Вот сильно я сомневаюсь, что, не посчитавши прежде на калькуляторе, можно будет рыть преобразования в нужном направлении, особенно от синуса к углу. От угла к синусу проще, но вопрос по другому сформулирован. На мой взгляд подтасовка преобразований.
Первые два слагаемых √(2+√3) * (√5 -1). Восьмёрку из дроби распределяем между ними
(√(2+√3))/2) * ((√5 -1)/4)
Задний радикал: группируем чётные и нечётные слагаемые
√(10(2 – √3) + 2√5(2 – √3)) = √(10+2√5) (2-√3))
И распределяем восьмёрку (√(2-√3))/2) * √(10+2√5)/4
Из предположения, что sin a = sin(x – y) = sin x cos y – cos x sin y
Выписываем
sin y = √(2-√3))/2 ; cos y = √(2+√3))/2 ; sin 2y = 2 sin y cos y = 1/2; 2y = pi/6; y = pi/12
sin x = (√5 -1)/4 ; cos x = √(10+2√5)/4
sin 2x = 2 sin x cos x = ((√5 -1)√(10+2√5))/8
cos 2x = cos^2 x – sin^2 x = (10 + 2√5 – 5 + 2√5 – 1)/16 = (1+√5)/4
sin 4x = 2 sin 2x cos 2x = 2 * (((√5 -1)√(10+2√5))/8) * (1+√5)/4 = √(10+2√5) / 4
Получилось sin 4x = cos x или cos (pi/2 – 4x) = cos x, pi/2 – 4x = x; x = pi/10
a = x – y = pi/10 – pi/12= pi/60
известен синус угла, как определить угол
Мыслитель
(6934),
закрыт
14 лет назад
Дополнен 14 лет назад
Дополнение:
И где в виндовом куркуляторе кнопка арксинус? Пусть даже в инженерном?
Алексей Сикоренко
Мастер
(1399)
14 лет назад
открыть программу калькулятор на компе, привести к виду Инженерный, он встроен во все системы, и вычислить. не понимаю, в чем собственно проблема. набираешь значение синуса, ставишь там галочку, где INV и жмешь SIN. Не забыть при этом указать единицы измерения угла, это можно видеть под строкой Градусы, Радианы, Грады.
Косинус острого угла прямоугольного треугольника
Cos (α) острого угла прямоугольного треугольника — это отношение прилежащего катета(AC) к гипотенузе(AB).Пимер:α = 40°; AC = 6,98см; AB = 9см. cos (40°) = 6,989 = 0,776
Угол (градусы) | Синус (Sin) | Косинус (Cos) |
0° | 1 | |
1° | 0.0174524064 | 0.9998476952 |
2° | 0.0348994967 | 0.9993908270 |
3° | 0.0523359562 | 0.9986295348 |
4° | 0.0697564737 | 0.9975640503 |
5° | 0.0871557427 | 0.9961946981 |
6° | 0.1045284633 | 0.9945218954 |
7° | 0.1218693434 | 0.9925461516 |
8° | 0.1391731010 | 0.9902680687 |
9° | 0.1564344650 | 0.9876883406 |
10° | 0.1736481777 | 0.9848077530 |
11° | 0.1908089954 | 0.9816271834 |
12° | 0.2079116908 | 0.9781476007 |
13° | 0.2249510543 | 0.9743700648 |
14° | 0.2419218956 | 0.9702957263 |
15° | 0.2588190451 | 0.9659258263 |
16° | 0.2756373558 | 0.9612616959 |
17° | 0.2923717047 | 0.9563047560 |
18° | 0.3090169944 | 0.9510565163 |
19° | 0.3255681545 | 0.9455185756 |
20° | 0.3420201433 | 0.9396926208 |
21° | 0.3583679495 | 0.9335804265 |
22° | 0.3746065934 | 0.9271838546 |
23° | 0.3907311285 | 0.9205048535 |
24° | 0.4067366431 | 0.9135454576 |
25° | 0.4226182617 | 0.9063077870 |
26° | 0.4383711468 | 0.8987940463 |
27° | 0.4539904997 | 0.8910065242 |
28° | 0.4694715628 | 0.8829475929 |
29° | 0.4848096202 | 0.8746197071 |
30° | 0.5 | 0.8660254038 |
31° | 0.5150380749 | 0.8571673007 |
32° | 0.5299192642 | 0.8480480962 |
33° | 0.5446390350 | 0.8386705679 |
34° | 0.5591929035 | 0.8290375726 |
35° | 0.5735764364 | 0.8191520443 |
36° | 0.5877852523 | 0.8090169944 |
37° | 0.6018150232 | 0.7986355100 |
38° | 0.6156614753 | 0.7880107536 |
39° | 0.6293203910 | 0.7771459615 |
40° | 0.6427876097 | 0.7660444431 |
41° | 0.6560590290 | 0.7547095802 |
42° | 0.6691306064 | 0.7431448255 |
43° | 0.6819983601 | 0.7313537016 |
44° | 0.6946583705 | 0.7193398003 |
45° | 0.7071067812 | 0.7071067812 |
46° | 0.7193398003 | 0.6946583705 |
47° | 0.7313537016 | 0.6819983601 |
48° | 0.7431448255 | 0.6691306064 |
49° | 0.7547095802 | 0.6560590290 |
50° | 0.7660444431 | 0.6427876097 |
51° | 0.7771459615 | 0.6293203910 |
52° | 0.7880107536 | 0.6156614753 |
53° | 0.7986355100 | 0.6018150232 |
54° | 0.8090169944 | 0.5877852523 |
55° | 0.8191520443 | 0.5735764364 |
56° | 0.8290375726 | 0.5591929035 |
57° | 0.8386705679 | 0.5446390350 |
58° | 0.8480480962 | 0.5299192642 |
59° | 0.8571673007 | 0.5150380749 |
60° | 0.8660254038 | 0.5 |
61° | 0.8746197071 | 0.4848096202 |
62° | 0.8829475929 | 0.4694715628 |
63° | 0.8910065242 | 0.4539904997 |
64° | 0.8987940463 | 0.4383711468 |
65° | 0.9063077870 | 0.4226182617 |
66° | 0.9135454576 | 0.4067366431 |
67° | 0.9205048535 | 0.3907311285 |
68° | 0.9271838546 | 0.3746065934 |
69° | 0.9335804265 | 0.3583679495 |
70° | 0.9396926208 | 0.3420201433 |
71° | 0.9455185756 | 0.3255681545 |
72° | 0.9510565163 | 0.3090169944 |
73° | 0.9563047560 | 0.2923717047 |
74° | 0.9612616959 | 0.2756373558 |
75° | 0.9659258263 | 0.2588190451 |
76° | 0.9702957263 | 0.2419218956 |
77° | 0.9743700648 | 0.2249510543 |
78° | 0.9781476007 | 0.2079116908 |
79° | 0.9816271834 | 0.1908089954 |
80° | 0.9848077530 | 0.1736481777 |
81° | 0.9876883406 | 0.1564344650 |
82° | 0.9902680687 | 0.1391731010 |
83° | 0.9925461516 | 0.1218693434 |
84° | 0.9945218954 | 0.1045284633 |
85° | 0.9961946981 | 0.0871557427 |
86° | 0.9975640503 | 0.0697564737 |
87° | 0.9986295348 | 0.0523359562 |
88° | 0.9993908270 | 0.0348994967 |
89° | 0.9998476952 | 0.0174524064 |
90° | 1 | |
91° | 0.9998476952 | -0.0174524064 |
92° | 0.9993908270 | -0.0348994967 |
93° | 0.9986295348 | -0.0523359562 |
94° | 0.9975640503 | -0.0697564737 |
95° | 0.9961946981 | -0.0871557427 |
96° | 0.9945218954 | -0.1045284633 |
97° | 0.9925461516 | -0.1218693434 |
98° | 0.9902680687 | -0.1391731010 |
99° | 0.9876883406 | -0.1564344650 |
100° | 0.9848077530 | -0.1736481777 |
101° | 0.9816271834 | -0.1908089954 |
102° | 0.9781476007 | -0.2079116908 |
103° | 0.9743700648 | -0.2249510543 |
104° | 0.9702957263 | -0.2419218956 |
105° | 0.9659258263 | -0.2588190451 |
106° | 0.9612616959 | -0.2756373558 |
107° | 0.9563047560 | -0.2923717047 |
108° | 0.9510565163 | -0.3090169944 |
109° | 0.9455185756 | -0.3255681545 |
110° | 0.9396926208 | -0.3420201433 |
111° | 0.9335804265 | -0.3583679495 |
112° | 0.9271838546 | -0.3746065934 |
113° | 0.9205048535 | -0.3907311285 |
114° | 0.9135454576 | -0.4067366431 |
115° | 0.9063077870 | -0.4226182617 |
116° | 0.8987940463 | -0.4383711468 |
117° | 0.8910065242 | -0.4539904997 |
118° | 0.8829475929 | -0.4694715628 |
119° | 0.8746197071 | -0.4848096202 |
120° | 0.8660254038 | -0.5 |
121° | 0.8571673007 | -0.5150380749 |
122° | 0.8480480962 | -0.5299192642 |
123° | 0.8386705679 | -0.5446390350 |
124° | 0.8290375726 | -0.5591929035 |
125° | 0.8191520443 | -0.5735764364 |
126° | 0.8090169944 | -0.5877852523 |
127° | 0.7986355100 | -0.6018150232 |
128° | 0.7880107536 | -0.6156614753 |
129° | 0.7771459615 | -0.6293203910 |
130° | 0.7660444431 | -0.6427876097 |
131° | 0.7547095802 | -0.6560590290 |
132° | 0.7431448255 | -0.6691306064 |
133° | 0.7313537016 | -0.6819983601 |
134° | 0.7193398003 | -0.6946583705 |
135° | 0.7071067812 | -0.7071067812 |
136° | 0.6946583705 | -0.7193398003 |
137° | 0.6819983601 | -0.7313537016 |
138° | 0.6691306064 | -0.7431448255 |
139° | 0.6560590290 | -0.7547095802 |
140° | 0.6427876097 | -0.7660444431 |
141° | 0.6293203910 | -0.7771459615 |
142° | 0.6156614753 | -0.7880107536 |
143° | 0.6018150232 | -0.7986355100 |
144° | 0.5877852523 | -0.8090169944 |
145° | 0.5735764364 | -0.8191520443 |
146° | 0.5591929035 | -0.8290375726 |
147° | 0.5446390350 | -0.8386705679 |
148° | 0.5299192642 | -0.8480480962 |
149° | 0.5150380749 | -0.8571673007 |
150° | 0.5 | -0.8660254038 |
151° | 0.4848096202 | -0.8746197071 |
152° | 0.4694715628 | -0.8829475929 |
153° | 0.4539904997 | -0.8910065242 |
154° | 0.4383711468 | -0.8987940463 |
155° | 0.4226182617 | -0.9063077870 |
156° | 0.4067366431 | -0.9135454576 |
157° | 0.3907311285 | -0.9205048535 |
158° | 0.3746065934 | -0.9271838546 |
159° | 0.3583679495 | -0.9335804265 |
160° | 0.3420201433 | -0.9396926208 |
161° | 0.3255681545 | -0.9455185756 |
162° | 0.3090169944 | -0.9510565163 |
163° | 0.2923717047 | -0.9563047560 |
164° | 0.2756373558 | -0.9612616959 |
165° | 0.2588190451 | -0.9659258263 |
166° | 0.2419218956 | -0.9702957263 |
167° | 0.2249510543 | -0.9743700648 |
168° | 0.2079116908 | -0.9781476007 |
169° | 0.1908089954 | -0.9816271834 |
170° | 0.1736481777 | -0.9848077530 |
171° | 0.1564344650 | -0.9876883406 |
172° | 0.1391731010 | -0.9902680687 |
173° | 0.1218693434 | -0.9925461516 |
174° | 0.1045284633 | -0.9945218954 |
175° | 0.0871557427 | -0.9961946981 |
176° | 0.0697564737 | -0.9975640503 |
177° | 0.0523359562 | -0.9986295348 |
178° | 0.0348994967 | -0.9993908270 |
179° | 0.0174524064 | -0.9998476952 |
180° | -1 | |
181° | -0.0174524064 | -0.9998476952 |
182° | -0.0348994967 | -0.9993908270 |
183° | -0.0523359562 | -0.9986295348 |
184° | -0.0697564737 | -0.9975640503 |
185° | -0.0871557427 | -0.9961946981 |
186° | -0.1045284633 | -0.9945218954 |
187° | -0.1218693434 | -0.9925461516 |
188° | -0.1391731010 | -0.9902680687 |
189° | -0.1564344650 | -0.9876883406 |
190° | -0.1736481777 | -0.9848077530 |
191° | -0.1908089954 | -0.9816271834 |
192° | -0.2079116908 | -0.9781476007 |
193° | -0.2249510543 | -0.9743700648 |
194° | -0.2419218956 | -0.9702957263 |
195° | -0.2588190451 | -0.9659258263 |
196° | -0.2756373558 | -0.9612616959 |
197° | -0.2923717047 | -0.9563047560 |
198° | -0.3090169944 | -0.9510565163 |
199° | -0.3255681545 | -0.9455185756 |
200° | -0.3420201433 | -0.9396926208 |
201° | -0.3583679495 | -0.9335804265 |
202° | -0.3746065934 | -0.9271838546 |
203° | -0.3907311285 | -0.9205048535 |
204° | -0.4067366431 | -0.9135454576 |
205° | -0.4226182617 | -0.9063077870 |
206° | -0.4383711468 | -0.8987940463 |
207° | -0.4539904997 | -0.8910065242 |
208° | -0.4694715628 | -0.8829475929 |
209° | -0.4848096202 | -0.8746197071 |
210° | -0.5 | -0.8660254038 |
211° | -0.5150380749 | -0.8571673007 |
212° | -0.5299192642 | -0.8480480962 |
213° | -0.5446390350 | -0.8386705679 |
214° | -0.5591929035 | -0.8290375726 |
215° | -0.5735764364 | -0.8191520443 |
216° | -0.5877852523 | -0.8090169944 |
217° | -0.6018150232 | -0.7986355100 |
218° | -0.6156614753 | -0.7880107536 |
219° | -0.6293203910 | -0.7771459615 |
220° | -0.6427876097 | -0.7660444431 |
221° | -0.6560590290 | -0.7547095802 |
222° | -0.6691306064 | -0.7431448255 |
223° | -0.6819983601 | -0.7313537016 |
224° | -0.6946583705 | -0.7193398003 |
225° | -0.7071067812 | -0.7071067812 |
226° | -0.7193398003 | -0.6946583705 |
227° | -0.7313537016 | -0.6819983601 |
228° | -0.7431448255 | -0.6691306064 |
229° | -0.7547095802 | -0.6560590290 |
230° | -0.7660444431 | -0.6427876097 |
231° | -0.7771459615 | -0.6293203910 |
232° | -0.7880107536 | -0.6156614753 |
233° | -0.7986355100 | -0.6018150232 |
234° | -0.8090169944 | -0.5877852523 |
235° | -0.8191520443 | -0.5735764364 |
236° | -0.8290375726 | -0.5591929035 |
237° | -0.8386705679 | -0.5446390350 |
238° | -0.8480480962 | -0.5299192642 |
239° | -0.8571673007 | -0.5150380749 |
240° | -0.8660254038 | -0.5 |
241° | -0.8746197071 | -0.4848096202 |
242° | -0.8829475929 | -0.4694715628 |
243° | -0.8910065242 | -0.4539904997 |
244° | -0.8987940463 | -0.4383711468 |
245° | -0.9063077870 | -0.4226182617 |
246° | -0.9135454576 | -0.4067366431 |
247° | -0.9205048535 | -0.3907311285 |
248° | -0.9271838546 | -0.3746065934 |
249° | -0.9335804265 | -0.3583679495 |
250° | -0.9396926208 | -0.3420201433 |
251° | -0.9455185756 | -0.3255681545 |
252° | -0.9510565163 | -0.3090169944 |
253° | -0.9563047560 | -0.2923717047 |
254° | -0.9612616959 | -0.2756373558 |
255° | -0.9659258263 | -0.2588190451 |
256° | -0.9702957263 | -0.2419218956 |
257° | -0.9743700648 | -0.2249510543 |
258° | -0.9781476007 | -0.2079116908 |
259° | -0.9816271834 | -0.1908089954 |
260° | -0.9848077530 | -0.1736481777 |
261° | -0.9876883406 | -0.1564344650 |
262° | -0.9902680687 | -0.1391731010 |
263° | -0.9925461516 | -0.1218693434 |
264° | -0.9945218954 | -0.1045284633 |
265° | -0.9961946981 | -0.0871557427 |
266° | -0.9975640503 | -0.0697564737 |
267° | -0.9986295348 | -0.0523359562 |
268° | -0.9993908270 | -0.0348994967 |
269° | -0.9998476952 | -0.0174524064 |
270° | -1. | |
271° | -0.9998476952 | 0.0174524064 |
272° | -0.9993908270 | 0.0348994967 |
273° | -0.9986295348 | 0.0523359562 |
274° | -0.9975640503 | 0.0697564737 |
275° | -0.9961946981 | 0.0871557427 |
276° | -0.9945218954 | 0.1045284633 |
277° | -0.9925461516 | 0.1218693434 |
278° | -0.9902680687 | 0.1391731010 |
279° | -0.9876883406 | 0.1564344650 |
280° | -0.9848077530 | 0.1736481777 |
281° | -0.9816271834 | 0.1908089954 |
282° | -0.9781476007 | 0.2079116908 |
283° | -0.9743700648 | 0.2249510543 |
284° | -0.9702957263 | 0.2419218956 |
285° | -0.9659258263 | 0.2588190451 |
286° | -0.9612616959 | 0.2756373558 |
287° | -0.9563047560 | 0.2923717047 |
288° | -0.9510565163 | 0.3090169944 |
289° | -0.9455185756 | 0.3255681545 |
290° | -0.9396926208 | 0.3420201433 |
291° | -0.9335804265 | 0.3583679495 |
292° | -0.9271838546 | 0.3746065934 |
293° | -0.9205048535 | 0.3907311285 |
294° | -0.9135454576 | 0.4067366431 |
295° | -0.9063077870 | 0.4226182617 |
296° | -0.8987940463 | 0.4383711468 |
297° | -0.8910065242 | 0.4539904997 |
298° | -0.8829475929 | 0.4694715628 |
299° | -0.8746197071 | 0.4848096202 |
300° | -0.8660254038 | 0.5 |
301° | -0.8571673007 | 0.5150380749 |
302° | -0.8480480962 | 0.5299192642 |
303° | -0.8386705679 | 0.5446390350 |
304° | -0.8290375726 | 0.5591929035 |
305° | -0.8191520443 | 0.5735764364 |
306° | -0.8090169944 | 0.5877852523 |
307° | -0.7986355100 | 0.6018150232 |
308° | -0.7880107536 | 0.6156614753 |
309° | -0.7771459615 | 0.6293203910 |
310° | -0.7660444431 | 0.6427876097 |
311° | -0.7547095802 | 0.6560590290 |
312° | -0.7431448255 | 0.6691306064 |
313° | -0.7313537016 | 0.6819983601 |
314° | -0.7193398003 | 0.6946583705 |
315° | -0.7071067812 | 0.7071067812 |
316° | -0.6946583705 | 0.7193398003 |
317° | -0.6819983601 | 0.7313537016 |
318° | -0.6691306064 | 0.7431448255 |
319° | -0.6560590290 | 0.7547095802 |
320° | -0.6427876097 | 0.7660444431 |
321° | -0.6293203910 | 0.7771459615 |
322° | -0.6156614753 | 0.7880107536 |
323° | -0.6018150232 | 0.7986355100 |
324° | -0.5877852523 | 0.8090169944 |
325° | -0.5735764364 | 0.8191520443 |
326° | -0.5591929035 | 0.8290375726 |
327° | -0.5446390350 | 0.8386705679 |
328° | -0.5299192642 | 0.8480480962 |
329° | -0.5150380749 | 0.8571673007 |
330° | -0.5 | 0.8660254038 |
331° | -0.4848096202 | 0.8746197071 |
332° | -0.4694715628 | 0.8829475929 |
333° | -0.4539904997 | 0.8910065242 |
334° | -0.4383711468 | 0.8987940463 |
335° | -0.4226182617 | 0.9063077870 |
336° | -0.4067366431 | 0.9135454576 |
337° | -0.3907311285 | 0.9205048535 |
338° | -0.3746065934 | 0.9271838546 |
339° | -0.3583679495 | 0.9335804265 |
340° | -0.3420201433 | 0.9396926208 |
341° | -0.3255681545 | 0.9455185756 |
342° | -0.3090169944 | 0.9510565163 |
343° | -0.2923717047 | 0.9563047560 |
344° | -0.2756373558 | 0.9612616959 |
345° | -0.2588190451 | 0.9659258263 |
346° | -0.2419218956 | 0.9702957263 |
347° | -0.2249510543 | 0.9743700648 |
348° | -0.2079116908 | 0.9781476007 |
349° | -0.1908089954 | 0.9816271834 |
350° | -0.1736481777 | 0.9848077530 |
351° | -0.1564344650 | 0.9876883406 |
352° | -0.1391731010 | 0.9902680687 |
353° | -0.1218693434 | 0.9925461516 |
354° | -0.1045284633 | 0.9945218954 |
355° | -0.0871557427 | 0.9961946981 |
356° | -0.0697564737 | 0.9975640503 |
357° | -0.0523359562 | 0.9986295348 |
358° | -0.0348994967 | 0.9993908270 |
359° | -0.0174524064 | 0.9998476952 |
360° | 1 |
Как найти синус определенного угла в градусах? Нужна сама формула, а не таблица Брадиса
Во-первых, переведите угол из градусов в радианы по формуле x = alpha * pi / 180 а потом воспользуйтесь разложением в ряд Тейлора. С достаточно хорощей степенью точности можно ограничиться формулой sin(x) = x — x^3 / 3
такой формулы нет. только брадис или инженерный калькулятор ой!
Константин! Sin x = x — x^3/6
Синус угла A минут B = (3.14/180) + B * (3.14/(180*60))) Так будет точнее. В некоторых случаях минуты (B) равны нулю, тогда остается только первая часть. В интернете есть готовые калькуляторы, например: <a rel=»nofollow» href=»http:///bradis/tablica-sinusov/» target=»_blank»>http:///bradis/tablica-sinusov/</a> или что-нибудь подобное
Видео
Навигация по записям
Предыдущая статьяРешение слау при помощи обратной матрицы – Решение систем линейных алгебраических уравнений с помощью обратной матрицы.
Следующая статья Тесты по математике с 1 11 класс – Тест по математике 1 — 11 классы
Теги
Как найти угол, если известен синус
Синус и косинус – пара основных тригонометрических функций, которые косвенно выражают величину угла в градусах. Всего таких функций существует больше десятка и среди них есть те, что позволяют по значению, например, синуса восстановить величину угла в градусах. Для практической работы с ними можно использовать программный калькулятор или сетевые сервисы.
Инструкция
Используйте функцию арксинус для вычисления величины угла в градусах, если известно значение синуса этого угла. Если угол обозначить буквой α, в общем виде такое решение можно записать так: α = arcsin(sin(α)).
Если у вас есть возможность пользоваться компьютером, для практических расчетов проще всего использовать встроенный калькулятор операционной системы. В последних двух версиях ОС Windows его можно запустить так: нажмите клавишу Win, наберите буквы «ка» и надавите Enter. В более ранних выпусках этой ОС ссылку «Калькулятор» ищите в подразделе «Стандартные» раздела «Все программы» главного меню системы.
После запуска приложения переключите его в режим, позволяющий работать с тригонометрическими функциями. Сделать это можно выбором строки «Инженерный» в разделе «Вид» меню калькулятора или нажатием клавиш Alt + 2.
Введите значение синуса. По умолчанию в интерфейсе калькулятора нет кнопки для вычисления арксинуса. Чтобы получить возможность использовать эту функцию, вам нужно инвертировать значения кнопок по умолчанию – кликните по клавише Inv в окне программы. В более ранних версиях эту кнопку заменяет чекбокс с таким же обозначением – поставьте в нем отметку.
Кликните по кнопке вычисления синуса – после инвертирования функций ее обозначение сменится на sin⁻¹. Калькулятор рассчитает угол и отобразит его величину.
Можно использовать в расчетах и различные онлайн-сервисы, которых более чем достаточно в интернете. Например, перейдите на страницу http://planetcalc.com/326/, прокрутите ее немного вниз и в поле Input введите значение синуса. Для запуска процедуры вычисления здесь предназначена оранжевая кнопка с надписью Calculate – кликните по ней. Результат вычислений вы найдете в первой строке таблицы под этой кнопкой. Кроме арксинуса в ней отображаются и величины арккосинуса, арктангенса и арккотангенса введенного значения.
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Теорема синусов
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Доказательство теоремы синусов
Теорема синусов звучит так: стороны треугольника пропорциональны синусам противолежащих углов.
Нарисуем стандартный треугольник и запишем теорему формулой:
Формула теоремы синусов:
Докажем теорему с помощью формулы площади треугольника через синус его угла.
Из этой формулы мы получаем два соотношения:
На b сокращаем, синусы переносим в знаменатели:
bc sinα = ca sinβ
Из этих двух соотношений получаем:
Теорема синусов для треугольника доказана.
Эта теорема пригодится, чтобы найти:
- Стороны треугольника, если даны два угла и одна сторона.
- Углы треугольника, если даны две стороны и один прилежащий угол.
Доказательство следствия из теоремы синусов
У теоремы синусов есть важное следствие. Нарисуем треугольник, опишем вокруг него окружность и рассмотрим следствие через радиус.
где R — радиус описанной около треугольника окружности.
Так образовались три формулы радиуса описанной окружности:
Основной смысл следствия из теоремы синусов заключен в этой формуле:
Радиус описанной окружности не зависит от углов α, β, γ. Удвоенный радиус описанной окружности равен отношению стороны треугольника к синусу противолежащего угла.
Для доказательства следствия теоремы синусов рассмотрим три случая.
1. Угол ∠А = α — острый в треугольнике АВС.
Проведем диаметр BA1. В этом случае точка А и точка А1 лежат в одной полуплоскости от прямой ВС.
Используем теорему о вписанном угле и видим, что ∠А = ∠А1 = α. Треугольник BA1C — прямоугольный, в нём ∠ BCA1 = 90°, так как он опирается на диаметр BA1.
Чтобы найти катет a в треугольнике BA1C, нужно умножить гипотенузу BA1 на синус противолежащего угла.
BA1 = 2R, где R — радиус окружности
Следовательно: R = α/2 sinα
Для острого треугольника с описанной окружностью теорема доказана.
2. Угол ∠А = α — тупой в треугольнике АВС.
Проведем диаметр окружности BA1. Точки А и A1 по разные стороны от прямой ВС. Четырёхугольник ACA1B вписан в окружность, и его основное свойство в том, что сумма противолежащих углов равна 180°.
Следовательно, ∠А1 = 180° – α.
Вспомним свойство вписанного в окружность четырёхугольника:
Также известно, что sin(180° – α) = sinα.
В треугольнике BCA1 угол при вершине С равен 90°, потому что он опирается на диаметр. Следовательно, катет а мы находим таким образом:
α = 2R sin (180° – α) = 2R sinα
Следовательно: R = α/2 sinα
Для тупого треугольника с описанной окружностью теорема доказана.
Часто используемые тупые углы:
- sin120° = sin(180° – 60°) = sin60° = 3/√2;
- sin150° = sin(180° – 30°) = sin30° = 1/2;
- sin135° = sin(180° – 45°) = sin45° = 2/√2.
3. Угол ∠А = 90°.
В прямоугольнике АВС угол А прямой, а противоположная сторона BC = α = 2R, где R — это радиус описанной окружности.
Для прямоугольного треугольника с описанной окружностью теорема доказана.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.
Теорема о вписанном в окружность угле
Из теоремы синусов и ее следствия можно сделать любопытный вывод: если известна одна сторона треугольника и синус противолежащего угла — можно найти и радиус описанной окружности. Но треугольник не задаётся только этими величинами. Это значит, что если треугольник еще не задан, найти радиус описанной окружности возможно.
Раскроем эту тему на примере теоремы о вписанном в окружность угле и следствиях из нее.
Теорема о вписанном угле: вписанный в окружность угол измеряется половиной дуги, на которую он опирается.
∠А = α опирается на дугу ВС. Дуга ВС содержит столько же градусов, сколько ее центральный угол ∠BOC.
Формула теоремы о вписанном угле:
Следствие 1 из теоремы о вписанном в окружность угле
Вписанные углы, опирающиеся на одну дугу, равны.
∠А = ∠BAC опирается на дугу ВС. Поэтому ∠A = 1/2(∠COB).
Если мы возьмём точки A1, А2. Аn и проведём от них лучи, которые опираются на одну и ту же дугу, то получим:
На рисунке изображено множество треугольников, у которых есть общая сторона СВ и одинаковый противолежащий угол. Треугольники являются подобными, и их объединяет одинаковый радиус описанной окружности.
Следствие 2 из теоремы о вписанном в окружность угле
Вписанные углы, которые опираются на диаметр, равны 90°, то есть прямые.
ВС — диаметр описанной окружности, следовательно ∠COB = 180°.
Следствие 3 из теоремы о вписанном в окружность угле
Сумма противоположных углов вписанного в окружность четырёхугольника равна 180°. Это значит, что:
Угол ∠А = α опирается на дугу DCB. Поэтому DCB = 2α по теореме о вписанном угле.
Угол ∠С = γ опирается на дугу DAB. Поэтому DAB = 2γ.
Но так как 2α и 2γ — это вся окружность, то 2α + 2γ = 360°.
Следовательно: α + γ = 180°.
Поэтому: ∠A + ∠C = 180°.
Следствие 4 из теоремы о вписанном в окружность угле
Синусы противоположных углов вписанного четырехугольника равны. То есть:
sinγ = sin(180° – α)
Так как sin(180° – α) = sinα, то sinγ = sin(180° – α) = sinα
Примеры решения задач
Теорема синусов и следствия из неё активно используются при решении задач. Рассмотрим несколько примеров, чтобы закрепить материал.
Пример 1. В треугольнике ABC ∠A = 45°,∠C = 15°, BC = 4√6. Найти AC.
-
Согласно теореме о сумме углов треугольника:
∠B = 180° – 45° – 15° = 120°
Пример 2. Гипотенуза и один из катетов прямоугольного треугольника равны 10 и 8 см. Найти угол, который расположен напротив данного катета.
В этой статье мы узнали, что в прямоугольном треугольнике напротив гипотенузы располагается угол, равный 90°. Примем неизвестный угол за x. Тогда соотношение сторон выглядит так:
Значит x = sin (4/5) ≈ 53,1°.
Ответ: угол составляет примерно 53,1°.
Запоминаем
Обычная теорема: стороны треугольника пропорциональны синусам противолежащих углов.
>
Расширенная теорема: в произвольном треугольнике справедливо следующее соотношение:
Синус угла. Таблица синусов.
Синус угла через градусы, минуты и секунды
Синус угла через десятичную запись угла
Как найти угол зная синус этого угла
У синуса есть обратная тригонометрическая функция – arcsin(y)=x
Пример sin(30°) = 1/2; arcsin(1/2) = 30°
Определение синуса
Синусом острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
Синусом угла α называется ордината точки B единичной окружности, полученной при повороте точки P(1;0) на угол α.
Периодичность синуса
Функция y = sin(x) периодична, с периодом 2π
Площадь треугольника через синус
Определение
Площадь треугольника через синус — это площадь треугольника,
выраженная через две любые стороны треугольника и синус угла между ними.
Синус угла — это число, которое используется для нахождения
разных величин в треугольниках, его можно найти в специальных таблицах.
Введение
Площадь треугольника кроме половины произведения высоты
на основания, можно также найти и другим способом.
Мало кто знает, но через синусы углов можно найти обычно
не только стороны, но и площадь любого треугольника!
Площадь треугольника выраженная без синуса численно равна
половине произведения двух сторон друг на друга
на синус угла между ними.
Площадь треугольника через синус ищется только в том случае,
если по другой формуле площадь треугольника найти нельзя.
Теорема
( S = frac<1>2 * BC * AC * sin angle BCA )
Площадь произвольного треугольника равна полусумме
произведения двух любых сторон треугольника друг на друга,
и на синус угла между этими сторонами.
Формула
[ S = frac<1>2 * a * b * sin α ]
Где a, b — две стороны треугольника, синус α — синус угла α.
Пример
Для примера, возьмем треугольник omk, изображенный на рисунке 1, со сторонами om, mk, ok.
Известно, что mk равен 6, ok равен 8, синус угла okm равен 1/4.
Нужно найти площадь треугольника omk.
Дано: △omk, mk = 6, ok = 8, sin okm = 1/4.
Найти: S △omk — ?
Решение:
1) ( S = frac<1>2*a*b*sin α ) ( implies ) ( S = frac<1>2*mk*ok*sin okm )
2) S = 1/2 * 6 * 8 * 1/4 = 1/2 * 6 * 8 * 0.25 = 1/2 * 48 * 0.25 = 1/2 * 12 = 6
Ответ: Площадь треугольника omk равна 6.
Доказательство
Докажем, что площадь произвольного треугольника
равна полусумме произведения двух любых сторон
друг на друга, и на синус угла между этими сторонами.
Чтобы вам наглядно было видно, как мы доказываем,
используем один из известнейших треугольников — египетский треугольник.
Высота в египетском треугольнике равна длине одного из катетов.
Построим прямоугольный треугольник, изображенный на рисунке 2,
со сторонами 3,4,5 с одним из углов 90 градусов.
Первым делом найдем площадь обычной формулой,
затем с помощью синуса. Площадь равна половине
основания на высоту — ½3*4 = 6. Теперь найдем с
помощью синуса: ½3*4*sin90 = 6 * 1 = 6. Как видим,
полученные значения площадей сходятся, соответственно
через синус можно найти площадь треугольника ч.т.д.
Теперь, чтобы найти площадь треугольника нам не нужно
знать основание и высоту, можно знать только
две стороны и синус угла между ними.
Заключение
В заключение, можно сказать, что площадь
треугольника можно найти разными способами.
Например, в прямоугольном треугольнике площадь
рассчитать легче чем в любом другом треугольнике,
так как высота уже известна. Именно поэтому,
в школьном курсе, отчасти так подробно изучаются
прямоугольные треугольники. В Древнем Египте были
распространены прямоугольные треугольники со
сторонами 3,4,5; 6,8,10; 5,12,13. Длины этих прямоугольных
треугольников треугольников целые, что значительно,
упрощало разного рода вычисления.
Формулу площади треугольника делает универсальной то,
что она может применена к абсолютно любым треугольникам.
Главное, чтобы были известные две стороны,
и угол или синус угла между ними.
Формула площади треугольника через синус — универсальна,
поэтому может быть применена к любым видам треугольников.
[spoiler title=”источники:”]
http://calc-best.ru/matematicheskie/trigonometriya/sinus-ugla?n1=3
http://colibrus.ru/ploschad-treugolnika-cherez-sinus-ugla-i-dve-storony/
[/spoiler]