Как найти уравнение гиперболы проходящей через точку

Как написать уравнение гиперболы по точке

Гипербола проходит через точки и . Найти уравнение гиперболы.

может быть записано так

Определению подлежат a 2 и b 2 . Подставим в это уравнение координаты первой точки и получим

Подставляя в уравнение гиперболы (1) координаты второй точки, получим

Решим систему уравнений

Умножая первое уравнение на 4, а второе на 3 и вычитая из второго первого, получим a 2 = 5. Подставим a 2 = 5 в первое уравнение и получим 20b 2 – 45 = 5b 2 , откуда b 2 = 3. Подставляя найденные значения a 2 и b 2 в (1), получим, что искомое уравнение имеет вид

Гипербола: формулы, примеры решения задач

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

,

где a и b – длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как и .

На чертеже ветви гиперболы – бордового цвета.

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки и , где

,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет .

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет – это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

.

Результат – каноническое уравнение гиперболы:

Если – произвольная точка левой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

Если – произвольная точка правой ветви гиперболы () и – расстояния до этой точки от фокусов , то формулы для расстояний – следующие:

.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

,

называются директрисами гиперболы (на чертеже – прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

,

где – расстояние от левого фокуса до точки любой ветви гиперболы, – расстояние от правого фокуса до точки любой ветви гиперболы и и – расстояния этой точки до директрис и .

Пример 4. Дана гипербола . Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. . Вычисляем:

.

Получаем уравнение директрис гиперболы:

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке “Эллипс” это пример 7.

Характерной особенностью гиперболы является наличие асимптот – прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

.

На чертеже асимптоты – прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

, где .

В том случае, когда угол между асимптотами – прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы и координаты точки , лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы – это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения . Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы

Гипербола – определение и вычисление с примерами решения

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Согласно определению, для гиперболы имеем Из треугольников по теореме Пифагора найдем соответственно.

Следовательно, согласно определению имеем

Возведем обе части равенства в квадрат, получим

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находим Раскроем разность квадратов Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Вновь возведем обе части равенства в квадрат Раскрывая все скобки в правой части уравнения, получим Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Введем обозначение для разности, стоящей в скобках Получим Разделив все члены уравнения на величину получаем каноническое уравнение гиперболы: Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки и следовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: т.е. точками пересечения гиперболы с осью абсцисс будут точки т.е. гипербола не пересекает ось ординат.

Рис. 32. Асимптоты и параметры гиперболы

Определение: Найденные точки называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым не пересекая эти прямые. Из уравнения гиперболы находим, что При неограниченном росте (убывании) переменной х величина следовательно, гипербола будет неограниченно приближаться к прямым

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b – мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Если эксцентриситет и гипербола становится равнобочной. Если и гипербола вырождается в два полубесконечных отрезка

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины:

Следовательно, каноническое уравнение гиперболы имеет вид

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы – в вершинах эллипса

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: или Следовательно, большая полуось эллипса а малая полуось Итак, вершины эллипса расположены на оси и на оси Так как то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Итак, Согласно условию задачи (см. Рис. 33):

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Уравнение гиперболы имеет вид:

Гипербола в высшей математике

Решая его относительно , получим две явные функции

или одну двузначную функцию

Функция имеет действительные значения только в том случае, если . При функция действительных значений не имеет. Следовательно, если , то точек с координатами, удовлетворяющими уравнению (3), не существует.

При получаем.

При каждому значению соответствуют два значения , поэтому кривая симметрична относительно оси . Так же можно убедиться в симметрии относительно оси . Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Точки пересечения гиперболы с осью называются вершинами гиперболы; на рис. 37 они обозначены буквами и .

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением . Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой , а ординату точки на гиперболе через . Тогда , (рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Умножим и разделим правую часть на

Будем придавать все большие и большие значения, тогда правая часть равенства будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой .

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением . Также кусок левой ветви, расположенный во второй четверти, приближается к прямой , а кусок левой ветви, расположенный в третьей четверти, — к прямой .

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями (рис. 37).

Рекомендую подробно изучить предметы:
  • Геометрия
  • Аналитическая геометрия
  • Начертательная геометрия
Ещё лекции с примерами решения и объяснением:
  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

[spoiler title=”источники:”]

http://function-x.ru/curves_hyperbola.html

http://www.evkova.org/giperbola

[/spoiler]

Гиперболой
называется геометрическое место точек,
для которых разность
расстояний от двух фиксированных точек
(называемых фокусами) есть величина
постоянная. Причем указанная разность
берется по абсолютному значению и
необходимо, что бы она была меньше
расстояния между фокусами и не равна
нулю. (См. Рис.23)

Рис.23

На
рисунке:

– левый фокальный радиус;



правый фокальный радиус;


(- с; 0) – координаты левого фокуса (точки
F1);


(с; 0) – координаты правого фокуса (точки
F2);

действительная
полуось
гиперболы;

мнимая
полуось гиперболы;


точка (а; 0) – правая вершина гиперболы;


точка (- а; 0) – левая вершина гиперболы;


прямые

– асимптоты гиперболы.

Названия
полуосей не случайны: точки

гиперболе принадлежат, а точки


гиперболе не принадлежат (потому и ось
– мнимая), но мнимая полуось, хотя и не
является частью гиперболы, вполне
определяет ее форму, поскольку именно
между асимптотами гиперболы и располагаются
ветви ее.

Каноническое уравнение гиперболы

(смотри
замечание о каноничности уравнения
).

Связь между полуосями и координатами фокусов гиперболы

При
этом важным является выражение,
связывающее действительную, мнимую
полуось и координату фокуса (сравните
с формой аналогичной связи для параметров
эллипса)


.

Эксцентриситет
гиперболы

Пример 19 (о нахождении уравнения гиперболы)

Эксцентриситет
гиперболы равен

.
Найти каноническое уравнение гиперболы,
если точка

гиперболе принадлежит.

Решение

Прежде
всего, что ищем конкретно? – Ищем значения
a
и b
в каноническом уравнении гиперболы.
Неизвестных величин две, следовательно,
и уравнений для их нахождения должно
быть два.

Первое
уравнение получим из того факта, что
нам известен эксцентриситет гиперболы
и известна связь
между полуосями и координатами фокуса
гиперболы
:


.

Это
первое равенство, а второе получим,
используя тот факт, что точка М гиперболе
принадлежит, т.е., ее координаты обращают
каноническое уравнение гиперболы в
тождество:

и,
окончательно, получаем

Ответ

Искомая
гипербола описывается каноническим
уравнением

x2
– y2
= 1.

Пример 20 (прямая и гипербола)

Через
точку М(0; – 1) и правую вершину гиперболы

3∙x2
– 4∙y2
= 12

проведена
прямая. Найти вторую точку пересечения
прямой с гиперболой.

Решение

Задачу
будем решать в два шага:


найдем уравнение прямой;


найдем координату точки пересечения
прямой и гиперболы.

Шаг
1

Для
нахождения уравнения прямой, проходящей
через точку М(0; – 1) и правую вершину
гиперболы необходимо знать координаты
правой вершины гиперболы. Найдем вторую
точку из уравнения гиперболы, приведя
данное уравнение к каноническому
виду
,
зная при этом, что в каноническом
уравнении важно все: равно выражение
именно
единице, а в самом выражении – значения
действительной и мнимой полуоси – это
знаменатели дробей, в которых числители
x2
и y2.

Откуда
в уравнении гиперболы a
= 2, b
=

,
или координаты правой вершины М2(2;
0). А вот теперь ищем уравнение
прямой, проходящей через две данные
точки

М и М2

Шаг
2

Ищем
координаты точек пересечения найденной
прямой и данной гиперболы. Эти координаты
удовлетворяют обоим уравнениям, т.е.
являются решением системы уравнений

Решаем
полученное уравнение и находим, что x1
= – 4, x2
= 2.

Подставляем
найденные x1
и x2
во второе уравнение системы и находим
координаты точек пересечения прямой с
гиперболой N1(-
4; -3) и N2(2;
0).

Не
трудно убедиться (проверьте самостоятельно)
что точка М гиперболе не принадлежит,
а значит, точек пересечения будет две.

Ответ

Точки
пересечения прямой и гиперболы – N1(-
4; -3) и N2(2;
0).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Гипербола:

Определение: Гиперболой называется геометрическое место точек абсолютное значение разности расстояний от которых до двух выделенных точек Гипербола - определение и вычисление с примерами решения

Получим каноническое уравнение гиперболы. Выберем декартову систему координат так, чтобы фокусы Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

Рис. 31. Вывод уравнения гиперболы.

Расстояние между фокусами (фокусное расстояние) равно Гипербола - определение и вычисление с примерами решения Согласно определению, для гиперболы имеем Гипербола - определение и вычисление с примерами решения Из треугольников Гипербола - определение и вычисление с примерами решения по теореме Пифагора найдем Гипербола - определение и вычисление с примерами решениясоответственно.

Следовательно, согласно определению имеем

Гипербола - определение и вычисление с примерами решения

Возведем обе части равенства в квадрат, получим

Гипербола - определение и вычисление с примерами решения

Перенося квадратный корень в левую часть, а все остальное в правую часть равенства, находимГипербола - определение и вычисление с примерами решения Раскроем разность квадратов Гипербола - определение и вычисление с примерами решения Подставим найденное выражение в уравнение и сократим обе части равенства на 4, тогда оно перейдет в уравнение Гипербола - определение и вычисление с примерами решения Вновь возведем обе части равенства в квадрат Гипербола - определение и вычисление с примерами решения Раскрывая все скобки в правой части уравнения, получим Гипербола - определение и вычисление с примерами решения Соберем неизвестные в левой части, а все известные величины перенесем в правую часть уравнения, получим Гипербола - определение и вычисление с примерами решения Введем обозначение для разности, стоящей в скобках Гипербола - определение и вычисление с примерами решения Получим Гипербола - определение и вычисление с примерами решения Разделив все члены уравнения на величину Гипербола - определение и вычисление с примерами решения получаем каноническое уравнение гиперболы: Гипербола - определение и вычисление с примерами решения Для знака “+” фокусы гиперболы расположены на оси Ох, вдоль которой вытянута гипербола. Для знака фокусы гиперболы расположены на оси Оу, вдоль которой вытянута гипербола.

Проанализируем полученное уравнение. Если точка М(х;у) принадлежит гиперболе, то ей принадлежат и симметричные точки Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решенияследовательно, гипербола симметрична относительно координатных осей, которые в данном случае будут называться осями симметрии гиперболы (Рис. 32). Найдем координаты точек пересечения гиперболы с координатными осями: Гипербола - определение и вычисление с примерами решения т.е. точками пересечения гиперболы с осью абсцисс будут точки Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения т.е. гипербола не пересекает ось ординат.

Гипербола - определение и вычисление с примерами решения

Рис. 32. Асимптоты и параметры гиперболы Гипербола - определение и вычисление с примерами решения

Определение: Найденные точки Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы.

Докажем, что при возрастании (убывании) переменной х гипербола неограниченно приближается к прямым Гипербола - определение и вычисление с примерами решения не пересекая эти прямые. Из уравнения гиперболы находим, что Гипербола - определение и вычисление с примерами решения При неограниченном росте (убывании) переменной х величина Гипербола - определение и вычисление с примерами решения следовательно, гипербола будет неограниченно приближаться к прямым Гипербола - определение и вычисление с примерами решения

Определение: Прямые, к которым неограниченно приближается график гиперболы называются асимптотами гиперболы.

В данном конкретном случае параметр а называется действительной, а параметр b – мнимой полуосями гиперболы.

Определение: Эксцентриситетом гиперболы называется отношение фокусного расстояния к действительной полуоси гиперболы Гипербола - определение и вычисление с примерами решения

Из определения эксцентриситета гиперболы следует, что он удовлетворяет неравенству Гипербола - определение и вычисление с примерами решения Кроме того, эта характеристика описывает форму гиперболы. Для демонстрации этого факта рассмотрим квадрат отношения мнимой полуоси гиперболы к действительной полуоси Гипербола - определение и вычисление с примерами решения Если эксцентриситет Гипербола - определение и вычисление с примерами решения и гипербола становится равнобочной. Если Гипербола - определение и вычисление с примерами решения и гипербола вырождается в два полубесконечных отрезкаГипербола - определение и вычисление с примерами решения

Пример:

Составить каноническое уравнение гиперболы, если мнимая полуось b = 5 и гипербола проходит через точку М(4; 5).

Решение:

Для решения задачи воспользуемся каноническим уравнением гиперболы, подставив в него все известные величины: Гипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения Следовательно, каноническое уравнение гиперболы имеет видГипербола - определение и вычисление с примерами решения

Пример:

Составить уравнение гиперболы, вершины которой находятся в фокусах, а фокусы – в вершинах эллипса Гипербола - определение и вычисление с примерами решения

Решение:

Для определения координат фокусов и вершин эллипса преобразуем его уравнение к каноническому виду. Эллипс: Гипербола - определение и вычисление с примерами решения илиГипербола - определение и вычисление с примерами решения Следовательно, большая полуось эллипса Гипербола - определение и вычисление с примерами решения а малая полуось Гипербола - определение и вычисление с примерами решения Итак, вершины эллипса расположены на оси Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения на оси Гипербола - определение и вычисление с примерами решения Так как Гипербола - определение и вычисление с примерами решения то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Гипербола - определение и вычисление с примерами решенияИтак, Гипербола - определение и вычисление с примерами решения Согласно условию задачи (см. Рис. 33): Гипербола - определение и вычисление с примерами решения Гипербола - определение и вычисление с примерами решения

Рис. 33. Параметры эллипса и гиперболы

Вычислим длину мнимой полуоси Гипербола - определение и вычисление с примерами решения Уравнение гиперболы имеет вид: Гипербола - определение и вычисление с примерами решения

Гипербола в высшей математике

Рассмотрим уравнение

Гипербола - определение и вычисление с примерами решения

Решая его относительно Гипербола - определение и вычисление с примерами решения, получим две явные функции

Гипербола - определение и вычисление с примерами решения

или одну двузначную функцию

Гипербола - определение и вычисление с примерами решения

Функция Гипербола - определение и вычисление с примерами решения имеет действительные значения только в том случае, если Гипербола - определение и вычисление с примерами решения. При Гипербола - определение и вычисление с примерами решения функция Гипербола - определение и вычисление с примерами решения действительных значений не имеет. Следовательно, если Гипербола - определение и вычисление с примерами решения, то точек с координатами, удовлетворяющими уравнению (3), не существует.

При Гипербола - определение и вычисление с примерами решения получаемГипербола - определение и вычисление с примерами решения.

При Гипербола - определение и вычисление с примерами решения каждому значению Гипербола - определение и вычисление с примерами решения соответствуют два значения Гипербола - определение и вычисление с примерами решения, поэтому кривая симметрична относительно оси Гипербола - определение и вычисление с примерами решения. Так же можно убедиться в симметрии относительно оси Гипербола - определение и вычисление с примерами решения. Поэтому в рассуждениях можно ограничиться рассмотрением только первой четверти. В этой четверти при увеличении х значение у будет также увеличиваться (рис. 36).

Гипербола - определение и вычисление с примерами решения

Кривая, все точки которой имеют координаты, удовлетворяющие уравнению (3), называется гиперболой.

Гипербола в силу симметрии имеет вид, указанный на рис. 37.

Гипербола - определение и вычисление с примерами решения

Точки пересечения гиперболы с осью Гипербола - определение и вычисление с примерами решения называются вершинами гиперболы; на рис. 37 они обозначены буквами Гипербола - определение и вычисление с примерами решения и Гипербола - определение и вычисление с примерами решения.

Часть гиперболы, расположенная в первой и четвертой четвертях, называется правой ветвью, а часть гиперболы, расположенная во второй и третьей четвертях, — левой ветвью.

Рассмотрим прямую, заданную уравнением Гипербола - определение и вычисление с примерами решения. Чтобы не смешивать ординату точки, расположенной на этой прямой, с ординатой точки, расположенной на гиперболе, будем обозначать ординату точки на прямой Гипербола - определение и вычисление с примерами решения, а ординату точки на гиперболе через Гипербола - определение и вычисление с примерами решения. Тогда Гипербола - определение и вычисление с примерами решения, Гипербола - определение и вычисление с примерами решения(рассматриваем только кусок правой ветви, расположенной в первой четверти). Найдем разность ординат точек, взятых на прямой и на гиперболе при одинаковых абсциссах:

Гипербола - определение и вычисление с примерами решения

Умножим и разделим правую часть наГипербола - определение и вычисление с примерами решения

Гипербола - определение и вычисление с примерами решения

или

Гипербола - определение и вычисление с примерами решения

Окончательно

Гипербола - определение и вычисление с примерами решения

Будем придавать Гипербола - определение и вычисление с примерами решения все большие и большие значения, тогда правая часть равенства Гипербола - определение и вычисление с примерами решения будет становиться все меньше и меньше, приближаясь к нулю. Следовательно, разность Гипербола - определение и вычисление с примерами решения будет приближаться к нулю, а это значит, что точки, расположенные на прямой и гиперболе, будут сближаться. Таким образом, можно сказать, что рассматриваемая часть правой ветви гиперболы по мере удаления от начала координат приближается к прямой Гипербола - определение и вычисление с примерами решения.

Вследствие симметрии видно, что часть правой ветви, расположенная в четвертой четверти, будет приближаться к прямой, определяемой уравнением Гипербола - определение и вычисление с примерами решения. Также кусок левой ветви, расположенный во второй четверти, приближается к прямой Гипербола - определение и вычисление с примерами решения, а кусок левой ветви, расположенный в третьей четверти, — к прямой Гипербола - определение и вычисление с примерами решения.

Прямая, к которой неограниченно приближается гипербола при удалении от начала координат, называется асимптотой гиперболы.

Таким образом, гипербола имеет две асимптоты, определяемые уравнениями Гипербола - определение и вычисление с примерами решения (рис. 37).

  • Парабола
  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Правильные многогранники в геометрии
  • Многогранники
  • Окружность
  • Эллипс

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

каноническое уравнение

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

каноническое уравнение

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) – 4(y^2) = 20.

Как решаем:

  1. Приведем данное уравнение к каноническому виду (x^2)/(a^2) – (y^2)/(b^2) = 1.

    Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

    решение уравнения рис1

  2. Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    решение уравнения рис2
  3. Выделяем квадраты в знаменателях:
    решение уравнения рис3
  4. Готово. Можно начертить гиперболу.

Можно было сделать проще и дроби левой части 5(x^2)/20 – 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 – (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 – 8(y^2)/20 = 1.

Как решаем:

решение уравнения 1
решение уравнения 2

и:

  1. Произведем сокращение при помощи трехэтажной дроби:
  2. Воспользуемся каноническим уравнением
    каноническое уравнение

    • Найдем асимптоты гиперболы. Вот так:

      Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
    • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

      Если y = 0, то каноническое уравнение (x^2)/(a^2) – (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

      Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    • Найдем дополнительные точки — хватит двух-трех.

      В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

      Способ такой же, как при построении эллипса. Из полученного канонического уравнения

      решение канонического уравнения

      на черновике выражаем:

      решение уравнения 2

      Уравнение распадается на две функции:

      решение уравнения 3

      — определяет верхние дуги гиперболы (то, что ищем);

      решение уравнения 5

      — определяет нижние дуги гиперболы.

      Далее найдем точки с абсциссами x = 3, x = 4:

      решение уравнения 6

  3. Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.

Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

Действительная ось гиперболы — отрезок А1А2.

Расстояние между вершинами — длина |A1A2| = 2a.

Действительная полуось гиперболы — число a = |OA1| = |OA2|.

Мнимая полуось гиперболы — число b.

В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

Мнимая полуось гипербола

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Форма гиперболы

Повторим основные термины и узнаем, какие у гиперболы бывают формы.

Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

полуфокусное расстояние

Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

гипербола продолжается неограниченно

Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

Фокальное свойство гиперболы

Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a < 2c) следует, что e > 1.

Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

рисунок

Рассмотрим, как это выглядит на прямоугольной системе координат:

  • пусть центр O гиперболы будет началом системы координат;
  • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
  • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

график и формула гиперболы

Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

уравнение

Запишем это уравнение в координатной форме:

уравнение в координатной форму

Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

избавимся от иррациональности

, т.е. выбранная система координат является канонической.

Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) – (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

 

Директориальное свойство гиперболы

Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

Директориальное свойство гиперболы звучит так:

Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

каноническая система координат

На самом деле для фокуса F2 и директрисы d2 условие

условие

можно записать в координатной форме так:

координатная форма

Избавляясь от иррациональности и заменяя e = a/c, c^2 – a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

избавляемся от иррациональности

Построение гиперболы

Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

график функции

Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

рисуем график

Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

По определению эксцентриситет гиперболы равен эксцентриситет гиперболы

Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

Так как b^2 = c^2 – a^2, то величина b изменится.

  1. Пусть c -> a.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

  2. Пусть c -> ∞.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 – y^2 = a^2

Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 – a^2 = a^2. И так как а и b положительные числа, получаем a = b.

Что такое гипербола? Как построить гиперболу? (Для школьников (7-11 классов)).

Математическая гипербола.

Функция заданная формулой (y=frac{k}{x}), где к неравно 0. Число k называется коэффициентом обратной пропорциональности.
Определение гиперболы.
График функции (y=frac{k}{x}) называют гиперболой. Где х является независимой переменной, а у — зависимой.

Что нужно знать, чтобы построить гиперболу?
Теперь обсудим свойства гиперболы:

1. Ветви гиперболы. Если k>o, то ветви гиперболы находятся в 1 и 3 четверти. Если k<0, то ветви гиперболы находятся во 2 и 4 четверти.
гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти. гипербола, где k>0 ветви гиперболы находятся в 1 и 3 четверти

гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти гипербола, где k<0 ветви гиперболы находятся во 2 и 4 четверти

2.Асимптоты гиперболы. Чтобы найти асимптоты гиперболы необходимо,иногда, уравнение гиперболы упростить. Рассмотрим на примере:
Пример №1:
$$y=frac{1}{x}$$
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х не равен 0.
$$yneqcolor{red} {frac{1}{x}}+0$$
(frac{1}{x}) дробь отбрасываем, для того чтобы найти вторую асимптоту.
Остается простое число
y≠0 это вторая асимптота.
И так, асимптоты x≠0 и y≠0 в данном примере совпадают с осями координат OX и OY.
k=1, значит гипербола будет находится в первой и третьей четверти. k всегда находится в числители.
Построим примерный график гиперболы.
гипербола y=1/x

Пример №2:
$$y=frac{1}{x+2}-1$$
Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому х+2 неравен 0.
х+2≠0
х≠-2 это первая асимптота

Находим вторую асимптоту.

$$y=color{red} {frac{1}{x+2}}-1$$

Дробь (color{red} {frac{1}{x+2}}) отбрасываем
Остается y≠ -1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-2 и y≠-1):
построим гиперболу

построить гиперболу

Пример №3:

$$begin{align*}
&y=frac{2+x}{1+x} \\
&y=frac{color{red} {1+1}+x}{1+x} \\
&y=frac{1}{1+x}+frac{1+x}{1+x}\\
&y=frac{1}{1+x}+1\\
&y=frac{1}{color{red} {1+x}}+1
end{align*}$$

Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому 1+х неравен 0.
1+х≠0
х≠-1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red}{frac{1}{1+x}}+1$$

(color{red}{frac{1}{1+x}}) Дробь убираем.

Остается y≠1 это вторая асимптота.

Строим примерный график, отмечаем асимптоты (красным проведены прямые х≠-1 и y≠1):
построить гиперболу

построить гиперболу

3. У гиперболы есть центр симметрии относительно начала координат. Рассмотрим на примере:

$$y=frac{1}{x}$$

Возьмем точку А(1;1) с координатами, которая находится на графике у=1/х. На этом же графике лежит точка B(-1;-1). Видно, что точка А симметрична точке В относительна начала координат.
гипербола 1/х

4. Оси симметрии гиперболы. У гиперболы две оси симметрии. Рассмотрим пример:

$$y=frac{1}{x}$$

Первой осью симметрии является прямая y=x. Посмотрим точки (0,5;2) и (2;0,5) и еще точки (-0,5;-2) и (-2;-0,5). Эти точки расположены по разные стороны данной прямой, но на равных расстояниях от нее, они симметричны относительно этой прямой.

Вторая ось симметрии это прямая y=-x.

оси симметрии гиперболы

5. Гипербола нечетная функция.

$$f(-x)=frac{1}{-x}=-frac{1}{x}=-f(x)$$

6. Область определения гиперболы и область значения гиперболы. Область определения смотрим по оси х. Область значения смотрим по оси у. Рассмотрим на примере:

$$y=frac{-1}{x-1}-1$$

а) Находим первую асимптоту.
Знаменатель не может равняться 0, потому что на 0 делить нельзя, поэтому x-1 неравен 0.
x-1≠0
х≠1 это первая асимптота.

Находим вторую асимптоту.

$$y=color{red} {frac{-1}{x-1}}-1$$

Дробь (color{red} {frac{-1}{x-1}}) удаляем.

Остается y≠ -1 это вторая асимптота.

б) k=-1, значит ветви гиперболы будут находится во второй и четвертой четверти.

в) Возьмем несколько дополнительных точек и отметим их на графике.
х=0 y=0
x=-1 y=-0,5
x=2 y=-2
x=3 y=-1,5

г) Область определения смотрим по оси х. Графика гиперболы не существует по асимптоте х≠1, поэтому область определения будет находится
х ∈ (-∞;1)U(1;+∞).

д) Область значения смотрим по оси y. График гиперболы не существует по асимптоте y≠ -1, поэтому область значения будет находится
y ∈ (-∞;-1)U(-1;+∞).

е) функция возрастает на промежутке x ∈ (-∞;1)U(1;+∞).
график гиперболы

построить гиперболу

7. Убывание и возрастание функции гиперболы. Если k>0, функция убывающая. Если k<0 функция возрастающая.

8. Для более точного построения взять несколько дополнительных точек. Пример смотреть в пункте №6.

Подписывайтесь на канал на YOUTUBE и смотрите видео, подготавливайтесь к экзаменам по математике и геометрии с нами.
реклама

Добавить комментарий