Как найти уравнение гиперболы по двум точкам

Как составить каноническое уравнение гиперболы зная координаты двух точек?

Rodion Bokiy



Знаток

(362),
закрыт



12 лет назад

Как составить каноническое уравнение гиперболы зная координаты двух точек?
Координаты:
A(корень из 80; 3) B (4 корня из 6; 3 корня из 2)
Заранее спасибо!

Удачник

Высший разум

(141032)


12 лет назад

Каноническое уравнение гиперболы
x^2/a^2 – y^2/b^2 = 1
Подставляем координаты точек и получаем 2 уравнения с неизвестными а и b.
{ 80/a^2 – 9/b^2 = 1
{ 16*6/a^2 – 9*2/b^2 = 1

{ 80/a^2 – 9/b^2 = 1
{ 96/a^2 – 18/b^2 = 1

{ 80b^2 – 9a^2 = a^2*b^2
{ 96b^2 – 18a^2 = a^2*b^2

{ -160b^2 + 18a^2 = -2a^2*b^2
{ 96b^2 – 18a^2 = a^2*b^2

-64b^2 = -a^2*b^2
a^2 = 64, a = 8
80b^2 – 9*64 = 64b^2
16b^2 = 9*64
b^2 = 9*4 = 36
b = 6

Ответ: Уравнение гиперболы x^2/64 – y^2/36 = 1

Есть небольшая погрешность в вычислениях, вместо 2.9999999999 должно быть 3. Но думаю, что клиенты отнесутся с снисхождением, к одной десяти миллионной погрешности.

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

[spoiler title=”источники:”]

http://abakbot.ru/online-2/365-giper-poin

http://function-x.ru/curves_hyperbola.html

[/spoiler]

Каноническое уравнение гиперболы по двум точкам

Две точки с координатами

Первая координата

Вторая координата

Каноническое уравнение гиперболы
Большая полуось гиперболы
Малая/мнимая полуось гиперболы
Эксцентриситет гиперболы
Фокальный параметр
Фокальное расстояние
Перицентрическое расстояние

Уравнение гиперболы в каноническом виде имеет вот такой вид.

?frac{x^2}{a^2}-frac{y^2}{b^2}=1

Так же как и при расчете  уравнения эллипса по двум точкам, мы можем по двум точкам однозначно построить гиперболу, выраженную через вышеуказанную формулу.

Используя универсальный калькулятор расчет кривой второго порядка на плоскости по точкам, мы легко определим  значения  a и b

Кроме этого, зная эти параметры можно рассчитать следующее:

Большая  полуось   a – расстояние от центра гиперболы, до одной из вершин

Фокальное расстояние c расстояние от центра гиперболы до одного из фокусов

Мнимая полуось   b  – расстояние от вершины гиперболы до асимптоты вдоль направления параллельного оси ординат

Связь между тремя параметрами выражена в одной формуле

c^2=a^2+b^2

Эксцентриситет – коэффициент, численно равный, отношению фокусного расстояния к большой полуоси гиперболы

e=frac{c}{a}

Фокальный параметр –расстояние от фокуса до гиперболы вдоль прямой, параллельной оси ординат 

p=frac{b^2}{a}

Прицельный параметр  –  расстояние от фокуса до асимптоты. Численно равен малой полуоси гиперболы.

Перицентрическое расстояние –расстояние от фокуса до ближайшей вершины гиперболы

Ra=cfrac{1+e}{e}

Примеры задач

Cоставить каноническое уравнение гиперболы по двум точкам Ra=cfrac{1+e}{e}

Вводим данные в поля ввода. Можем писать как выражение, учитвая что квадратный корень обозначается sqrt, а можем сначала получить численные  значения и подставить уже окончательные результаты.

В результате получим

Каноническое уравнение гиперболы
Введенное выражение
Большая полуось гиперболы

4.47213595499958

Малая/мнимая полуось гиперболы

3.4641016147913444

Эксцентриситет гиперболы

1.1661903789073205

Фокальный параметр

1.79999999928

Фокальное расстояние

5.830951894536603

Перицентрическое расстояние

0.8309518945366023

Есть небольшая погрешность в вычислениях, вместо 2.9999999999  должно быть 3. Но думаю, что клиенты отнесутся с снисхождением, к  одной десяти миллионной погрешности.

Удачных расчетов!

Гиперболой
называется геометрическое место точек,
для которых разность
расстояний от двух фиксированных точек
(называемых фокусами) есть величина
постоянная. Причем указанная разность
берется по абсолютному значению и
необходимо, что бы она была меньше
расстояния между фокусами и не равна
нулю. (См. Рис.23)

Рис.23

На
рисунке:

– левый фокальный радиус;



правый фокальный радиус;


(- с; 0) – координаты левого фокуса (точки
F1);


(с; 0) – координаты правого фокуса (точки
F2);

действительная
полуось
гиперболы;

мнимая
полуось гиперболы;


точка (а; 0) – правая вершина гиперболы;


точка (- а; 0) – левая вершина гиперболы;


прямые

– асимптоты гиперболы.

Названия
полуосей не случайны: точки

гиперболе принадлежат, а точки


гиперболе не принадлежат (потому и ось
– мнимая), но мнимая полуось, хотя и не
является частью гиперболы, вполне
определяет ее форму, поскольку именно
между асимптотами гиперболы и располагаются
ветви ее.

Каноническое уравнение гиперболы

(смотри
замечание о каноничности уравнения
).

Связь между полуосями и координатами фокусов гиперболы

При
этом важным является выражение,
связывающее действительную, мнимую
полуось и координату фокуса (сравните
с формой аналогичной связи для параметров
эллипса)


.

Эксцентриситет
гиперболы

Пример 19 (о нахождении уравнения гиперболы)

Эксцентриситет
гиперболы равен

.
Найти каноническое уравнение гиперболы,
если точка

гиперболе принадлежит.

Решение

Прежде
всего, что ищем конкретно? – Ищем значения
a
и b
в каноническом уравнении гиперболы.
Неизвестных величин две, следовательно,
и уравнений для их нахождения должно
быть два.

Первое
уравнение получим из того факта, что
нам известен эксцентриситет гиперболы
и известна связь
между полуосями и координатами фокуса
гиперболы
:


.

Это
первое равенство, а второе получим,
используя тот факт, что точка М гиперболе
принадлежит, т.е., ее координаты обращают
каноническое уравнение гиперболы в
тождество:

и,
окончательно, получаем

Ответ

Искомая
гипербола описывается каноническим
уравнением

x2
– y2
= 1.

Пример 20 (прямая и гипербола)

Через
точку М(0; – 1) и правую вершину гиперболы

3∙x2
– 4∙y2
= 12

проведена
прямая. Найти вторую точку пересечения
прямой с гиперболой.

Решение

Задачу
будем решать в два шага:


найдем уравнение прямой;


найдем координату точки пересечения
прямой и гиперболы.

Шаг
1

Для
нахождения уравнения прямой, проходящей
через точку М(0; – 1) и правую вершину
гиперболы необходимо знать координаты
правой вершины гиперболы. Найдем вторую
точку из уравнения гиперболы, приведя
данное уравнение к каноническому
виду
,
зная при этом, что в каноническом
уравнении важно все: равно выражение
именно
единице, а в самом выражении – значения
действительной и мнимой полуоси – это
знаменатели дробей, в которых числители
x2
и y2.

Откуда
в уравнении гиперболы a
= 2, b
=

,
или координаты правой вершины М2(2;
0). А вот теперь ищем уравнение
прямой, проходящей через две данные
точки

М и М2

Шаг
2

Ищем
координаты точек пересечения найденной
прямой и данной гиперболы. Эти координаты
удовлетворяют обоим уравнениям, т.е.
являются решением системы уравнений

Решаем
полученное уравнение и находим, что x1
= – 4, x2
= 2.

Подставляем
найденные x1
и x2
во второе уравнение системы и находим
координаты точек пересечения прямой с
гиперболой N1(-
4; -3) и N2(2;
0).

Не
трудно убедиться (проверьте самостоятельно)
что точка М гиперболе не принадлежит,
а значит, точек пересечения будет две.

Ответ

Точки
пересечения прямой и гиперболы – N1(-
4; -3) и N2(2;
0).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Добавить комментарий