Как составить уравнение медианы треугольника по координатам его вершин?
Медиана соединяет вершину треугольника с серединой противолежащей стороны. Следовательно, при решении задачи составления уравнения медианы нужно:
- Найти координаты середины отрезка по координатам его концов.
- Составить уравнение прямой, проходящей через две точки: найденную середину отрезка и противолежащую вершину.
Пример.
Дано: ΔABC, A(3;1), B(6;-3), C(-3;-7).
Найти уравнения медиан треугольника.
Решение:
Обозначим середины сторон BC, AC, AB через A1, B1, C1.
1) По формулам координат середины отрезка
Уравнение медианы AA1 будем искать в виде y=kx+b.
Найдём уравнение прямой, проходящей через точки A(3;1) и A1(1,5;-5). Составляем и решаем систему уравнений:
Отсюда k= 4; b= -11.
Уравнение медианы AA1: y=4x-11.
2) Аналогично, координаты точки B1 — середины отрезка AC
Можно в уравнение y=kx+b подставить координаты точек B(6;-3) и B1(0;-3) и найти k и b. Но так как ординаты обеих точек равны, уравнение медианы BB1 можно найти ещё быстрее: y= -3.
3) Координаты точки C1 — середины отрезка BC:
C(-3;-7), C(4,5;-1), y=kx+b:
Отсюда уравнение медианы CC1 : y=0,8x-4,6.
Уравнение медианы треугольника
Как составить уравнение медианы треугольника по координатам его вершин?
Медиана соединяет вершину треугольника с серединой противолежащей стороны. Следовательно, при решении задачи составления уравнения медианы нужно:
- Найти координаты середины отрезка по координатам его концов.
- Составить уравнение прямой, проходящей через две точки: найденную середину отрезка и противолежащую вершину.
Дано: ΔABC, A(3;1), B(6;-3), C(-3;-7).
Найти уравнения медиан треугольника.
Обозначим середины сторон BC, AC, AB через A1, B1, C1.
Уравнение медианы AA1 будем искать в виде y=kx+b.
Найдём уравнение прямой, проходящей через точки A(3;1) и A1(1,5;-5). Составляем и решаем систему уравнений:
Отсюда k= 4; b= -11.
Уравнение медианы AA1: y=4x-11.
2) Аналогично, координаты точки B1 — середины отрезка AC
Можно в уравнение y=kx+b подставить координаты точек B(6;-3) и B1(0;-3) и найти k и b. Но так как ординаты обеих точек равны, уравнение медианы BB1 можно найти ещё быстрее: y= -3.
3) Координаты точки C1 — середины отрезка BC:
Отсюда уравнение медианы CC1 : y=0,8x-4,6.
Аналитическая геометрия
Задача 3. Даны вершины треугольника ABC (рис. 1): А(-4,8), В(5,-4), С(10, 6).
1) длину стороны АВ;
2) уравнение высоты СД и ее длину;
3) уравнение медианы, проведенной из вершины А;
4) записать уравнение прямой, проходящей через точку С параллельно стороне АВ.
1. Расстояние d между точками М1(x1у1) и М2(х2у2) определяется по формуле
(1)
Подставим в формулу (1) координаты точек А и В, получим
.
2. Уравнение прямой, проходящей через точки М1(x1у1) и М2(х2у2), имеет вид
(2)
Подставив в формулу (2) координаты точек А и В, получим уравнение прямой АВ:
Для нахождения углового коэффициента КАВ прямой АВ разрешим полученное уравнение относительно у: .
Отсюда . Т. к. высота СD перпендикулярна АВ, то угловой коэффициент будет равен , .
Искомая высота проходит через точку С(10,6). Воспользуемся уравнением прямой, проходящей через данную точку, с заданным угловым коэффициентом:
Y-6= (x-10), 3x-4y-6=0 (СD)
Для нахождения длины СD определим координаты точки D, решив систему уравнений (АВ) и (СD): , откуда х=2, у=0, т. е. D(2,0).
Подставив в формулу (1) координаты точек С и Д, находим
3. Обозначим основание искомой медианы через М. По определению медианы М делит сторону ВС пополам. Координаты точки М найдем по формуле
(4)
Чтобы записать уравнение медианы AM, воспользуемся формулой (2). , , , (АМ)
4. Обозначим искомую прямую СР. Угловой коэффициент , т. к. АВ и СР параллельны, то искомая прямая проходит через точку С (10,6). Воспользуемся уравнением (3)
, , (СP)
Задача 4. Расходы на автомобильном транспорте выражаются формулой у=120+30х, а на железнодорожном – у=160+20х, где х – расстояние в километрах, у – транспортные расходы на 1 км. (в усл. ден. ед.).
Построить графики функций, произвести экономический анализ, рассчитать транспортные расходы при х=200 км.
1. Построим прямые у=120+30х (I) и у=160+20х (II) (рис. 4).
Рис.4
Найдем точку пересечения двух прямых
х0=4 у0=240
Если х=4, оба вида транспорта эквивалентны по затратам.
Если х 4 выгоднее становятся железнодорожные перевозки.
Рассчитаем транспортные расходы при х=200 км.
у=120+30∙200=6120 (усл. ден. ед.) – затраты на автомобильном
У=160+4000=4150 (усл. ден. ед.) – затраты на железнодорожном транспорте.
Примеры решений по аналитической геометрии на плоскости
В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.
Решения задач о треугольнике онлайн
Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.
Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.
Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.
Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.
Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.
Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.
Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.
Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.
[spoiler title=”источники:”]
http://matica.org.ua/primery/primery/analiticheskaia-geometriia
http://www.matburo.ru/ex_ag.php?p1=agtr
[/spoiler]
9.1. Прямая на плоскости
Рассмотрим
различные случаи задания прямой L
на плоскости.
1. Если
задан ненулевой направляющий
вектор
и радиус-вектор
некоторой фиксированной точкито в этом случае радиус-векторпроизвольной точкизадается формулой
(9.1)
где
Уравнение (9.1)
называется
векторно-параметрическим уравнением
прямой L.
2. Если
– координаты точкикоторая лежит на прямойL,
(l, m)
– координаты направляющего вектора
то прямая задаетсяпараметрическими
уравнениями:
3. Если
– направляющий вектор, такой, чтои– точка, через которую проходит прямая,
то имеемканоническое
уравнение:
(9.2)
4. Если прямая L
не параллельна оси Ox,
то для всех направляющих векторов
отношение
По заданному угловому коэффициентуk
прямой L
и точке
уравнение прямойL
может быть задано в следующем виде:
– это уравнение
прямой с угловым коэффициентом
k,
проходящей
через точку
М0.
В случае, если
– точка пересечения прямойL
с осью Oy,
это уравнение может быть записано в
следующем виде:
5. Координаты
направляющего вектора
прямойL
могут быть найдены, если известны две
точки
иэтой прямой:
Уравнение
прямой, проходящей через две заданные
точки:
(9.3)
6. Если известны
точки пересечения прямой L
с координатными осями, т. е. точки M0(a,
0) и M1(0,
b),
то справедливо уравнение
«в отрезках»:
7. Положение прямой
на плоскости однозначно определено и
в случае, когда задан ненулевой нормальный
вектор
этой прямой и точкаУсловие перпендикулярности векторовпозволяет перейти к векторному уравнению
и затем к его
координатной форме:
или
(9.4)
где
Уравнение (9.4)
называется общим
уравнением прямой
L.
8. Если в качестве
нормального вектора берется единичный
вектор
направленный из начала координат в
сторону прямой, т. е.
то справедливо
нормальное
уравнение
прямой L
на плоскости:
где
– расстояние от начала координат до
прямой.
Величина
δ(M0,
L)
= x0cos α
+ y0cos β
– p,
где
называется отклонением точки М0
от прямой L.
При этом δ
< 0, если точки M0
и O(0,
0) лежат по одну сторону от прямой L,
δ
> 0 – если по разные. Расстояние d(M0,
L)
от точки до прямой равно абсолютному
значению отклонения.
От общего уравнения
прямой к нормальному можно перейти с
помощью умножения на нормирующий
множитель:
где
Расстояние от
точки M0(x0,
y0)
до прямой L:
Ax
+ By
+ C
= 0 может быть
найдено по формуле
(9.5)
Угол между прямыми
легко найти с помощью косинуса угла
между их направляющими или нормальными
векторами, а также по формуле
где k1
и k2
– угловые коэффициенты прямых.
При этом возможны
частные случаи:
Здесь L1
и L2
– прямые на плоскости, для которых
– угловые коэффициенты соответственно
прямыхи
В полярной системе
координат уравнение прямой имеет вид
ρcos(φ
– φ0)
= p,
где p
– длина перпендикуляра, проведенного
из полюса к прямой, φ0
– угол между полярной осью и перпендикуляром.
Пример 1.
Даны вершины треугольника ABC:
A(1, 2),
B(–1, –3),
C(2, –1).
Найти:
1) уравнение прямой
BC;
2) уравнение высоты
AH
и ее длину;
3) уравнение медианы
BM;
4) угол между прямыми
BM
и AH;
5) уравнения
биссектрис внутреннего и внешнего углов
при вершине А.
Решение.
1) Для составления уравнения прямой BC
воспользуемся заданными координатами
точек B,
C
и уравнением прямой (9.3), проходящей
через две заданные точки. Так как B(–1,
–3), C(2,
–1), имеем:
Последнее уравнение
приведем к общему уравнению, использовав
основное свойство пропорции:
2(x
+ 1) = 3(y
+ 3) или 2x
– 3y
– 7 = 0.
Таким образом,
окончательно получаем:
ВС:
2x
– 3y
– 7 = 0.
2) Для построения
уравнения высоты АН
воспользуемся условием перпендикулярности
прямых AH
и ВС:
нормальным вектором прямой ВС
является
,
т. е.Этот вектор можно рассматривать как
направляющий вектор прямойАН.
Следовательно, каноническое уравнение
прямой AH
согласно формуле (9.2) имеет вид:
(9.6)
где А(1,
2)АН.
В общем виде получим
АН:
3х
+ 2у
– 7 = 0.
Чтобы найти длину
высотыАВС,
опущенной из вершины А,
воспользуемся формулой расстояния
(9.5):
3) Для составления
уравнения медианы ВМ
найдем координаты точки М,
являющейся серединой отрезка AC:
Получим M(3/2,
1/2). Запишем уравнение прямой BM
по двум известным точкам B(–1,
–3) и
используя формулу (9.3):
Приведя его к
общему уравнению, получим:
ВМ:
7x
– 5y
– 8 = 0.
4) Угол φ
между прямыми BM
и AH
найдем, используя угол между их нормальными
векторами:
Получаем
5) Пусть точка M(x,
y)
лежит на биссектрисе угла BАС.
Тогда по свойству биссектрисы d(M,
AB)
= d(M,
AC).
Запишем уравнения прямых АВ
и
АС. Имеем:
Следовательно,
Аналогично
т. е.
Используем формулу
расстояния (9.5):
Следовательно,
По основному
свойству пропорции и свойству модуля
имеем:
Итак, получили две
биссектрисы (внутреннего и внешнего
углов при вершине А):
Пример 2.
Даны две точки A(–3,
8) и B(2,
2). На оси Ox
найти такую точку M,
сумма расстояний от которой до двух
заданных точек была бы наименьшей.
Решение.
Воспользуемся утверждением, смысл
которого состоит в следующем: наименьший
путь между двумя точками достигается
в случае движения по прямой. Тогда задача
будет заключаться в поиске точки
пересечения прямой AB
(рис. 9.1) с осью Ox,
где B
– точка, симметричная точке В
относительно оси Ox
(или в нахождении точки пересечения
прямой AB
с осью Ox,
где A
– точка, симметричная точке А
относительно оси Ox).
Рис. 9.1
Точки B(2,
–2) и A(–3,
8) определяют прямую AB:
т. е.
или
Значит, для
нахождения координат искомой точки М
осталось решить систему уравнений:
Решаем ее:
Итак, точка М(1,
0) является искомой.
Задания
Соседние файлы в папке Часть 2
- #
- #
- #
- #
- #
- #
- #
- #
- #
2.9. Типовая задача с треугольником
Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в
сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не
будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.
Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется
найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:
Задача 95
Даны вершины треугольника . Требуется:
1) составить уравнения сторон и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести треугольника;
11) составить систему линейных неравенств, определяющих треугольник.
С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и
самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:
Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1
см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.
Вперёд без страха и сомнений:
1) Составим уравнения сторон и найдём их угловые
коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум
точкам.
Составим уравнение стороны по точкам :
Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.
Теперь
найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:
Таким образом, угловой коэффициент:
Самостоятельно разбираемся со сторонами и сверяемся, что
получилось:
2) Найдём длину стороны . Используем соответствующую формулу для точек :
Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка 🙂
3) Найдём . Это Задача 31, повторим:
Используем формулу .
Найдём векторы:
Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого
он есть.
Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла
между прямыми, так как они всегда дают острый угол.
4) Составим уравнение прямой , проходящей через точку параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!
Из общего уравнения прямой вытащим направляющий вектор .
Составим уравнение прямой по точке и направляющему вектору :
5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:
Из уравнения стороны снимаем вектор нормали . Уравнение высоты
составим по точке и направляющему вектору :
Обратите внимание, что координаты точки нам не известны.
Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты составим по точке и угловому коэффициенту :
Длину высоты можно найти двумя способами.
Существует окольный путь:
а) находим – точку
пересечения высоты и стороны ;
б) находим длину отрезка по двум
известным точкам.
Но зачем? – ведь есть удобная формула расстояния от точки до прямой :
6) Вычислим площадь треугольника. Используем «школьную» формулу:
7) Уравнение медианы составим в два шага:
а) Найдём точку – середину стороны . Используем формулы координат середины отрезка.
Известны концы , и тогда середина:
б) Уравнение медианы составим по точкам :
– для проверки подставим координаты точек .
8) Найдём точку пересечения высоты и медианы:
в
Первое уравнение умножили на 5, складываем их почленно:
– подставим в первое уравнение:
9) Биссектриса делит угол пополам:
Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:
Длины сторон уже найдены в предыдущих пунктах: .
Таким образом, . Координаты точки найдём по формулам деления отрезка в данном отношении. Да,
параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки известны и понеслась нелёгкая:
Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение – чтобы использовать формулу и
избавиться от иррациональности в знаменателе.
Разбираемся со второй координатой:
аким образом:
И предчувствие вас не обмануло, уравнение биссектрисы составим по точкам по формуле :
обратите внимание на технику упрощений:
Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)
10) Найдём центр тяжести треугольника.
Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца
в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то
теоретически фигура не должна свалиться.
Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.
Из пункта 7 нам уже известна одна из медиан: . Как решить задачу?
Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь
короче! Нужно только знать полезное свойство:
Точка пересечения медиан делит каждую из медиан в
отношении , считая от вершины треугольника. Поэтому справедливо
отношение
Нам известны концы отрезка – точки и .
По формулам деления отрезка в данном отношении:
Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные
неравенства:
11) Составим систему линейных неравенств, определяющих треугольник.
Для удобства я перепишу найденные уравнения сторон:
Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится
вершина . Составим вспомогательный многочлен и вычислим его значение в точке : . Поскольку сторона принадлежит треугольнику, то неравенство будет нестрогим:
Внимание! Если вам не понятен этот алгоритм, то обратитесь к
Задаче 90.
Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому
очевидно неравенство .
И, наконец, для составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .
Итак, треугольник определяется следующей системой линейных
неравенств:
Готово.
Какой можно сделать вывод?
Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.
Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!
Главное, придерживаться методики решения и проявить маломальское упорство.
Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =)
Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:
3.1. Алгебраическая линия и её порядок
2.8. Как научиться решать задачи по геометрии?
| Оглавление |
Автор: Aлeксaндр Eмeлин