см и боковая сторона b = 64
см. Подставив значения в формулу получим: 2cos(β) = L / b = 47 / 64 = 85.49º
Острый угол между боковыми сторонами равнобедренного треугольника через площадь и боковую
сторону
Формула площади равнобедренного треугольника S = 1/2 * bh, где b – это
основание треугольника, а h – это медиана, которая разделила равнобедренный треугольника на два
прямоугольных. Формула для нахождения угла между боковыми сторонами через площадь и боковую сторону
будет следующая:
sin(α) = 2S / b²
где b — боковая сторона равнобедренного треугольника, S — площадь.
Цифр после
запятой:
Результат в:
Пример. Если площадь равна 48, а сторона 10, то угол между боковыми сторонами можно
вычислить следующим образом: sin(α) = 2S / b² = 2 * 48 / 10² = 73.7º
Вне зависимости от условия задачи, известно, что сумма всех углов треугольника составляет 180°.
Поэтому, элементарно вычислить один из углов можно, когда известны два других. Но для вычисления
углов могут быть использованы и другие показатели. Например, для того, чтобы находить стороны и углы
треугольников, в них можно проводить дополнительные меридианы, биссектрисы, чертить окружности и
использовать эти фигуры как дополнительные вводные, через которые по формулам находятся
неизвестные.
Углы очень удобно вычислять через синусы, косинусы, тангенсы и котангенсы, после чего сопоставлять
данные с таблицей Брадиса, в которой эти величины можно сконвертировать в градусы.
Найти угол, зная косинус угла: примеры решения
Евгений Николаевич Беляев
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Имея на руках значение косинуса угла, выяснить угол, которому он принадлежит, совсем не сложно.
Существует специальная тригонометрическая функция, которой можно воспользоваться для этого и называется она арккосинусом (записывается как $arccos$).
Замечание 1
Для того чтобы воспользоваться ей и узнать значение угла, можно применить специальную расширенную таблицу со значениями углов и соответствующих им тригонометрических функций. Эта таблица называется таблицей Брадиса.
Также наиболее часто встречающиеся значения углов и соответствующих им синусов-косинусов собраны в небольшую таблицу внизу:
Рисунок 1. Зная косинус или синус, найти угол. Автор24 — интернет-биржа студенческих работ
Сделаем домашку
с вашим ребенком за 380 ₽
Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online
Бесплатное пробное занятие
*количество мест ограничено
Но есть и другой, более современный вариант нахождения угла по значению косинуса: достаточно включить режим Scientific (Научный) и найти кнопку переключения функций на калькуляторе.
В Windows 10 она обозначается стрелкой как показано на рисунке. При её нажатии кнопка $sin$ поменяется на $sin^{-1}$, а $cos$ на $cos^{-1}$. Теперь для того чтобы узнать значение угла по косинусу — просто набираете значение функции и жмёте кнопку $cos^{-1}$. Не забудьте выбрать нужную единицу измерения — градусы или радианы.
Рисунок 2. Как узнать угол, зная косинус угла. Автор24 — интернет-биржа студенческих работ
Пример 1
Найдите, чему равен $arccos 0,456$.
Решение:
Воспользуемся калькулятором в Научном режиме, на рисунке представлен калькулятор Mac OC, кнопка переключения между $sin$ и $sin^{-1}$ обведена красным:
Рисунок 3. Как по косинусу угла найти угол. Автор24 — интернет-биржа студенческих работ
После нажатия кнопки мы получили значение $α = 27,129°$.
Пример 2
Определите, чему равен угол, если известен его косинус, и он равен $0,95$.
Решение:
Воспользуемся вновь калькулятором и получим, что $α = 18,19°$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 07.05.2023