Как найти уравнение грани пирамиды а1а2а3

Онлайн решение Пирамиды по координатам вершин

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольной пирамиды (тетраэдра):

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Пример 1:

Даны координаты вершин пирамиды А1А2А3А4.

Найти:

1) координаты и модули векторов А1 А2и А1 А4;  

2) угол между ребрами А1 А2и А1 А4;          

3) площадь грани А1 А2 А3;         

4) объем пирамиды;

5) уравнение прямой А1 А2;

6) уравнение плоскости А1 А2 А3;

7) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3.

Сделать чертеж.

А1 (0; 4; -4), А2 (5; 1; -1), А3 (-1; -1; 3), А4 (0; -3; 7).

Решение от преподавателя:

Пример 2:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

1. А1 (7; 7; 3), А2 (6; 5; 8), А3 (3; 5; 8), А4 (8; 4; 1).

Решение от преподавателя:

Пример 3:

Решение от преподавателя:

 Уравнение плоскости. 
Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-3)(1*2-0*3) – (y-2)((-2)*2-3*3) + (z+2)((-2)*0-3*1) = 2x + 13y – 3z-38 = 0 

Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 
https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20%20=%20frac%7b|Al%20%2B%20Bm%20%2B%20Cn|%7d%7bsqrt%7bA%5e%7b2%7d%20%2B%20B%5e%7b2%7d%20%2B%20C%5e%7b2%7d%7dsqrt%7bl%5e%7b2%7d%20%2B%20m%5e%7b2%7d%20%2B%20n%5e%7b2%7d%7d%7d
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
Уравнение прямой A1A4
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%203%7d%7b-3%7d%20=%20frac%7by%20-%202%7d%7b0%7d%20=%20frac%7bz%20%2B%202%7d%7b4%7d
γ = arcsin(0.267) = 15.486o 

Уравнение высоты пирамиды через вершину A4(0,2,2) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d%20=%20frac%7bz%20-%20z_%7b0%7d%7d%7bC%7d
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%200%7d%7b2%7d%20=%20frac%7by%20-%202%7d%7b13%7d%20=%20frac%7bz%20-%202%7d%7b-3%7d

Уравнение плоскости через вершину A4(0,2,2) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: 2x + 13y – 3z-38 = 0 
2(x-0)+13(y-2)-3(z-2) = 0 
или 
2x+13y-3z-20 = 0

Пример 4:

Решение от преподавателя:

Даны координаты пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 

  1. Уравнение плоскости
    Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением: 

x-x1

y-y1

z-z1

x2-x1

y2-y1

z2-z1

x3-x1

y3-y1

z3-z1

 

= 0

Уравнение плоскости A1A2A3 

(x-0)(3*2-8*3) – (y-1)(3*2-(-3)*3) + (z-1)(3*8-(-3)*3) = -18x – 15y + 33z-18 = 0 
Упростим выражение: -6x – 5y + 11z-6 = 0 

2) Угол между прямой A1A4 и плоскостью A1A2A3
Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле: 

Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
Уравнение прямой A1A4

γ = arcsin(0.193) = 11.128o 

3) Уравнение высоты пирамиды через вершину A4(0,5,4) 
Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями: 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 

4) Уравнение плоскости через вершину A4(0,5,4) 
Плоскость, проходящая через точку M0(x0;y0;z0) и параллельная плоскости

Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется уравнением: 
A(x-x0) + B(y-y0) + C(z-z0) = 0 
Уравнение плоскости A1A2A3: -6x – 5y + 11z-6 = 0 
-6(x-0)-5(y-5)+11(z-4) = 0 
или 
-6x-5y+11z-19 = 0 

5)  Координаты вектора  A1A4(0;4;3) 

Уравнение прямой, проходящей через точку А1(0,1,1) параллельно вектору А1А2(0,4,3) имеет вид:

Пример 5:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Пример 6:

Решение от преподавателя:

1) Даны координаты  вершин пирамиды: A1(0,1,1), A2(3,4,4), A3(-3,9,3), A4(0,5,4) 
Координаты векторов
Координаты векторов:       A1A2(3;3;3)        A1A4(0;4;3) 

Модули векторов (длина ребер пирамиды) 
Длина вектора a(X;Y;Z) выражается через его координаты формулой: 


Угол между ребрами.

 Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
   ,    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
Найдем угол между ребрами A1A2(3;3;3) и A1A3(0;4;3): 

А1 = arccos(0,808)

Найдем площадь грани с учётом геометрического смысла векторного произведения: 
S =
Найдем векторное произведение

=i(3*2-8*3) – j(3*2-(-3)*3) + k(3*8-(-3)*3) = -18i – 15j + 33k 

3) Объем пирамиды
Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

 

Координатывекторов:A1A2(3;3;3)    A1A3(-3;8;2) A1A4(0;4;3) :      

где определитель матрицы равен: 
∆ = 3*(8*3-4*2)-(-3)*(3*3-4*3)+0*(3*2-8*3) = 39 

Пример 7:

Решение от преподавателя:

  1. Угол между ребрами. 
    Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7ba_%7b1%7da_%7b2%7d%7d%7b|a_%7b1%7d|cdot%20|a_%7b2%7d|%7d
    где a1a2 = X1X2 + Y1Y2 + Z1Z2 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    γ = arccos(0) = 90.0030 
  2. Площадь грани 
    Площадь грани можно найти по формуле: 
    https://chart.googleapis.com/chart?cht=tx&chl=S%20=%20frac%7b1%7d%7b2%7d%20|a|cdot%20|b|%20sin%20gamma
    где 
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%20cos%20gamma%5e%7b2%7d%7d
    Найдем площадь грани A1A2A3 
    Найдем угол между ребрами A1A2(-2;1;3) и A1A3(3;0;2): 
    https://chart.googleapis.com/chart?cht=tx&chl=cos%20gamma%20%20%20=%20frac%7b(-2)cdot%203%20%2B%201cdot%200%20%2B%203cdot%202%7d%7bsqrt%7b14%7dcdot%20sqrt%7b13%7d%7d%20=%200
    https://chart.googleapis.com/chart?cht=tx&chl=sin%20gamma%20%20=%20sqrt%7b1%20-%200%5e%7b2%7d%7d%20=%201
    Площадь грани A1A2A3 
  3. Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен: 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

 

https://chart.googleapis.com/chart?cht=tx&chl=V%20=%20frac%7b1%7d%7b6%7d

https://chart.googleapis.com/chart?cht=tx&chl=%20=%20frac%7b18%7d%7b6%7d%20=%203

где определитель матрицы равен: 
∆ = (-2)*(0*4-0*2)-3*(1*4-0*3)+(-3)*(1*2-0*3) = -18 

Пример 8:

Даны координаты вершин пирамиды А1А2А3А4 . Найти:

1) длину ребра А1А2;

2) угол между рёбрами А1Аи А1А4 ;

3) угол между ребром А1А4 и гранью А1А2А3;

4) площадь грани А1А2А3;

5) объём пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3;

Сделать чертёж.

А1(3; 5; 4),        А2(8; 7; 4),            А3(5; 10; 4),          А4(4; 7; 8).

Решение от преподавателя:

1) Длина ребра A1A2;

2) угол между ребрами А1А2 и А1А4;

3) угол между ребрами А1А4 и гранью А1А2А3;

Найдем уравнение стороны А1А4:

Вектор нормали:  к плоскости А1А2А3.

4) площадь грани А1А2А3;

5) объем пирамиды;

6) уравнение прямой А1А2;

7) уравнение плоскости А1А2А3;

Итак: z=4 – уравнение плоскости А1А2А3.

8) уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

A4O – высота:

Уравнение A4O:

Т.к. , то

В результате получаем уравнение высоты:

Пример 9:

Даны координаты вершин пирамиды А1А2А3А4.

Найти: 1) длину ребра А1 А2;

2) угол между ребрами А1 А2и А1 А4;          

3) угол между ребром А1 А4 и гранью А1 А2 А3;

4) площадь грани А1 А2 А3;         

5) объем пирамиды;

6) уравнение прямой А1 А2;

7) уравнение плоскости А1 А2 А3;

8) уравнение высоты, опущенной из вершины  А4 на грань А1 А2 А3. Сделать чертеж.

А1 (4; 4; 10), А2 (4; 10; 2), А3 (2; 8; 4), А4 (9; 6; 9).

Решение от преподавателя:

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Контрольная работа по мат. анализу 06

Элементы векторной алгебры и аналитической геометрии

Контрольная работа 1

1. Даны координаты вершин пирамиды. Найти: 1) длину рёбер А1А2 и А1А3; 2) Угол между рёбрами А1А2 и А1А3; 3) Площадь грани А1А2А3; 4) Объём пирамиды; 5) Уравнение прямой А1А2; 6) Уравнение плоскости А1А2А3; 7) Угол между ребром А1А4 и гранью А1А2А3; 8) Уравнение высоты, опущенной из вершины А4 на грань А1А2А3. Координаты вершин: А1(5;1;0), А2 (0;1;2), А3(3;0;1), А4(2;2;2).

Координаты векторов находим по формуле: X = xj – xi; Y = yj – yi; Z = zj – zi

Здесь X, Y,Z координаты вектора; xi, yi, zi – координаты точки Аi; xj, yj, zj – координаты точки Аj; Для вектора A1A2 : X = x2 – x1; Y = y2 – y1; Z = z2 – z1

X = 0-5; Y = 1-1; Z = 2-0

1) Длина рёбер А1А2 и А1А3;

Длина вектора a(X;Y;Z) выражается через его координаты формулой:

2) Угол между рёбрами А1А2 и А1А3;

Угол между векторами a1(X1;Y1;Z1), a2(X2;Y2;Z2) можно найти по формуле:

, где a1a2 = X1X2 + Y1Y2 + Z1Z2

Найдем угол между ребрами A1A2 и A1A3

, γ = arccos(0.91) = 24.50

3) Площадь грани А1А2А3;

Найдем площадь грани с учётом геометрического смысла векторного произведения:

4) Объём пирамиды;

Объем пирамиды, построенный на векторах a1(X1;Y1;Z1), a2(X2;Y2;Z2), a3(X3;Y3;Z3) равен:

Находим Определитель матрицы

∆ = (-5) • ((-1) • 2-1 • 1)-(-2) • (0 • 2-1 • 2)+(-3) • (0 • 1-(-1) • 2) = 5

5) Уравнение прямой А1А2;

Прямая, проходящая через точки A1(x1; y1; z1) и A2(x2; y2; z2), представляется уравнениями:

Уравнение прямой A1A2

6) Уравнение плоскости А1А2А3;

Если точки A1(x1; y1; z1), A2(x2; y2; z2), A3(x3; y3; z3) не лежат на одной прямой, то проходящая через них плоскость представляется уравнением:

Уравнение плоскости A1A2A3

(x-5)(0 • 1-(-1) • 2) – (y-1)((-5) • 1-(-2) • 2) + (z-0)((-5) • (-1)-(-2) • 0) = 2x+y+5z-11=0

7) Угол между ребром А1А4 и гранью А1А2А3;

Синус угла между прямой с направляющими коэффициентами (l; m; n) и плоскостью с нормальным вектором N(A; B; C) можно найти по формуле

8) Уравнение высоты, опущенной из вершины А4 на грань А1А2А3.

Прямая, проходящая через точку M0(x0;y0;z0) и перпендикулярная плоскости Ax + By + Cz + D = 0 имеет направляющий вектор (A;B;C) и, значит, представляется симметричными уравнениями:

2. Линия задана уравнением В полярной системе координат

1. построить линию по точкам, начиная от До И придавая значения через промежуток ;

2. найти уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс с полярной осью;

3. по уравнению в декартовой прямоугольной системе координат определить, какая это линия.

1) Построим линию по точкам, начиная от До и придавая Значения через промежуток

2) Построим уравнение данной линии в декартовой прямоугольной системе координат, у которой начало совпадает с полюсом, а положительная полуось абсцисс – с полярной осью.

3) Найдём уравнение данной линии в декартовой системе координат:

Используем формулы перехода от полярной системы координат к декартовой:

Тогда

По уравнению в декартовой прямоугольной системе координат определяем, что это линия – гипербола.

Элементы линейной алгебры

Контрольная работа 2

I. Даны две матрицы А и В. Найти (2АТ-3В)*(А+2ВТ)

,

, ,

, ,

II. Определить собственные значения и собственные векторы матрицы третьего порядка.

Исходная матрица имеет вид:

Составляем систему для определения координат собственных векторов:

(5 – λ)x1-2×2 + 2×3 = 0

0x1 + (5 – λ)x2 + 0x3 = 0

0x1 + 2×2 + (3 – λ)x3 = 0

Составляем характеристическое уравнение и решаем его.

Для этого находим определитель матрицы и приравниваем полученное выражение к нулю.

(5 – λ) • ((5 – λ) • (3 – λ)-2 • 0)-0 • (-2 • (3 – λ)-2 • 2)+0 • (-2 • 0-(5 – λ) • 2) = 0

После преобразований, получаем: – λ3 + 13λ2 – 55λ + 75 = 0

Один из корней уравнения равен λ1 = 3

Тогда характеристическое уравнение можно записать как

(λ -3)( – λ2 + 10λ – 25)=0.

D = 102 – 4 • (-1) • (-25) = 0

Получили собственные числа: λ1 = 3,

Найдём собственный вектор для λ1.

Составляем систему для определения координат собственных векторов:

Подставляя λ = 3 в систему, имеем:

Пусть x1 – свободное неизвестное, тогда выразим через него все остальные x1.

Множество собственных векторов, отвечающих собственному числу λ1= 3 , имеет вид: , где x1 – любое число, отличное от нуля. Выберем из этого множества один вектор, например, положив x1 = 1: .

Рассуждая аналогично, находим собственный вектор, отвечающий собственным числам:

. Следовательно, – любое,

Множество собственных векторов, отвечающих собственным числам , имеет вид: . При x1 = 1 и x3 = 0: , при x1 = 0 и x3 = 1: .

Ответ: Собственные числа: λ1=3, , собственные векторы: , , .

III. Дано комплексное число z. Требуется: 1) записать число z в алгебраической и тригонометрической формах; 2) Найти все корни уравнения w3+z=0

1) – алгебраическая форма

– тригонометрическая форма

2) Найдем корни уравнения w3 =0,

Применим формулу извлечения корней из комплексного числа:

, к=0,1,…,n-1

,

Так как a=, то

Контрольная работа 3

I. Найти пределы функций, не пользуясь правилом Лопиталя.

1.

2.

3.

4.

1.

3.

Использовали эквивалентности бесконечно малых величин при :

4.

II. Задана функция . Найти точки разрыва функции, если они существуют. Сделать чертёж

Построим график заданной функции:

Функция определена на всём множестве чисел и неэлементарная.

Каждая из составляющих функций непрерывна на своём промежутке; заданная функция может иметь точки разрыва только в точках смены аналитических выражений, то есть в точках и .

Исследуем поведение функции в этих точках: найдём значение функции в этих точках и пределы справа и слева,

, . Так как , Следовательно, в этой точке функция имеет разрыв 1-го рода – скачок

, . Так как , то в этой точке функция имеет разрыв 1-го рода – скачок.

III. Найти производные первого порядка данных функций.

1) ;

2) ;

3) ;

4) ;

5)

4) ;

Прологарифмируем данную функцию:

Найдём производную от правой и левой части по х, считая у сложной функцией, зависящей от х.

Тогда

5)

Дифференцируем обе части равенства по х:

Разрешаем равенство относительно :

Окончательно:

IV. Найти и для заданных функций:

1) ;

2)

1) ;

2)

Приложение дифференциального исчисления

Контрольная работа 4

Контрольная работа 5

I. Вычислить определённые интегралы. В п. 1) и 2) результаты проверить дифференцированием.

1)

2)

3)

4)

1)

– верно

– верно

3)

Разложим подынтегральное выражение на простые дроби:

II. Вычислить несобственный интеграл или доказать его расходимость.

III. Вычислить (с точностью до двух знаков после запятой) длину дуги данной линии

По формуле .

В нашем случае

Тогда

Имеем

Ответ:

Даны вершины пирамиды а1 а2 а3 а4 найти уравнение грани

1) правильно
2) нет
Площадь треугольника равна половине длины векторного произведения векторов
векторное произведение А1А2 и А1А3 – это вектор, который находится как формальный определитель
Википедия
А потом находится уже его длина

Помогите пожалуйста.
Даны координаты вершин пирамиды
A1(1,-1,2), A2(0,-1.6), A3(-1,0,2,), A4(1,1,4)
Найти:
длину ребер A1A2, A1A3.
угол между ребрами A1A2, A1A3
площадь грани A1A2A3
объём пирамиды
уровнения прямых A1A2 и A1A4 и А1А3
уровнения плоскостей A1A2A3 и A1A3A4
угол между плоскостями A1A2A3 и A1A3A4
уровнение высоты, опущенной из вершины A4 на грань A1A2A3
построить пирамиду по координатам верши.
Координаты точки А5, симметричной точке А4,относительно прямой А1А2
Координаты точки А6, симметричной точке А4, относительно плоскости А1А2А3
Расстояние между прямыми А1А2 и А3А4

Долго мучался, стараясь решить всё это, облазил весь интернет и этот сайт, и книжки скачивал и решебник онлайн только для проверки можно использовать. вообщем помогить решить

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=onlayn-resheniye-piramidy

http://matica.org.ua/primery/primery/kontrolnaia-rabota-po-mat-analizu6

http://diary.ru/~eek/p54502540_dany-koordinaty-vershiny-piramidy-a1-a2-a3-a4.htm

[/spoiler]

Решение:

Найдем
уравнение плоскости А1А2А3:

x

y

z–2

= 0

3

0

3

-2

1

-5


-3x + 9y +3z – 6 = 0

Итак,
А1А2А3:
x
– 3y
– z
+ 2 = 0.

Нормальный
вектор этой плоскости n{1,
-3, -1} будет направляющим для искомой
прямой. Значит, ее каноническое уравнение
имеет вид:

x – 4

=

y – 1

=

z – 2

1

-3

-1

Задача
10.

Составьте уравнения плоскостей, отстоящих
от плоскости 2x–3y+z–5
=0 на 3.

РЕШЕНИЕ:

1) Точка
М(0, 0, 5) принадлежит этой плоскости.
Действительно, 2∙0–3∙0+5–5=0. Найдем
уравнение прямой L,
проходящей через точку М перпендикулярно
данной плоскости:

L:

x=2t

y=-3t

z=5+t

2)
Плоскость, отстоящая от данной на 3 –
это плоскость, проходящая через точку
А(x0,
y0,
z0)
параллельно данной (нормальный вектор
равен {2, -3, 1}), где x0,
y0,
z0
являются
решениями системы:

x
0
=
2t0,

y0
=
-3t0,

z0
=
5+t0,

(4t0+9t0+5+t0-5)2=9∙14


;

3)
Плоскость Р1,
проходящая через точку

и имеющая нормальный вектор {2, -3, 1}, будет
одной из искомых.

Плоскость
Р2
проходящая через точку

и
имеющая нормальный вектор {2, -3, 1}, также
будет искомой.

Ответ:
P1:

;
P2:

Задача
11.

В пирамиде с вершинами А1(1;-2;1),
А2(3;-2;1),
А3(-2;1;0),
А4(2;2;5)
найдите:

  1. уравнение
    грани А1А2А3;

  2. уравнение
    плоскости, проходящей через высоту
    пирамиды, опущенную из вершины А4
    на грань А1А2А3
    ,
    и
    вершину А1
    пирамиды;

  3. уравнение
    прямой, проходящей через вершину А2
    параллельно ребру А1А4;

  4. точку,
    симметричную вершине А4,
    относительно
    грани А1А2А3.

РЕШЕНИЕ:

1)

А1А2А3:

x–4

y

z

= 0

-6

1

2

4

2

0

–4x + 16 + 8y – 16z = 0

x – 2y + 4z – 4 =
0

2)
Найдем уравнение высоты A4H
пирамиды, опущенной из вершины А4
на грань А1А2А3.
Направляющим для нее будет вектор {1,
-2, 4}.

A4H:

x=3+t

y=2–2t

z=7+4t

Точка
М(2, 4, 3) принадлежит этой прямой. Тогда
плоскость проходит через точки А4(3;2;7),
М(2, 4, 3) и А1(4,
0, 0) и ее уравнение будет иметь вид:

x–4

y

z

= 0

3

2

7

2

4

3

-22(x–4)
+
5y
+
8z = 0

22x – 5y – 8z – 88
= 0

3)
Найдем уравнение прямой А1А4:

.
Ее направляющий вектор {-1, 2, 7} будет
направляющим и для искомой прямой. Имеем
ее каноническое уравнение:

4)
Искомая точка

принадлежит прямой A4H
и

Н=
–A4H.

21t+23=–23


Т.е

имеет координаты

Ответ:
x
– 2y
+ 4z
– 4 = 0; 22x
– 5y
– 8z
– 88 = 0;

;

Задача
12.
Найти точки пересечения
поверхности и прямой:

1+z2
=

x2

+

y2

16

9

y
+3 = 0,

x
+y
-4z
+3 = 0.

РЕШЕНИЕ:

1) Найдем параметрическое задание прямой:

q=[n1,n2]
=

i

j

k

=
-4i+jk

0

1

0

1

1

-4

П
усть
z1=2,
то y
= -3

x
+ y
= 5

y
= -3

x
= 8

Точка
А(8, -3, 2) принадлежит прямой. Тогда прямую
можно задать следующим образом:

x
= 8 – 4t

y
= –3 + t

z
= 2 – t

2) Пусть
М(x0,
y0,
z0)
– точка пересечения прямой и плоскости,
тогда:

x0
=
4(2-t0),

y0
=
-3+t0,

z0
=
2-t0,

t0=6,5
или t0=
–4,5

Имеем:
M1(8,
-3, 2) и М2(-18,
3,5, -4,5).

Ответ:
M1(8,
-3, 2) и М2(-18,
3,5, -4,5).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Геометрия 10-11 класс

10 баллов

Даны координаты вершин пирамиды
A1A2A3A4. A1(2;5;8) A2(1;4;9) A3(2;1;6) A4(5;4;2)Найти:
1) длину ребра A1A2;
2) угол между ребрами A1A2 и A1A4;
3) уравнение плоскости A1A2A3 и угол между ребром A1A4 и плоскостью A1A2A3;
4) уравнение высоты, опущенной из вершины A4 на грань A1A2A3 и ее длину;
5) площадь грани A1A2A3 и объем пирамиды.
Сделать чертеж

Ирина Каминкова

14.12.2020 20:24:47

Ответ эксперта

Ирина Каминкова

14.12.2020 20:27:16

Ответ эксперта

Ирина Каминкова

14.12.2020 20:27:45

Ответ эксперта

Все предметы

Рейтинг пользователей

    Добавить комментарий