Как найти уравнение параболы по двум точкам

Как легко составить уравнение параболы по графику

В данной статье репетитор по математике рассказывает о простом и эффективном способе составления уравнения параболы по её графику, которому вас не научат в школе. Дочитайте эту статью до конца или посмотрите видео с подробным объяснением, потому что эта информация может вам пригодиться на экзамене.

Задача состоит в том, чтобы по графику параболы (см. рисунок) определить коэффициенты a, b и c соответствующей квадратичной функции y = ax^2+bx+c:

График параболы, уравнение которой требуется составить

Существует стандартный и крайне неэффективный способ решения этой задачи. Он заключается в том, чтобы через координату x_Bвершины параболы связать коэффициенты a и b, используя формулу x_B = -frac{b}{2a}. Затем взять координаты двух точек, которые принадлежат параболе, составить систему уравнений и решить её относительно искомых коэффициентов. Считать придётся долго и муторно.

Мы не пойдём этим путём. Предлагаемый в данной статье способ намного более прост и изящен. Введём новую систему координат X_1OY_1с центром в вершине параболы и осями, сонаправленными с исходной системой координат. В данной системе координат уравнение нашей параболы будет иметь вид: y_1 = ax_1^2, где ane 0. Изобразим в новой системе координат график квадратичной функции y_1 = x_1^2(синяя пунктирная линия на рисунке):

Парабола, уравнение которой требуется найти, в новой системе координат

Абсциссы точек C и B в новой системе координат равны. Ордината точки C в 2 раза больше ординаты точки B. Значит график исходной параболы в новой системе координат получен умножением на frac{1}{2}всех ординат точек графика функции y_1= x_1^2. Откуда получаем, что a=frac{1}{2}. Значит исходная парабола может быть представлена в виде следующего выражения в новой системе координат: y_1 = frac{1}{2}x_1^2.

Осталось перейти в исходную систему координат. Поскольку новая система координат получена путём параллельного переноса исходной системы координат на 4 единичных отрезка вправо и 2 единичных отрезка вверх, то в исходной системе координат наша парабола может быть представлена в виде следующего выражения:

[ y = frac{1}{2}(x-4)^2+2 = frac{1}{2}x^2-4x+10. ]

Как видите, данный способ требует минимум вычислений и фактически является полуустным. Запомните этот способ, он может пригодиться вам при решений задач из ЕГЭ, ОГЭ или вступительных экзаменов в вузы и школы с углубленным изучением математики.

Квадратичная функция. Построение параболы

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило, в соответствии с которым каждому значению аргумента соответствует единственное значение функции. Вот какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек координатной плоскости, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0.

График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 в частном случае при b = 0, c = 0:

Точки, обозначенные фиолетовыми кружками, называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:

x

y

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов. При увеличении старшего коэффициента график сужается, при уменьшении — расширяется.

График функции y = –x 2 выглядит, как перевернутая парабола:

Зафиксируем координаты базовых точек в таблице:

x

y

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля (a > 0), то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля (a < 0), то ветви параболы напрaвлены вниз.

Как строить график квадратичной функции — учитывать значения х, в которых функция равна нулю. Иначе это можно назвать нулями функции. На графике нули функции f(x) — это точки пересечения у = f(x) с осью ОХ.

Так как ордината (у) любой точки на оси ОХ равна нулю, поэтому для поиска координат точек пересечения графика функции у = f(x) с осью ОХ, нужно решить уравнение f(x) = 0.

Для наглядности возьмем функцию y = ax 2 + bx + c. Чтобы найти точки пересечения с осью Ox, нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1. Если D < 0, то уравнение не имеет решений и парабола не имеет точек пересечения с осью ОХ. Если a > 0,то график выглядит так:
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

Если a > 0, то график выглядит как-то так:

Теперь понятно, что, зная направление ветвей параболы и знак дискриминанта, мы можем схематично представить график конкретной функции.

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

график к формуле нахождения координат вершины параболы

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.

Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.

D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

    Координаты вершины параболы:

Точка пересечения с осью OY находится: (0; -5) относительно оси симметрии.

Нанесем эти точки на координатную плоскость и построим график параболы:

Пример графика параболы

Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀

Зная координаты вершины параболы и старший коэффициент, можно записать уравнение квадратичной функции в виде у = a(x − x0) + y0, где x0, y0 — координаты вершины параболы.

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x — 1) 2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить график функции y = x 2 ,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.

Построить график параболы для каждого случая.

график параболы для каждого случая уравнения

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

Данный вид функции позволяет быстро найти нули функции:

(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

Определим координаты вершины параболы:

нахождение координат вершины параболы уравнения y = (x + a) * (x + b)

Найти точку пересечения с осью OY:

с = ab = (−2) × (1) = −2 и ей симметричная относительно оси симметрии параболы.

Отметим эти точки на координатной плоскости и соединим плавной прямой линией.

Как построить параболу

Соавтор(ы): Jake Adams. Джейк Адамс — репетитор и владелец онлайн-сервиса Simplifi EDU с офисом в Санта-Монике, Калифорния, который предлагает образовательные ресурсы и услуги репетиторов по предметам от уровня детского сада до колледжа, помощь в подготовке к тестам SAT и ACT и консультирование по вопросам поступления в колледж. Имеет более 14 лет опыта в качестве профессионального репетитора, нацелен на предоставление клиентам репетиторских услуг высочайшего качества и доступа к сети, объединяющей выскоквалифицированных репетиторов с высшим образованием из лучших колледжей страны. Получил диплом бакалавра по международному бизнесу и маркетингу в Университете Пеппердайна.

Количество источников, использованных в этой статье: 7. Вы найдете их список внизу страницы.

Основные понятия

Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.

Задать функцию означает определить правило, в соответствии с которым каждому значению аргумента соответствует единственное значение функции. Вот какими способами ее можно задать:

  • Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
  • Графический способ: наглядно.
  • Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
  • Словесный способ.

График функции — это объединение всех точек координатной плоскости, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.

Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно
на курсах по математике в онлайн-школе Skysmart.

Получай лайфхаки, статьи, видео и чек-листы по обучению на почту

Альтернативный текст для изображения

Реши домашку по математике на 5.

Подробные решения помогут разобраться в самой сложной теме.

Реши домашку по математике на 5.

Построение квадратичной функции

Квадратичная функция задается формулой y = ax2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0.

График квадратичной функции — парабола, которая имеет следующий вид для y = x2 в частном случае при b = 0, c = 0:

График квадратичной функции

Точки, обозначенные фиолетовыми кружками, называют базовыми точками. Чтобы найти их координаты для функции y = x2, нужно составить таблицу:

x

−2

−1

0

1

2

y

4

1

0

1

4

Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x2 при любых значениях остальных коэффициентов. При увеличении старшего коэффициента график сужается, при уменьшении — расширяется.

График функции y = –x2 выглядит, как перевернутая парабола:

График функции y = –x2

Зафиксируем координаты базовых точек в таблице:

x

−2

−1

0

1

2

y

−4

−1

0

−1

−4

Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:

  • Если старший коэффициент больше нуля (a > 0), то ветви параболы напрaвлены вверх.
  • Если старший коэффициент меньше нуля (a < 0), то ветви параболы напрaвлены вниз.

Как строить график квадратичной функции — учитывать значения х, в которых функция равна нулю. Иначе это можно назвать нулями функции. На графике нули функции f(x) — это точки пересечения у = f(x) с осью ОХ.

Так как ордината (у) любой точки на оси ОХ равна нулю, поэтому для поиска координат точек пересечения графика функции у = f(x) с осью ОХ, нужно решить уравнение f(x) = 0.

Для наглядности возьмем функцию y = ax2 + bx + c. Чтобы найти точки пересечения с осью Ox, нужно решить квадратное уравнение ax2 + bx + c = 0. В процессе найдем дискриминант D = b2 – 4ac, который даст нам информацию о количестве корней квадратного уравнения.

Рассмотрим три случая:

  1.  Если D < 0, то уравнение не имеет решений и парабола не имеет точек пересечения с осью ОХ. Если a > 0,то график выглядит так:
    график при условии D < 0
  1. Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:график при условии D = 0
  2. Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:

условие нахождения точек пересечения оси ОХ

Если a > 0, то график выглядит как-то так:

график при условии a  ssmArticle> 0
 

Теперь понятно, что, зная направление ветвей параболы и знак дискриминанта, мы можем схематично представить график конкретной функции.

график со всеми разобранными условиями

Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:

формула нахождения координат вершины параболы

график к формуле нахождения координат вершины параболы

Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.

Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).

На изображении отмечены основные параметры графика квадратичной функции:

основные параметры графика квадратичной функции
 

Алгоритм построения параболы

Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.

Уравнение квадратичной функции имеет вид y = ax2 + bx + c.

Разберем общий алгоритм на примере y = 2x2 + 3x – 5.

Как строим:

  1. Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
  2. Найдем дискриминант квадратного трехчлена 2x2 + 3x – 5.

D = b2 – 4ac = 9 – 4 * 2 * (-5) = 49 > 0

√D = 7

В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:

2x2 + 3x – 5 = 0

,

  1. Координаты вершины параболы:способ нахождения координат вершины параболы
  1. Точка пересечения с осью OY находится: (0; -5) относительно оси симметрии.
  2. Нанесем эти точки на координатную плоскость и построим график параболы:

    Пример графика параболы

Уравнение квадратичной функции имеет вид y = a * (x – x₀)2 + y₀

Зная координаты вершины параболы и старший коэффициент, можно записать уравнение квадратичной функции в виде у = a(x − x0) + y0, где x0, y0 — координаты вершины параболы.

Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x2 + 3x – 5 при а = 1, то второй коэффициент является четным числом.

Рассмотрим пример: y = 2 * (x – 1)2 + 4.

Как строим:

  1. Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
  • построить график функции y = x2,
  • умножить ординаты всех точек графика на 2,
  • сдвинуть его вдоль оси ОХ на 1 единицу вправо,
  • сдвинуть его вдоль оси OY на 4 единицы вверх.
  1. Построить график параболы для каждого случая.

    график параболы для каждого случая уравнения

Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)

Рассмотрим следующий пример: y = (x − 2) × (x + 1).

Как строим:

  1. Данный вид функции позволяет быстро найти нули функции:

    (x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.

  2. Определим координаты вершины параболы:

    нахождение координат вершины параболы уравнения y = (x + a) * (x + b)

  3. Найти точку пересечения с осью OY:

    с = ab = (−2) × (1) = −2 и ей симметричная относительно оси симметрии параболы.

  4. Отметим эти точки на координатной плоскости и соединим плавной прямой линией.

    график параболы уравнения y = (x + a) * (x + b)

Сообщения без ответов | Активные темы

Как по точкам составить уравнение параболы

Модераторы: Prokop, mad_math

Автор Сообщение

alexa125

Заголовок сообщения: Как по точкам составить уравнение параболы

СообщениеДобавлено: 15 мар 2011, 21:58 

Не в сети
Мастер


Зарегистрирован:
13 апр 2010, 11:56
Сообщений: 202
Cпасибо сказано: 32
Спасибо получено:
1 раз в 1 сообщении
Очков репутации: 2

Добавить очки репутацииУменьшить очки репутации

Дан график параболы.

Точки (-8;0), (1;0) и (0,3)

Я забыла как по точкам составить уравнение параболы :(
Помогите, пожалуйста.

Вернуться к началу

Профиль  

Cпасибо сказано 

alexa125

Заголовок сообщения: Re: Как по точкам составить уравнение параболы

СообщениеДобавлено: 17 мар 2011, 10:12 

Спасибо:) с=3 я сразу же нашла:)

Вернуться к началу

Профиль  

Cпасибо сказано 

 Похожие темы   Автор   Ответы   Просмотры   Последнее сообщение 
Составить уравнение параболы

в форуме Начала анализа и Другие разделы школьной математики

sniperghost

1

986

11 ноя 2014, 21:11

Составить уравнение параболы

в форуме Аналитическая геометрия и Векторная алгебра

HUEHUEHUE

1

1064

22 окт 2014, 15:36

Составить каноническое и полярное уравнение параболы

в форуме Аналитическая геометрия и Векторная алгебра

middle

2

355

06 янв 2017, 16:37

Составить уравнение параболы зная фокус и вершину

в форуме Аналитическая геометрия и Векторная алгебра

bhelp

1

770

19 дек 2016, 16:37

Получение коэф наклонной параболы по точкам

в форуме Аналитическая геометрия и Векторная алгебра

Ignatyyy

0

329

27 ноя 2015, 19:59

Составить канонические уравнения эллипса, гиперболы,параболы

в форуме Аналитическая геометрия и Векторная алгебра

LuluHate

0

87

23 ноя 2022, 15:16

Алгебраическое уравнение поверхности по точкам min max

в форуме Аналитическая геометрия и Векторная алгебра

Zink

7

450

04 сен 2016, 10:53

Уравнение кривой по точкам и касательным

в форуме Аналитическая геометрия и Векторная алгебра

rusty_cat

0

1067

24 авг 2015, 19:27

Уравнение параболы

в форуме Аналитическая геометрия и Векторная алгебра

yaroslav1997

1

516

16 дек 2014, 01:24

Найти уравнение параболы

в форуме Аналитическая геометрия и Векторная алгебра

ArsPol

1

668

25 окт 2013, 19:36

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 8

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Powered by phpBB © 2000, 2002, 2005, 2007 phpBB Group

Вы можете создать форум бесплатно PHPBB3 на Getbb.Ru, Также возможно сделать готовый форум PHPBB2 на Mybb2.ru

Русская поддержка phpBB

Как легко составить уравнение параболы по графику

Среда, 3 августа, 2016

В данной статье репетитор по математике рассказывает о простом и эффективном способе составления уравнения параболы по её графику, которому вас не научат в школе. Дочитайте эту статью до конца или посмотрите видео с подробным объяснением, потому что эта информация может вам пригодиться на экзамене.

Задача состоит в том, чтобы по графику параболы (см. рисунок) определить коэффициенты a, b и c соответствующей квадратичной функции y = ax^2+bx+c:

График параболы, уравнение которой требуется составить

Существует стандартный и крайне неэффективный способ решения этой задачи. Он заключается в том, чтобы через координату x_B вершины параболы связать коэффициенты a и b, используя формулу x_B = -frac{b}{2a}. Затем взять координаты двух точек, которые принадлежат параболе, составить систему уравнений и решить её относительно искомых коэффициентов. Считать придётся долго и муторно.

Мы не пойдём этим путём. Предлагаемый в данной статье способ намного более прост и изящен. Введём новую систему координат X_1OY_1 с центром в вершине параболы и осями, сонаправленными с исходной системой координат. В данной системе координат уравнение нашей параболы будет иметь вид: y_1 = ax_1^2, где ane 0. Изобразим в новой системе координат график квадратичной функции y_1 = x_1^2 (синяя пунктирная линия на рисунке):

Парабола, уравнение которой требуется найти, в новой системе координат

Абсциссы точек C и B в новой системе координат равны. Ордината точки C в 2 раза больше ординаты точки B. Значит график исходной параболы в новой системе координат получен умножением на frac{1}{2} всех ординат точек графика функции y_1= x_1^2. Откуда получаем, что a=frac{1}{2}. Значит исходная парабола может быть представлена в виде следующего выражения в новой системе координат: y_1 = frac{1}{2}x_1^2.

Осталось перейти в исходную систему координат. Поскольку новая система координат получена путём параллельного переноса исходной системы координат на 4 единичных отрезка вправо и 2 единичных отрезка вверх, то в исходной системе координат наша парабола может быть представлена в виде следующего выражения:

    [ y = frac{1}{2}(x-4)^2+2 = frac{1}{2}x^2-4x+10. ]

Как видите, данный способ требует минимум вычислений и фактически является полуустным. Запомните этот способ, он может пригодиться вам при решений задач из ЕГЭ, ОГЭ или вступительных экзаменов в вузы и школы с углубленным изучением математики.

Статья написана репетитором по математике в Москве, Сергеем Валерьевичем

19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

1

Составить уравнение параболы по двум точкам

18.12.2017, 15:41. Показов 23450. Ответов 12


Студворк — интернет-сервис помощи студентам

Что я уже на час подзавис. Коэффициент c нашел, а что дальше делать не знаю. Вообще нужно решить криволинейный интеграл первого порядка, но не дана функция, а только написано, что часть параболы от точек (0;0) и (2;4). Понятно, что с=0 и что один из корней тоже равен 0. Т.е. y = x(ax + b), но как найти a и b? Нужна помощь. С интегралом и сам справлюсь. Сасибо



0



Диссидент

Эксперт C

27465 / 17154 / 3780

Регистрация: 24.12.2010

Сообщений: 38,635

18.12.2017, 15:58

2

Вообще-то через 2 точки можно построить много парабол вида y = ax2+bx…Может быть (0,0) – вершина? Тогда и b=0

Добавлено через 1 минуту
Но возможно, ваш интеграл не зависит от пути интегрирования…



0



Эксперт по математике/физике

6353 / 4062 / 1509

Регистрация: 09.10.2009

Сообщений: 7,550

Записей в блоге: 4

18.12.2017, 16:03

3

Байт, так первого же рода, не второго. ТС не договаривает что-то.



0



19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

18.12.2017, 18:10

 [ТС]

4

Вот задание:
Вычислить криволинейный интеграл ∫√y dl , где L – часть параболы от точки А(0;0) до точки B(2;4).

Но возможно, ваш интеграл не зависит от пути интегрирования…

Ну я не сильно силен, учусь, но как я понял что не зависит.

Добавлено через 1 минуту
Чтобы решить его нужно уравнение параболы, вот в этом то и вопрос. Обычно есть уравнение, а тут нема…

Добавлено через 20 минут
Может есть еще какие идей?

Добавлено через 1 час 20 минут
Жаль, что никто не может помочь. Ладно, завтра еще подумаю чего делать.



0



3944 / 2858 / 665

Регистрация: 08.06.2007

Сообщений: 9,668

Записей в блоге: 4

18.12.2017, 18:52

5

Наверняка имеется в виду парабола https://www.cyberforum.ru/cgi-bin/latex.cgi?y=x^2.



0



19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

18.12.2017, 18:54

 [ТС]

6

Да я тоже в этом уверен, но имеется в виду без доказательства вряд ли прокатит)



0



Диссидент

Эксперт C

27465 / 17154 / 3780

Регистрация: 24.12.2010

Сообщений: 38,635

18.12.2017, 22:19

7

Цитата
Сообщение от BaredJJ
Посмотреть сообщение

никто не может помочь.

А как тут помочь? Данных явно мало. Придумать дополнительные данные за тебя?
От пути явно зависит. Всетки 1-рода, как заметил уважаемый jogano.
Это как сказать, “решите задачу”, а самой задачи не показать



0



19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

18.12.2017, 22:40

 [ТС]

8

Цитата
Сообщение от Байт
Посмотреть сообщение

А как тут помочь? Данных явно мало. Придумать дополнительные данные за тебя?
От пути явно зависит. Всетки 1-рода, как заметил уважаемый jogano.
Это как сказать, “решите задачу”, а самой задачи не показать

Ну во первых мы с вами не так близко знакомы, чтобы переходить на ты. А во вторых, я полное условие написал выше, только там нет под интегралом обозначения кривой L, так как я не знаю как ее туда поместить. Я конечно тоже склоняюсь, что должно быть простое уравнение параболы y=x2, но повторюсь, что это надо как то обосновать, а не мне кажется.



0



19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

18.12.2017, 22:44

 [ТС]

9

Ну вот скрин задания, если поможет. Но оо ничем не отличается от того что я выше написал

Миниатюры

Составить уравнение параболы по двум точкам
 



0



Эксперт по математике/физике

6353 / 4062 / 1509

Регистрация: 09.10.2009

Сообщений: 7,550

Записей в блоге: 4

18.12.2017, 22:45

10

BaredJJ, а может быть ветвь параболы, положенной на бок: https://www.cyberforum.ru/cgi-bin/latex.cgi?y=2sqrt{2x} – тоже проходит через точку (2;4) с вершиной в (0;0). Данные не полные.
Вопросы к тем, кто составляет такие задания.
Если нужно показывать преподавателю, решать так, как будто это парабола https://www.cyberforum.ru/cgi-bin/latex.cgi?y=x^2, но при этом сказать (написать), что по двум точкам однозначно параболу построить нельзя, и выбран наиболее простой вариант.



0



Диссидент

Эксперт C

27465 / 17154 / 3780

Регистрация: 24.12.2010

Сообщений: 38,635

18.12.2017, 22:49

11

Цитата
Сообщение от BaredJJ
Посмотреть сообщение

чтобы переходить на ты.

Простите, ради Бога, за мой шальной язык. Тут как-то не принято так жестко следить за этикетом. Но если Вас это коробит, то я, во избежании повторения таких ошибок, постараюсь избегать общения с Вами.



0



Эксперт по математике/физике

6353 / 4062 / 1509

Регистрация: 09.10.2009

Сообщений: 7,550

Записей в блоге: 4

18.12.2017, 22:55

12

Вот общий вид парабол, проходящих через указанные две точки ( (0;0) – не вершина): https://www.cyberforum.ru/cgi-bin/latex.cgi?y=xleft(ax-2a+2 right), : a in R backslash left{ 0right}



1



19 / 18 / 7

Регистрация: 16.05.2017

Сообщений: 447

19.12.2017, 13:52

 [ТС]

13

Цитата
Сообщение от Байт
Посмотреть сообщение

Простите, ради Бога, за мой шальной язык. Тут как-то не принято так жестко следить за этикетом. Но если Вас это коробит, то я, во избежании повторения таких ошибок, постараюсь избегать общения с Вами.

Ну вы же взрослый человек, сами меня тыкнули, а теперь из меня виноватого делаете. Будьте благоразумны и умейте спокойно относится к замечаниям и в свой адрес. Тем более, что я вам ничего плохого не сделал и не сказал, а только обратил внимание на то, что мне не очень приятно.
А вообще всем спасибо за помощь. Попробую решить данную проблему с преподавателем.

Добавлено через 28 минут
Вообщем ответ на кафедре был таков: принимаем коэффициент при старшей степени равным 1.



1



IT_Exp

Эксперт

87844 / 49110 / 22898

Регистрация: 17.06.2006

Сообщений: 92,604

19.12.2017, 13:52

13

Добавить комментарий