Как найти уравнение касательной дроби

Уравнение касательной к графику функции. 10-й класс

Класс: 10

Презентация к уроку

Тип урока: изучение нового материала.

Методы обучения: наглядный, частично поисковый.

Цель урока.

    Ввести понятие касательной к графику функции в точке, выяснить в чем состоит геометрический смысл производной, вывести уравнение касательной и научить находить его для конкретных функций.

  1. Развивать логическое мышление, математическую речь.
  2. Воспитывать волю и упорство для достижения конечных результатов.

Оборудование: интерактивная доска, компьютер.

I. Организационный момент

Проверка готовности учащихся к уроку. Сообщение темы урока и целей.

II. Актуализация знаний.

(Вспомнить с учащимися геометрическое определение касательной к графику функции. Привести примеры, показывающие, что данное утверждение не полно.)

Вспомним, что же такое касательная?

“Касательная – это прямая, имеющая с данной кривой одну общую точку”. (Слайд № 2)

Обсуждение правильности данного определения. (После обсуждения, учащиеся приходят к выводу, что данное определение неверно.) Для наглядного доказательства их умозаключения приводим следующий пример.

Рассмотрим пример. (Слайд № 3)

Пусть дана парабола и две прямые , имеющая с данной параболой одну общую точку М (1;1). Проводится обсуждение, почему первая прямая не является к данной параболе касательной (Рис. 1), а вторая является (Рис.2).

На данном уроке, мы с вами должны выяснить, что же такое касательная к графику функции в точке, как составить уравнение касательной?

Рассмотреть основные задачи на составление уравнения касательной.

Для этого, вспомнить общий вид уравнения прямой, условия параллельности прямых, определение производной и правила дифференцирования. (Слайд № 4)

III. Подготовительная работа к изучению нового материала.

  • Сформулировать определение производной. (Слайд № 5)
  • Заполнить таблицу произвольных элементарных функций. (Слайд № 6)
  • Вспомнить правила дифференцирования. (Слайд № 7)
  • Какие из указанных прямых параллельны и почему? (Убедиться наглядно) (Слайд №8)
  • IV Изучение нового материала.

    Чтобы задать уравнение прямой на плоскости нам достаточно знать угловой коэффициент и координаты одной точки.

    Пусть дан график функции . На нем выбрана точка , в этой точке к графику функции проведена касательная (мы предполагаем, что она существует). Найти угловой коэффициент касательной.

    Дадим аргументу приращение и рассмотрим на графике (Рис. 3) точку P с абциссой . Угловой коэффициент секущей MP, т.е. тангенс угла между секущей и осью x, вычисляется по формуле .

    Если мы теперь устремим к нулю, то точка Р начнет приближаться по кривой к точке М. Касательную мы охарактеризовали как предельное положение секущей при этом приближении. Значит, естественно считать, что угловой коэффициент касательной будет вычисляться по формуле .

    Следовательно, .

    Если к графику функции y = f (x) в точке х = а можно провести касательную, непараллельную оси у, то выражает угловой коэффициент касательной. (Слайд № 10)

    Или по другому. Производная в точке х = а равна угловому коэффициенту касательной к графику функции y = f(x) в этой точке .

    Это и есть геометрический смысл производной. (Слайд № 11)

    Причем, если :

    1. .

    Выясним общий вид уравнения касательной.

    Пусть, прямая задана уравнением . Мы знаем, что . Для вычисления m воспользуемся тем, что прямая проходит через точку . Подставим в уравнение. Получим , т.е. . Подставим найденные значения k и m в уравнение прямой:

    – уравнение касательной к графику функции. (Слайд № 12)

    Составим уравнение касательной:

    1. к параболе в точке (Слайд № 13)
    2. к графику функции в точке

    Решая эти примеры мы воспользовались очень простым алгоритмом, который заключается в следующем: (Слайд № 15)

    1. Обозначим абсциссу точки касания буквой a.
    2. Вычислим .
    3. Найдем и .
    4. Подставим найденные числа , в формулу

    Рассмотрим типичные задания и их решение.

    №1 Составить уравнение касательной к графику функции в точке .

    Решение. Воспользуемся алгоритмом, учитывая, что в данном примере .

    1)

    2)

    3) ;

    4) Подставим найденные числа ,, в формулу.

    , т.е.

    Ответ:

    №2 К графику функции провести касательную так, чтобы она была параллельна прямой . (Слайд № 17)

    Решение. Уточним формулировку задачи. Требование “провести касательную” обычно означает “составить уравнение касательной”. Воспользуемся алгоритмом составления касательной, учитывая, что в данном примере .

    Искомая касательная должна быть параллельна прямой . Две прямые параллельны, тогда и только тогда, когда равны их угловые коэффициенты. Значит угловой коэффициент касательной должен быть равен угловому коэффициенту заданной прямой: .Но . Следовательно: ; .

    Из уравнения ,т.е. , находим, что и . Значит, имеются две касательные, удовлетворяющие условию задачи: одна в точке с абсциссой 2, другая в точке с абсциссой -2.

    Действуем по алгоритму.

    1) ,

    2) ,

    3)

    4) Подставив значения ,, , получим , т.е. .

    Подставив значения ,, , получим , т.е.

    Ответ: , .

    V. Решение задач.

    1. Решение задач на готовых чертежах (Слайд № 18 и Слайд № 19)

    2. Решение задач из учебника: № 29.3 (а,в), № 29.12 (б,г), № 29.18, № 29.23 (а) (Слайд № 20)

    VI. Подведение итогов.

    1. Ответьте на вопросы:

    • Что называется касательной к графику функции в точке?
    • В чем заключается геометрический смысл производной?
    • Сформулируйте алгоритм нахождения уравнения касательной?

    2. В чем были трудности на уроке, какие моменты урока наиболее понравились?

    3. Выставление отметок.

    VII. Комментарии к домашней работе

    № 29.3 (б,г), № 29.12 (а,в), № 29.19, № 29.23 (б) (Слайд №22)

    Литература. (Слайд 23)

    1. Алгебра и начала математического анализа: Учеб. Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009.
    2. Алгебра и начала математического анализа: Задачник, Для 10-11 кл. для учащихся общеобразовательных учреждений (базовый уровень) / Под редакцией А.Г. Мордковича. – М.: Мнемозина, 2009.
    3. Алгебра и начала анализа. Самостоятельные и контрольные работы для 10-11 классов. / Ершова А.П., Голобородько В.В. – М.: ИЛЕКСА, 2010.
    4. ЕГЭ 2010. Математика. Задача В8. Рабочая тетрадь / Под редакцией А.Л.Семенова и И.В.Ященко – M.: Издательство МЦНМО, 2010.

    1. Уравнение касательной к графику функции

    Теория:

    Даны функция (y=f(x)) и точка (M(a;f(a))); известно, что существует f ′ ( a ) .
    Уравнение касательной к графику функции (y=f(x)) в точке (M) имеет вид (y=kx+m). Найдём значения коэффициентов (k) и (m).

    Известно, что k = f ′ ( a ) . Для вычисления значения (m) воспользуемся тем, что искомая прямая проходит через точку (M(a;f(a))).
    При подстановке координаты точки (M) в уравнение прямой, получим верное равенство (f(a)=ka+m), т. е. (m=f(a)-ka).

    Подставим найденные значения коэффициентов (k) и (m) в уравнение прямой:

    y = kx + m ; y = kx + ( f ( a ) − ka ) ; y = f ( a ) + k ( x − a ) ; y = f ( a ) + f ′ ( a ) ( x − a ) .

    Нами получено уравнение касательной к графику функции (y=f(x)) в точке (x=a).

    Алгоритм составления уравнения касательной к графику функции (y=f(x))

    1. Обозначаем абсциссу точки касания буквой (a).

    3. Находим f ′ ( x ) и вычисляем f ′ ( a ) .

    4. Подставляем найденные числа (a), (f(a)), f ′ ( a ) в формулу y = f ( a ) + f ′ ( a ) ( x − a ) .

    Для функции (y=f(x)), имеющей производную в фиксированной точке (x), справедливо приближенное равенство Δ y ≈ f ′ ( x ) ⋅ Δ x ;

    или, подробнее, f ( x + Δ x ) − f ( x ) ≈ f ′ ( x ) ⋅ Δ x .

    В этом приближённом равенстве заменим (x) на (a), вместо x + Δ x будем писать (x) и тогда Δ x будет равно (x-a). Получим:

    f ( x ) − f ( a ) ≈ f ′ ( a ) ( x − a ) или f ( x ) ≈ f ( a ) + f ′ ( a ) ( x − a ) .

    Смысл равенства заключается в том, что приближенное значение функции в точке (x) равно значению касательной в этой точке.

    Уравнение касательной к графику функции

    п.1. Уравнение касательной

    Рассмотрим кривую (y=f(x)).
    Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.

    Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
    Для (A(x_0,y_0), B(x,y)) получаем: begin (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end

    Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace_<=k>x+underbrace_ <=b>$$

    п.2. Алгоритм построения касательной

    На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
    Шаг 1. Найти значение функции в точке касания (f(x_0))
    Шаг 2. Найти общее уравнение производной (f’ (x))
    Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
    Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
    На выходе: уравнение касательной в виде (y=kx+b)

    Пусть (f(x)=x^2+3).
    Найдем касательную к этой параболе в точке (x_0=1).

    (f(x_0)=1^2+3=4 )
    (f'(x)=2x )
    (f'(x_0)=2cdot 1=2)
    Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

    п.3. Вертикальная касательная

    Не путайте вертикальные касательные с вертикальными асимптотами.
    Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
    А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

    Вертикальные касательные характерны для радикалов вида (y=sqrt[n]).

    Пусть (f(x)=sqrt[5]+1).
    Найдем касательную к этой кривой в точке (x_0=1).

    (f(x_0)=sqrt[5]<1-1>+1=1)
    (f'(x)=frac15(x-1)^<frac15-1>+0=frac15(x-1)^<-frac45>=frac<1><5(x-1)^<frac45>> )
    (f'(x_0)=frac<1><5(1-1)^<frac45>>=frac10=+infty)
    В точке (x_0) проходит вертикальная касательная.
    Её уравнение: (x=1)
    Ответ: (y=2x+2)

    п.4. Примеры

    Пример 1. Для функции (f(x)=2x^2+4x)
    a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

    Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin x=0\ x=-2 end right. $$ Две точки на оси: (0;0) и (-2;0).
    Касательная в точке (x_0=0): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end Касательная в точке (x_0=-2): begin f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end

    б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

    Общее уравнение касательной: (f'(x)=4x+4)
    По условию (f'(x_0)=tgalpha=tg45^circ=1)
    Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac<15> <8>end Уравнение касательной: begin y=1cdotleft(x+frac34right)-frac<15><8>=x-frac98 end

    в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

    Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
    Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end Точка касания (x_0=-frac32) begin f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end Уравнение касательной: begin y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end Или, в каноническом виде: begin 2x+y+frac92=0 end

    г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

    У горизонтальной прямой (k=0).
    Получаем уравнение: (f'(x_0)=0). begin 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end Точка касания (x_0=-1) begin f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end Уравнение касательной: begin y=0cdot(x+1)-2=-2 end

    Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

    Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

    Угловой коэффициент данной прямой (k_1=11).
    Угловой коэффициент перпендикулярной прямой (k_2=-frac<1>=-frac<1><11>) begin f'(x)=left(fracright)’-x’=frac<2x(x+3)-(x^2+2)cdot 1><(x+3)^2>-1=frac<2x^2+6x-x^2-2-(x+3)^2><(x+3)^2>=\ =frac<(x+3)^2>=- frac<11> <(x+3)^2>end В точке касания: begin f'(x_0)=k_2Rightarrow=-frac<11><(x+3)^2>=-frac<1><11>Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin x=-14\ x=8 end right. end
    Уравнение касательной при (x_0=-14) begin f(x_0)=frac<(-14)^2+2><-14+3>+14=frac<198><-11>+14=-18+14=-4\ y=-frac<1><11>(x+14)-4=-frac <11>end Уравнение касательной при (x_0=8) begin f(x_0)=frac<8^2+2><8+3>-8=frac<66><11>-8=-2\ y=-frac<1><11>(x-8)-2=-frac <11>end
    Ответ: точка касания (-14;-4), уравнение (y=-frac<11>)
    и точка касания (8;-2), уравнение (-frac<11>)

    Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

    Найдем производные функций: begin f_1′(x)=2x-5, f_2′(x)=2x+1 end Пусть a – абсцисса точки касания для первой параболы, b – для второй.
    Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin begin 2a-5=2b+1\ 6-a^2=1-b^2 end Rightarrow begin 2(a-b)=6\ a^2-b^2=5 end Rightarrow begin a-b=3\ (a-b)(a+b)=5 end Rightarrow begin a-b=3\ a+b=frac53 end Rightarrow \ Rightarrow begin 2a=3+frac53\ 2b=frac53-3 end Rightarrow begin a=frac73\ b=-frac23 end end Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac<49><9>=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$
    Точки касания: begin a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac<49><9>-frac<35><3>+6=frac<49-105+54><9>=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac<4-6+9><9>=frac79 end
    Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

    Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

    Решим уравнение: (x^4+3x^2+2x=2x-1) begin x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac<-3pmsqrt<5>> <2>end Оба корня отрицательные, а квадрат не может быть отрицательным числом.
    Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
    Что и требовалось доказать.

    Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
    Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin x=0\ 2x^2+3=0 end right. Rightarrow left[ begin x=0\ x^2=-frac32 end right. Rightarrow left[ begin x=0\ xinvarnothing end right. Rightarrow x=0 end Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
    Уравнение касательной: (y=2(x-0)+0=2x)

    Ищем расстояние между двумя параллельными прямыми:
    (y=2x) и (y=2x-1).
    Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

    Уравнение перпендикуляра: (y=-frac x2).
    Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac<0,4><2>=-0,2 end Точка пересечения A(0,4;-0,2).
    Находим расстояние (OA=sqrt<0,4^2+(-0,2)^2>=0,2sqrt<2^2+1^2>=frac<sqrt<5>><5>)
    Ответ: (frac<sqrt<5>><5>)

    [spoiler title=”источники:”]

    http://www.yaklass.ru/p/algebra/10-klass/proizvodnaia-primenenie-proizvodnoi-dlia-issledovaniia-funktcii-9147/kak-poluchit-uravnenie-kasatelnoi-k-grafiku-funktcii-11225/re-01fe2bca-fe21-491b-860a-b63304a86ea9

    http://reshator.com/sprav/algebra/10-11-klass/uravnenie-kasatelnoj-k-grafiku-funkcii/

    [/spoiler]

    п.1. Уравнение касательной

    Рассмотрим кривую (y=f(x)).
    Выберем на ней точку A с координатами ((x_0,y_0)), проведем касательную AB в этой точке.
    Уравнение касательной
    Как было показано в §42 данного справочника, угловой коэффициент касательной равен производной от функции f в точке (x_0): $$ k=f'(x_0) $$ Уравнение прямой AB, проведенной через две точки: ((y_B-y_A)=k(x_B-x_A)).
    Для (A(x_0,y_0), B(x,y)) получаем: begin{gather*} (y-y_0)=k(x-x_0)\ y=k(x-x_0)+y_0\ y=f'(x_0)(x-x_0)+f(x_0) end{gather*}

    Уравнение касательной к кривой (y=f(x)) в точке (x_0) имеет вид: $$ y=f'(x_0)(x-x_0)+f(x_0) $$ при условии, что производная (f'(x_0)=aneinfty) – существует и конечна.

    Чтобы записать уравнение касательной с угловым коэффициентом в виде (y=kx+b), нужно раскрыть скобки и привести подобные: $$ y=f'(x_0)(x-x_0)+f(x_0)=underbrace{f'(x_0)}_{=k}x+underbrace{f(x_0)-f'(x_0)cdot x_0}_{=b} $$

    Уравнение касательной с угловым коэффициентом: begin{gather*} y=kx+b\ k=f'(x_0), b=f(x_0)-f'(x_0)cdot x_0 end{gather*}

    п.2. Алгоритм построения касательной

    На входе: уравнение кривой (y=f(x)), абсцисса точки касания (x_0).
    Шаг 1. Найти значение функции в точке касания (f(x_0))
    Шаг 2. Найти общее уравнение производной (f’ (x))
    Шаг 3. Найти значение производной в точке касания (f'(x_0 ))
    Шаг 4. Записать уравнение касательной (y=f’ (x_0)(x-x_0)+f(x_0)), привести его к виду (y=kx+b)
    На выходе: уравнение касательной в виде (y=kx+b)

    Например:

    Алгоритм построения касательной Пусть (f(x)=x^2+3).
    Найдем касательную к этой параболе в точке (x_0=1).

    (f(x_0)=1^2+3=4 )
    (f'(x)=2x )
    (f'(x_0)=2cdot 1=2)
    Уравнение касательной: $$ y=2(x-1)+4=2x-2+4=2x+2 $$ Ответ: (y=2x+2)

    п.3. Вертикальная касательная

    В случае, если производная (f'(x_0)=pminfty) – существует, но бесконечна, в точке (x_0) проходит вертикальная касательная (x=x_0).

    Внимание!

    Не путайте вертикальные касательные с вертикальными асимптотами.
    Вертикальная асимптота проходит через точку разрыва 2-го рода (x_0notin D), в которой функция не определена и производная не существует. График функции приближается к асимптоте на бесконечности, но у них никогда не бывает общих точек.
    А вертикальная касательная проходит через точку (x_0in D), входящую в область определения. График функции и касательная имеют одну общую точку ((x_0,y_0)).

    Вертикальные касательные характерны для радикалов вида (y=sqrt[n]{x}).

    Например:

    Вертикальная касательная Пусть (f(x)=sqrt[5]{x-1}+1).
    Найдем касательную к этой кривой в точке (x_0=1).

    (f(x_0)=sqrt[5]{1-1}+1=1)
    (f'(x)=frac15(x-1)^{frac15-1}+0=frac15(x-1)^{-frac45}=frac{1}{5(x-1)^{frac45}} )
    (f'(x_0)=frac{1}{5(1-1)^{frac45}}=frac10=+infty)
    В точке (x_0) проходит вертикальная касательная.
    Её уравнение: (x=1)
    Ответ: (y=2x+2)

    п.4. Примеры

    Пример 1. Для функции (f(x)=2x^2+4x)
    a) напишите уравнения касательных, проведенных к графику функции в точках его пересечения с осью OX.

    Пример 1а Находим точки пересечения, решаем уравнение: $$ 2x^2+4x=0Rightarrow 2x(x+2)=0Rightarrow left[ begin{array}{l} x=0\ x=-2 end{array} right. $$ Две точки на оси: (0;0) и (-2;0).
    Касательная в точке (x_0=0): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot 0+4=4\ y=4(x-0)+0=4x end{gather*} Касательная в точке (x_0=-2): begin{gather*} f(x_0)=0, f'(x)=4x+4\ f'(x_0)=4cdot (-2)+4=-4\ y=-4(x+2)+0=-4x-8 end{gather*}

    б) Найдите, в какой точке касательная образует с положительным направлением оси OX угол 45°. Напишите уравнение этой касательной.

    Пример 1б Общее уравнение касательной: (f'(x)=4x+4)
    По условию (f'(x_0)=tgalpha=tg45^circ=1)
    Решаем уравнение: $$ 4x_0+4=1Rightarrow 4x_0=-3Rightarrow x_0=-frac34 $$ Точка касания (x_0=-frac34) begin{gather*} f(x_0)=2cdotleft(-frac34right)^2+4cdotleft(-frac34right)=frac98-3=-frac{15}{8} end{gather*} Уравнение касательной: begin{gather*} y=1cdotleft(x+frac34right)-frac{15}{8}=x-frac98 end{gather*}

    в) найдите, в какой точке касательная будет параллельна прямой (2x+y-6=0). Напишите уравнение этой касательной.

    Пример 1в Найдем угловой коэффициент заданной прямой: (y=-2x+6Rightarrow k=-2).
    Касательная должна быть параллельной, значит, её угловой коэффициент тоже (k=-2). Получаем уравнение: begin{gather*} f'(x_0)=-2\ 4x_0+4=-2Rightarrow 4x_0=-6Rightarrow x_0=-frac32 end{gather*} Точка касания (x_0=-frac32) begin{gather*} f(x_0)=2cdotleft(-frac32right)^2+4cdotleft(-frac32right)=\ =frac92-6=-frac32 end{gather*} Уравнение касательной: begin{gather*} y=-2cdotleft(x+frac32right)-frac32=-2x-frac92 end{gather*} Или, в каноническом виде: begin{gather*} 2x+y+frac92=0 end{gather*}

    г) в какой точке функции можно провести горизонтальную касательную? Напишите уравнение этой касательной.

    Пример 1г У горизонтальной прямой (k=0).
    Получаем уравнение: (f'(x_0)=0). begin{gather*} 4x_0+4=0Rightarrow 4x_0=-4Rightarrow x_0=-1 end{gather*} Точка касания (x_0=-1) begin{gather*} f(x_0)=2cdot(-1)^2+4cdot(-1)=-2 end{gather*} Уравнение касательной: begin{gather*} y=0cdot(x+1)-2=-2 end{gather*}

    Ответ: а) (y=4x) и (y=-4x-8); б) (y=x-frac98); в) (2x+y+frac92=0); г) (y=-2)

    Пример 2. Напишите уравнение касательной к графику функции в заданной точке:
    a) ( f(x)=frac5x+frac x5, x_0=4 ) begin{gather*} f(x_0)=frac54+frac45=frac{25+16}{20}=frac{41}{20}\ f'(x)=left(frac5xright)’+left(frac x5right)’=-frac{5}{x^2}+frac15=frac{-25+x^2}{5x^2}=frac{x^2-25}{5x^2}\ f'(x_0)=frac{4^2-25}{5cdot 4^2}=-frac{9}{80} end{gather*} Уравнение касательной: $$ y=-frac{9}{80}(x-4)+frac{41}{20}=-frac{9}{80}x+frac{9}{20}+frac{41}{20}=-frac{9}{80}x+2,5 $$
    б) ( f(x)=frac{x^2+5}{3-x}, x_0=2 ) begin{gather*} f(x_0)=frac{2^2+5}{3-2}=frac91=9\ f'(x)=frac{(x^2+5)'(3-x)-(x^2+5)(3-x)’}{(3-x)^2}=frac{2x(3-x)+(x^2+5)}{(3-x)^2}=\ =frac{6x-2x^2+x^2+5}{(3-x)^2}=frac{-x^2+6x+5}{(3-x)^2}\ f'(x_0)=frac{-2^2+6cdot 2+5}{(3-2)^2}=13 end{gather*} Уравнение касательной: $$ y=13(x-2)+9=13x-26+9=13x-17 $$

    Пример 3*. Найдите точку, в которой касательная к графику функции (f(x)=frac{x^2+2}{x+3}-x) перпендикулярна прямой (y=11x+3). Напишите уравнение этой касательной.

    Угловой коэффициент данной прямой (k_1=11).
    Угловой коэффициент перпендикулярной прямой (k_2=-frac{1}{k_1}=-frac{1}{11}) begin{gather*} f'(x)=left(frac{x^2+2}{x+3}right)’-x’=frac{2x(x+3)-(x^2+2)cdot 1}{(x+3)^2}-1=frac{2x^2+6x-x^2-2-(x+3)^2}{(x+3)^2}=\ =frac{x^2+6x-2-x^2-6x-9}{(x+3)^2}=- frac{11}{(x+3)^2} end{gather*} В точке касания: begin{gather*} f'(x_0)=k_2Rightarrow=-frac{11}{(x+3)^2}=-frac{1}{11}Rightarrow (x+3)^2=121Rightarrow (x+3)^2-11^2=0Rightarrow\ Rightarrow (x+14)(x+8)=0Rightarrow left[ begin{array}{l} x=-14\ x=8 end{array} right. end{gather*} Пример 3
    Уравнение касательной при (x_0=-14) begin{gather*} f(x_0)=frac{(-14)^2+2}{-14+3}+14=frac{198}{-11}+14=-18+14=-4\ y=-frac{1}{11}(x+14)-4=-frac{x+58}{11} end{gather*} Уравнение касательной при (x_0=8) begin{gather*} f(x_0)=frac{8^2+2}{8+3}-8=frac{66}{11}-8=-2\ y=-frac{1}{11}(x-8)-2=-frac{x+14}{11} end{gather*}
    Ответ: точка касания (-14;-4), уравнение (y=-frac{x+58}{11})
    и точка касания (8;-2), уравнение (-frac{x+14}{11})

    Пример 4*. Найдите уравнения общих касательных к параболам (y=x^2-5x+6) и (y=x^2+x+1). Укажите точки касания.

    Найдем производные функций: begin{gather*} f_1′(x)=2x-5, f_2′(x)=2x+1 end{gather*} Пусть a – абсцисса точки касания для первой параболы, b – для второй.
    Запишем уравнения касательных (g_1(x)) и (g_2(x)) через эти переменные. begin{gather*} g_1(x)=f_1′(a)(x-a)+f_1(a)=(2a-5)(x-a)+a^2-5a+6=\ =(2a-5)x-2a^2+5a+a^2-5a+6=(2a-5)x+(6-a^2)\ \ g_2(x)=f_2′(b)(x-b)+f_2(b)=(2b+1)(x-b)+b^2+b+1=\ =(2b+1)x-2b^2-b+b^2+b+1=(2b+1)x+(1-b^2) end{gather*} Для общей касательной должны быть равны угловые коэффициенты и свободные члены. Получаем систему уравнений: begin{gather*} begin{cases} 2a-5=2b+1\ 6-a^2=1-b^2 end{cases} Rightarrow begin{cases} 2(a-b)=6\ a^2-b^2=5 end{cases} Rightarrow begin{cases} a-b=3\ (a-b)(a+b)=5 end{cases} Rightarrow begin{cases} a-b=3\ a+b=frac53 end{cases} Rightarrow \ Rightarrow begin{cases} 2a=3+frac53\ 2b=frac53-3 end{cases} Rightarrow begin{cases} a=frac73\ b=-frac23 end{cases} end{gather*} Находим угловой коэффициент и свободный член из любого из двух уравнений касательных: $$ k=2a-5=2cdotfrac73-5=-frac13, b=6-a^2=6-frac{49}{9}=frac59 $$ Уравнение общей касательной: $$ y=-frac x3+frac59 $$ Пример 4
    Точки касания: begin{gather*} a=frac73, f_1(a)=left(frac73right)^2-5cdotfrac73+6=frac{49}{9}-frac{35}{3}+6=frac{49-105+54}{9}=-frac29\ b=-frac23, f_2(b)=left(-frac23right)^2-frac23+1=frac49-frac23+1frac{4-6+9}{9}=frac79 end{gather*}
    Ответ: касательная (y=-frac x3+frac59); точки касания (left(frac73;-frac29right)) и (left(-frac23;frac79right))

    Пример 5*. Докажите, что кривая (y=x^4+3x^2+2x) не пересекается с прямой (y=2x-1), и найдите расстояние между их ближайшими точками.

    Решим уравнение: (x^4+3x^2+2x=2x-1) begin{gather*} x^4+3x^2+1=0Rightarrow D=3^2-4=5Rightarrow x^2=frac{-3pmsqrt{5}}{2} end{gather*} Оба корня отрицательные, а квадрат не может быть отрицательным числом.
    Значит, (xinvarnothing) – решений нет, кривая и прямая не пересекаются.
    Что и требовалось доказать.

    Чтобы найти расстояние, необходимо построить касательную к кривой с тем же угловым коэффициентом (k=2), то и y данной прямой. Тогда искомым расстоянием будет расстояние от точки касания до прямой (y=2x-1).
    Строим уравнение касательной. По условию: (f'(x)=4x^3+6x+2=2) begin{gather*} 4x^3+6x=0Rightarrow 2x(2x^2+3)=0Rightarrow left[ begin{array}{l} x=0\ 2x^2+3=0 end{array} right. Rightarrow left[ begin{array}{l} x=0\ x^2=-frac32 end{array} right. Rightarrow left[ begin{array}{l} x=0\ xinvarnothing end{array} right. Rightarrow x=0 end{gather*} Точка касания (x_0=0, y_0=0^4+3cdot 0^2+2cdot 0=0).
    Уравнение касательной: (y=2(x-0)+0=2x)

    Пример 5 Ищем расстояние между двумя параллельными прямыми:
    (y=2x) и (y=2x-1).
    Перпендикуляр из точки (0;0) на прямую (y=2x-1) имеет угловой коэффициент (k=-frac12), его уравнение: (y=-frac12 x+b). Т.к. точка (0;0) принадлежит этому перпендикуляру, он проходит через начало координат и (b=0).

    Уравнение перпендикуляра: (y=-frac x2).
    Находим точку пересечения прямой (y=2x-1) и перпендикуляра (y=-frac x2): begin{gather*} 2x-1=-frac x2Rightarrow 2,5x=1Rightarrow x=0,4; y=-frac{0,4}{2}=-0,2 end{gather*} Точка пересечения A(0,4;-0,2).
    Находим расстояние (OA=sqrt{0,4^2+(-0,2)^2}=0,2sqrt{2^2+1^2}=frac{sqrt{5}}{5})
    Ответ: (frac{sqrt{5}}{5})

    Уравнение касательной к графику функции

    Чтобы закрепить
    предыдущий параграф, рассмотрим задачу
    нахождения касательной к графику функции
    в данной точке. Это задание встречалось
    нам в школе, и оно же встречается в курсе
    высшей математики.

    Рассмотрим
    «демонстрационный» простейший пример.

    Составить
    уравнение касательной к графику
    функции 
     в
    точке с абсциссой 
    .
    Я сразу приведу готовое графическое
    решение задачи (на практике этого делать
    в большинстве случаев не надо):

    Строгое
    определение касательной дается с помощью
    определения самой производной функции,
    и с этим пока повременим. Наверняка
    практически всем интуитивно понятно,
    что такое касательная. Если объяснять
    «на пальцах», то касательная к графику
    функции – этопрямая,
    которая касается графика функции
    в единственной точке.
    При этом все близлежащие точки прямой
    расположены максимально близко к графику
    функции.

    Применительно
    к нашему случаю: при 
     касательная 
     (стандартное
    обозначение) касается графика функции
    в единственной точке 
    .

    И наша
    задача состоит в том, чтобы найти
    уравнение прямой 
    .

    Как
    составить уравнение касательной в точке
    с абсциссой
     
    ?

    Общая формула
    знакома нам еще со школы:

    Значение 
     нам
    уже дано в условии.

    Теперь
    нужно вычислить, чему равна сама
    функция
     в
    точке 
    :


     

    На
    следующем этапе находим производную:

    Находим
    производную в точке (задание, которое
    мы недавно рассмотрели):

    Подставляем
    значения 

     и 
     в
    формулу 
    :

    Таким
    образом, уравнение касательной:

    Это
    «школьный» вид уравнения прямой с
    угловым коэффициентом. В высшей математике
    уравнение прямой принято записывать в
    так называемой общей
    форме
     
    ,
    поэтому перепишем найденное уравнение
    касательной в соответствии с традицией:  

    Очевидно,
    что точка 
     должна
    удовлетворять данному уравнению:


     –
    верное равенство.

    Следует
    отметить, что такая проверка является
    лишь частичной. Если мы неправильно
    вычислили производную в точке 
    ,
    то выполненная подстановка нам ничем
    не поможет.

    Рассмотрим еще
    два примера.

    Пример 5

    Составить
    уравнение касательной к графику
    функции 
     в
    точке с абсциссой 

    Уравнение
    касательной составим по формуле 

    1)
    Вычислим значение функции в точке 
    :

    2)
    Найдем производную. Дважды используем
    правило дифференцирования сложной
    функции:

    3)
    Вычислим значение производной в
    точке 
    :

    4)
    Подставим значения 

     и 
     в
    формулу 
    :

    Готово.

    Выполним
    частичную проверку:

    Подставим
    точку 
     в
    найденное уравнение:

     –
    верное равенство.

    Пример 6

    Составить
    уравнение касательной к графику
    функции 
     в
    точке с абсциссой 

    Полное решение и
    образец оформления в конце урока.

    В задаче на
    нахождение уравнения касательной очень
    важно ВНИМАТЕЛЬНО и аккуратно выполнить
    вычисления, привести уравнение прямой
    к общему виду.

    Дифференциал функции одной переменной

    Коль скоро я не
    объяснил (на данный момент), что такое
    производная функции, то не имеет смысла
    объяснять, и что такое дифференциал
    функции. В самой примитивной формулировке
    дифференциал – это «почти то же самое,
    что и производная».

    Производная
    функции чаще всего обозначается через 
    .

    Дифференциал
    функции стандартно обозначается
    через 
     (так
    и читается – «дэ игрек»)

    Дифференциал
    функции одной переменной записывается
    в следующем виде:

    Другой
    вариант записи: 

    Простейшая
    задача: Найти дифференциал функции 

    1) Первый этап.
    Найдем производную:

    2) Второй этап.
    Запишем дифференциал:

    Готово.

    Дифференциал
    функции одной или нескольких переменных
    чаще всего используют дляприближенных
    вычислений
    .

    Помимо других
    задач с дифференциалом время от времени
    встречается и «чистое» задание на
    нахождение дифференциала функции. Кроме
    того, как и для производной, для
    дифференциала существует понятие
    дифференциала в точке. И такие примеры
    мы тоже рассмотрим.

    Пример 7

    Найти
    дифференциал функции 

    Перед
    тем, как находить производную или
    дифференциал, всегда целесообразно
    посмотреть, а нельзя ли как-нибудь
    упростить функцию (или запись функции)
    ещё додифференцирования?
    Смотрим на наш пример. Во-первых, можно
    преобразовать корень:


     (корень
    пятой степени относится именно к синусу).

    Во-вторых, замечаем,
    что под синусом у нас дробь, которую,
    очевидно, предстоит дифференцировать.
    Формула дифференцирования дроби очень
    громоздка. Нельзя ли избавиться от
    дроби? В данном случае – можно, почленно
    разделим числитель на знаменатель:

    Функция
    сложная. В ней два вложения: под степень
    вложен синус, а под синус вложено
    выражение 
    .
    Найдем производную, используя правило
    дифференцирования сложной функции 
     два
    раза:

    Запишем
    дифференциал, при этом снова представим 
     в
    первоначальном «красивом» виде:

    Готово.

    Когда
    производная представляет собой дробь,
    значок 
     обычно
    «прилепляют» в самом конце числителя
    (можно и справа на уровне дробной черты).

    Пример 8

    Найти
    дифференциал функции 

    Это пример для
    самостоятельного решения.

    Следующие два
    примера на нахождение дифференциала в
    точке.

    Пример 9

    Вычислить
    дифференциал функции 
     в
    точке 

    Найдем
    производную:

    Опять, производная
    вроде бы найдена. Но в эту бодягу еще
    предстоит подставлять число, поэтому
    результат максимально упрощаем:

    Труды
    были не напрасны, записываем дифференциал:

    Теперь
    вычислим дифференциал в точке 
    :

    В
    значок дифференциала 
     единицу
    подставлять не нужно, он немного из
    другой оперы.

    Ну и
    хорошим тоном в математике считается
    устранение иррациональности в знаменателе.
    Для этого домножим числитель и знаменатель
    на 
    .
    Окончательно:

    Пример 10

    Вычислить
    дифференциал функции 
     в
    точке 
    .
    В ходе решения производную максимально
    упростить.

    Это пример для
    самостоятельного решения. Примерный
    образец оформления и ответ в конце
    урока.

    Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

    • #

      08.02.20157.31 Mб91.rtf

    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #
    • #

    В этой статье мы разберем все типы задач на нахождение уравнения касательной.

    Вспомним геометрический смысл производной: если к графику функции y=f(x) в точке x_0  проведена касательная, то коэффициент наклона касательной (равный тангенсу угла между касательной и положительным направлением оси OX) равен производной функции в точке x_0 .

    уравнения касательной

    k=tg{alpha}=f^{prime}(x_0)

    Возьмем на касательной произвольную точку  с координатами ( x;y):

    уравнения касательной

    И рассмотрим прямоугольный треугольник ABC:

    уравнения касательной

    В этом треугольнике tg{alpha}={BC}/{AB}={y-f(x_0)}/{x-x_0}=f{prime}(x_0)

    Отсюда {y-f(x_0)}= f{prime}(x_0)(x-x_0)

    Или

    y=f(x_0)+ f{prime}(x_0)(x-x_0)

    Это и есть уравнение касательной, проведенной к графику функции y=f(x) в точке x_0.

    Чтобы написать уравнение касательной, нам достаточно знать уравнение функции и точку, в которой проведена касательная. Тогда мы сможем найти f(x_0) и f{prime}(x_0).

    Есть три основных типа задач на составление уравнения касательной.

    1. Дана точка касания  x_0

    2. Дан коэффициент наклона касательной, то есть значение производной функции y=f(x) в точке x_0.

    3. Даны координаты точки, через которую проведена касательная, но которая не является точкой касания.

    Рассмотрим каждый тип задач.

    1. Написать уравнение касательной к графику функции f(x)=x^3-2x^2+3  в точке x_0=1.

    а) Найдем значение функции в точке x_0=1.

    f(1)=1^3-2*1^2+3=2.

    б) Найдем значение производной в точке x_0=1. Сначала найдем производную функции y=f(x)

    f{prime}(x)=3x^2-4x

    f{prime}(1)=3*1^2-4*1=-1

    Подставим найденные значения в уравнение касательной:

    y=2+(-1)(x-1)

    Раскроем скобки в правой части уравнения. Получим: y=-x+3

    Ответ: y=-x+3.

    2. Найти абсциссы точек, в которых касательные к графику функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2 параллельны оси абсцисс.

    Если касательная параллельна оси абсцисс, следовательно угол между касательной и положительным направлением оси OX равен нулю, следовательно тангенс угла наклона касательной равен нулю. Значит, значение производной функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2 в точках касания равно нулю.

    а) Найдем производную функции y={1/4}x^4-{8/3}x^3 +{{15}/2}x^2.

    y{prime}=x^3-8x^2+15x

    б) Приравняем производную к нулю и найдем значения x, в которых касательная параллельна оси OX:

    x^3-8x^2+15x=0

    x(x^2-8x+15)=0

    Приравняем каждый множитель к нулю, получим:

    x_1=0;~~x_2=3;~~x_3=5

    Ответ: 0;3;5

    3. Написать уравнения касательных к графику функции y={3x-4}/{2x-3}, параллельных  прямой y=-x+3.

    Касательная параллельна прямой y=-x+3. Коэффициент наклона этой прямой равен -1. Так как касательная параллельна этой прямой, следовательно, коэффициент наклона касательной тоже равен -1. То есть мы знаем коэффициент наклона касательной, а, тем самым, значение производной в точке касания.

    Это второй тип задач на нахождение уравнения касательной.

    Итак, у нас дана функция y={3x-4}/{2x-3} и значение производной в точке касания.

    а) Найдем точки, в которых производная функции y={3x-4}/{2x-3} равна -1.

    Сначала найдем уравнение производной.

    Нам нужно найти производную дроби.

    ({u/v})^{prime}={u{prime}v-v{prime}u}/{v^2}

    y{prime}={(3x-4){prime}(2x-3)-(2x-3){prime}(3x-4)}/{(2x-3)^2}={3(2x-3)-2(3x-4)}/{(2x-3)^2}={-1}/{(2x-3)^2}

    Приравняем производную к числу -1.

    {-1}/{(2x-3)^2}=-1

    (2x-3)^2=1

    2x-3=1 или 2x-3=-1

    x_0=2 или x_0=1

    б) Найдем уравнение касательной к графику функции y={3x-4}/{2x-3} в точке x_0=2.

    Найдем значение функции в точке x_0=2.

    y(2)={3*2-4}/{2*2-3}=2

    y{prime}(2)=-1 (по условию)

    Подставим эти значения в уравнение касательной:

    y=2+(-1)(x-2)=-x+4.

    б) Найдем уравнение касательной к графику функции y={3x-4}/{2x-3} в точке x_0=1.

    Найдем значение функции в точке x_0=1.

    y(1)={3*1-4}/{2*1-3}=1

    y{prime}=-1 (по условию).

    Подставим эти значения в уравнение касательной:

    y=1+(-1)(x-1)=-x+2.

    Ответ: y=-x+4;~~y=-x+2

    4. Написать уравнение касательной к кривой y=sqrt{8-x^2}, проходящей через точку A(3,1)

    Сначала проверим, не является ли точка A(3,1) точкой касания. Если точка является точкой касания, то она принадлежит графику функции, и её координаты должны удовлетворять уравнению функции. Подставим координаты  точки A(3,1)  в уравнение функции.

    1<>sqrt{8-3^2}. Мы получили под корнем отрицательное число, равенство не верно, и точка A(3,1) не принадлежит графику функции и не является точкой касания.

    Это последний тип задач на нахождение уравнения касательной. Первым делом нам нужно найти абсциссу точки касания.

    Найдем значение x_0.

    Пусть x_0 – точка касания. Точка A(3,1) принадлежит касательной к графику функции y=sqrt{8-x^2}. Если мы подставим координаты этой точки в уравнение касательной, то получим верное равенство:

    1=f(x_0)+ f{prime}(x_0)(3-x_0).

    Значение функции y=sqrt{8-x^2} в точке x_0 равно f(x_0)= sqrt{8-{x_0}^2}.

    Найдем значение производной функции y=sqrt{8-x^2} в точке x_0.

    Сначала найдем производную функции y=sqrt{8-x^2}. Это сложная функция.

    f{prime}(x)={1/{2sqrt{8-x^2}}}*(8-x^2){prime}={{-2x}/{2sqrt{8-x^2}}}

    Производная в точке x_0 равна f{prime}(x_0)={-2{x_0}}/{2sqrt{8-{x_0}^2}}.

    Подставим выражения для f(x_0) и f{prime}(x_0) в уравнение касательной. Получим уравнение относительно x_0:

    1=sqrt{8-{x_0}^2}+{-2{x_0}}/{2sqrt{8-{x_0}^2}}(3-x_0)

    Решим это уравнение.

    Сократим числитель и знаменатель дроби на 2:

    1=sqrt{8-{x_0}^2}+{-{x_0}}/{sqrt{8-{x_0}^2}}(3-x_0)

    Приведем правую часть уравнения к общему знаменателю. Получим:

    1={8-{x_0}^2-{x_0}(3-x_0)}/{sqrt{8-{x_0}^2}}

    Упростим числитель дроби и умножим обе части на {sqrt{8-{x_0}^2}} – это выражение строго больше нуля.

    Получим уравнение

    {8-3x_0}={sqrt{8-{x_0}^2}}

    Это иррациональное уравнение.

    Решим его. Для этого возведем обе части в квадрат и перейдем к системе.

    delim{lbrace}{matrix{2}{1}{{64-48{x_0}+9{x_0}^2=8-{x_0}^2} {8-3x_0>=0} }}{ }

    Решим первое уравнение.

    10{x_0}^2-48x_0+56=0

    5{x_0}^2-24x_0+28=0

    Решим квадратное уравнение, получим

    x_0=2 или x_0=2,8

    Второй корень не удовлетворяет условию 8-3x_0>=0, следовательно, у нас только одна точка касания и её абсцисса равна 2.

    Напишем уравнение касательной к кривой y=sqrt{8-x^2} в точке x_0=2. Для этого подставим значение x_0=2 в уравнение y=sqrt{8-{x_0}^2}+{-2{x_0}}/{2sqrt{8-{x_0}^2}}(x-x_0)  – мы его уже записывали.

    Получим:

    y=sqrt{8-{2}^2}-{2*{2}}/{2sqrt{8-{(2)}^2}}(x-2)

    y=2-(x-2)=-x+4

    Ответ: y=-x+4
    И.В. Фельдман, репетитор по математике.

    Уравнение касательной онлайн

    Уравнение касательной
    к графику функции

    в точке

    имеет вид:

    Уравнение касательной онлайн

    Переменная функции:

    Точка в которой необходимо найти касательную:

    Написать уравнение касательной к функцииfxx24x7в точкеx00

    Установить калькулятор на свой сайт

    Другие полезные разделы:

    Нахождение производной функции онлайн
    Уравнение нормали к графику функции онлайн
    Таблица производных

    Оставить свой комментарий:


    Добавить комментарий