Как найти уравнение перпендикулярное другому уравнению

Уравнение перпендикулярной прямой

Альтернативная формула
Прямая, проходящая через точку M1(x1; y1) и перпендикулярная прямой Ax+By+C=0 , представляется уравнением

назначение сервиса . Онлайн-калькулятор предназначен для составления уравнения перпендикулярной прямой (см. также как составить уравнение параллельной прямой).

Пример №1 . Составить уравнение прямой, проходящей через точку (2; -1) и перпендикулярной 4x-9y=3 .
Решение. Данную прямую можно представить уравнением y = 4 /9x – 1 /3 (a = 4 /9). Уравнение искомой прямой есть y+1 = -9/4(x-2) , т.е. 9x+4y-14=0 .

Пример №2 . Решая пример 1 (A=4, B=-9) по формуле (2), найдем 4(y+1)+9(x-2)=0 , т.е. 9x+4y-14=0 .

Пример №3 . Составить уравнение прямой, проходящей через точку (-3, -2) перпендикулярно прямой 2y+1=0 .
Решение. Здесь A=0, B=2. Формула (2) дает -2(x+3)=0, т.е. x+3=0 . Формула (1) неприменима, так как a=0 .

Уравнение перпендикулярной прямой

Как составить уравнение прямой перпендикулярной данной прямой и проходящей через данную точку?

Пусть y=k1x+b1 — данная прямая. С учётом условия перпендикулярности прямых уравнение прямой, перпендикулярной данной, имеет вид

Если эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b.

1) Написать уравнение прямой, проходящей через точку A(-10;3), перпендикулярной прямой y=5x-11.

Так как прямые перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку, то

Значит уравнение прямой, перпендикулярной прямой y=5x-11, имеет вид

Так как прямая проходит через точку A(-10;3), то координаты A удовлетворяют уравнению прямой:

Итак, уравнение прямой, перпендикулярной прямой y=5x-11 и проходящей через точку A(-10;3)

2) Написать уравнение прямой, перпендикулярной прямой x= -2, проходящей через точку M(-5;9).

Прямая x= -2 перпендикулярна оси абсцисс. Значит, прямая, уравнение которой мы ищем, параллельна оси абсцисс, то есть ищем уравнение прямой в виде y=b.

Так как искомая прямая проходит через точку M(-5;9), то координаты M удовлетворяют уравнению прямой: y=9.

3) Написать уравнение прямой, перпендикулярной прямой y=4, проходящей через точку F(7;-5).

Прямая y=4 перпендикулярна оси ординат. Следовательно, прямая, уравнение которой мы ищем, параллельна оси ординат, а значит, её уравнение имеет вид x=a.

Так как эта прямая проходит через точку F(7;-5), то координаты F удовлетворяют уравнению прямой: x=7.

2.5.4. Как найти прямую, перпендикулярную данной?

В отличие от предыдущих задач п. 2.5, рассмотренные ниже схемы работают лишь в декартовой системе координат (но не в общем аффинном случае):

Задача 79

Прямая задана уравнением в декартовой системе координат. Составить уравнение перпендикулярной прямой , проходящей через точку .

Решение: по условию известна точка ( – значок принадлежности), и нам неплохо бы найти направляющий вектор прямой . Так как прямые перпендикулярны, то фокус прост: из уравнения «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой составим по точке и направляющему вектору :

Ответ:

Развернём геометрический этюд:
И аналитическая проверка решения:

1) Из уравнений , вытаскиваем направляющие векторы и с помощью скалярного произведения приходим к выводу, что прямые действительно перпендикулярны:
.
Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка полученному уравнению
Оба пункта легко выполнить устно!

Задача 80

Найти точку пересечения перпендикулярных прямых , если известно уравнение в декартовой системе координат и точка .

В задаче несколько действий, поэтому решение удобно оформить по пунктам.

И наше увлекательное путешествие продолжается:

источники:

http://www.treugolniki.ru/uravnenie-perpendikulyarnoj-pryamoj/

http://mathter.pro/angem/2_5_4_kak_nayti_perpendikulyarnuyu_pryamuyu.html



2.5.4. Как найти прямую, перпендикулярную данной?

В отличие от предыдущих задач п. 2.5, рассмотренные ниже схемы работают лишь в декартовой системе

координат (но не в общем аффинном случае):

Задача 79

Прямая задана уравнением  в декартовой системе координат. Составить

уравнение перпендикулярной прямой , проходящей через точку .

Решение: по условию известна точка  ( – значок принадлежности), и нам неплохо бы найти направляющий вектор прямой . Так как прямые перпендикулярны, то фокус прост:  из уравнения  «снимаем» вектор нормали: , который и будет направляющим вектором прямой .

Уравнение прямой  составим по точке  и направляющему вектору :

Ответ:

Развернём геометрический этюд:
И аналитическая проверка решения:

1) Из уравнений  вытаскиваем направляющие векторы  и с помощью скалярного произведения приходим к выводу, что прямые действительно

перпендикулярны:
.
Кстати, можно использовать векторы нормали, это даже проще.

2) Проверяем, удовлетворяет ли точка  полученному уравнению
Оба пункта легко выполнить устно!

Самостоятельно:

Задача 80

Найти точку пересечения перпендикулярных прямых , если известно уравнение  в декартовой системе координат  и точка .

В задаче несколько действий, поэтому решение удобно оформить по пунктам.

И наше увлекательное путешествие продолжается:

2.5.5. Как вычислить расстояние от точки до прямой?

2.5.3. Как найти точку пересечения прямых?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Как составить уравнение прямой перпендикулярной данной прямой и проходящей через данную точку?

Пусть y=k1x+b1 — данная прямая. С учётом условия перпендикулярности прямых уравнение прямой, перпендикулярной данной, имеет вид

    [y = - frac{1}{{k_1 }}x + b_2 .]

Если эта прямая проходит через точку M(xo; yo), то её координаты удовлетворяют уравнению прямой. Подставив в уравнение xo и yo, мы найдем b.

Примеры.

1) Написать уравнение прямой, проходящей через точку A(-10;3), перпендикулярной прямой y=5x-11.

Решение:

Так как прямые перпендикулярны, если их угловые коэффициенты обратны по абсолютной величине и противоположны по знаку, то

    [k_2 = - frac{1}{{k_1 }} = - frac{1}{5} = - 0,2.]

Значит уравнение прямой, перпендикулярной прямой y=5x-11, имеет вид

    [y = - 0,2x + b.]

Так как прямая проходит через точку A(-10;3), то координаты A удовлетворяют уравнению прямой:

    [3 = - 0,2 cdot ( - 10) + b,]

откуда b=1.

Итак, уравнение прямой, перпендикулярной прямой y=5x-11 и проходящей через точку A(-10;3)

    [y = - 0,2x + 1.]

Ответ: y= -0,2x+1.

2) Написать уравнение прямой, перпендикулярной прямой x= -2, проходящей через точку M(-5;9).

Решение:

Прямая x= -2 перпендикулярна оси абсцисс. Значит, прямая, уравнение которой мы ищем, параллельна оси абсцисс, то есть ищем уравнение прямой в виде y=b.

Так как искомая прямая проходит через точку M(-5;9), то координаты M удовлетворяют уравнению прямой: y=9.

Ответ: y=9.

3) Написать уравнение прямой, перпендикулярной прямой y=4, проходящей через точку F(7;-5).

Решение:

Прямая y=4 перпендикулярна оси ординат. Следовательно, прямая, уравнение которой мы ищем, параллельна оси ординат, а значит, её уравнение имеет вид x=a.

Так как эта прямая проходит через точку F(7;-5), то координаты F удовлетворяют уравнению прямой: x=7.

Ответ: x=7.

В данной статье научимся составлять уравнения прямой, проходящей через заданную точку на плоскости перпендикулярно заданной прямой. Изучим теоретические сведения, приведем наглядные примеры, где необходимо записать такое уравнение.

Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой

Перед нахождением уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой. Теорема рассматривается в средней школе. Через заданную точку, лежащую на плоскости, можно провести единственную прямую, перпендикулярную данной. Если имеется трехмерное пространство, то количество таких прямых увеличится до бесконечности.

Определение 1

Если плоскость α проходит через заданную точку М1 перпендикулярно к заданной прямой b, то прямые, лежащие  в этой плоскости, в том числе и проходящая через М1 являются перпендикулярными заданной прямой b.

Принцип составления уравнения прямой, проходящей через заданную точку плоскости перпендикулярно заданной прямой

Отсюда можно прийти к выводу, что составление уравнения прямой, проходящей через заданную точку перпендикулярно заданной прямой применимо только для случая на плоскости.

Задачи с трехмерным пространством подразумевают поиск уравнения плоскости, проходящей через заданную точку перпендикулярно к заданной прямой.

Если на плоскости с системой координат Охуz имеем прямую b, то ей соответствует уравнение прямой на плоскости, задается точка с координатами M1(x1, y1), а необходимо составить уравнение прямой a, которая проходит через точку М1 , причем перпендикулярно прямой b.

По условию имеем координаты точки М1. Для написания уравнения прямой необходимо иметь координаты направляющего вектора прямой a, или координаты нормального вектора прямой a, или угловой коэффициент прямой a.

Необходимо получить данные из заданного уравнения прямой b. По условию прямые a и b перпендикулярные, значит, направляющий вектор прямой b считается нормальным вектором прямой a. Отсюда получим, что угловые коэффициенты обозначаются как kb и ka. Они связаны при помощи соотношения kb·ka=-1.

Получили, что направляющий вектор  прямой b имеет вид b→=(bx, by), отсюда нормальный вектор – na→=(A2, B2), где значения A2=bx, B2=by. Тогда запишем общее уравнение прямой, проходящее через точку с координатами M1(x1, y1), имеющее нормальный вектор na→=(A2, B2), имеющее вид A2·(x-x1)+B2·(y-y1)=0.

Нормальный вектор прямой b определен и имеет вид nb→=(A1, B1), тогда направляющий вектор прямой a является вектором a→=(ax, ay), где значения ax=A1, ay=B1. Значит осталось составить каноническое или параметрическое уравнение прямой a, проходящее через точку с координатами M1(x1, y1) с направляющим вектором a→=(ax, ay), имеющее вид x-x1ax=y-y1ay или x=x1+ax·λy=y1+ay·λ соответственно.

После нахождения углового коэффициента kb прямой b можно высчитать угловой коэффициент прямой a. Он будет равен -1kb. Отсюда следует, что можно записать уравнение прямой a, проходящей через M1(x1, y1) с угловым коэффициентом -1kb в виде y-y1=-1kb·(x-x1).

Полученное уравнение прямой, проходящее через заданную точку плоскости перпендикулярно заданной. Если того требуют обстоятельства, можно переходить к другому виду данного уравнения.

Решение примеров

Рассмотрим составление уравнения прямой, проходящей через заданную точку плоскости и перпендикулярно заданной прямой.

Пример 1

Записать уравнение прямой а, которая проходит через точку с координатами M1 (7, -9) и перпендикулярна прямой b, которое задано каноническим уравнением прямой x-23=y+41.

Решение

Из условия имеем, что b→=(3, 1) является направляющим вектором прямой x-23=y+41. Координаты вектора b→=3, 1 являются координатами нормального вектора прямой a, так как прямые a и b взаимно перпендикулярны. Значит, получаем na→=(3, 1). Теперь необходимо записать уравнение прямой, проходящее через точку M1(7, -9), имеющее нормальный вектор с координатами na→=(3, 1).

Получим уравнение вида: 3·(x-7)+1·(y-(-9))=0 ⇔3x+y-12=0

Полученное уравнение является искомым.

Ответ: 3x+y-12=0.

Пример 2

Составить уравнение прямой, которая проходит через начало координат системы координат Охуz, перпендикулярно прямой 2x-y+1=0.

Решение

Имеем, что nb→=(2, -1) является нормальным вектором заданной прямой. Отсюда a→=(2, -1) – координаты искомого направляющего вектора прямой.

Зафиксируем уравнение прямой, проходящую через начало координат с направляющим вектором a→=(2, -1). Получим, что x-02=y+0-1⇔x2=y-1.  Полученное выражение является уравнение прямой, проходящей через начало координат перпендикулярно прямой 2x-y+1=0.

Ответ: x2=y-1.

Пример 3

Записать уравнение прямой, проходящей через точку  с координатами M1(5, -3) перпендикулярно прямой y=-52x+6.

Решение

Из уравнения y=-52x+6 угловой коэффициент имеет значение -52. Угловой коэффициент прямой, которая перпендикулярна ей имеет значение -1-52=25. Отсюда делаем вывод, что прямая, проходящая через точку с координатами M1(5, -3) перпендикулярно прямой y=-52x+6, равна y-(-3)=25·x-5⇔y=25x-5.

Ответ:  y=25x-5.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

Условием перпендикулярности (ортогональности) двух прямых на плоскости, заданных уравнениями:

y1=k1x+b1

y2=k2x+b

служит соотношение

k1 · k2  = −1

илиусловие перпендикулярности формула

т.е.  угловые коэффициенты k1, k2 обратны по величине и противоположны по знаку и это значит, что прямые перпендикулярны, а если произведение угловых коэффициентов не равно -1, то прямые не перпендикулярны.

Если две прямые представлены следующими уравнениями

уравнения прямых

то условием их перпендикулярности (уравнение перпендикулярной прямой) есть

условие перпендикулярности прямых


Пример 1
Прямые y=4x (прямая синего цвета) и y= -1/4x (прямая красного цвета) перпендикулярны, так как k1·k2=4·(-1/4)=-1


Пример 2
Прямые 2x+3y=7 и 3x-2y=4 перпендикулярны, так как A1=2, A2=3, B1=3, B2=-2, следовательно

Пример условие перпендикулярности


Пример 3
Прямые 1/4x-1/6y=0 и 4x-6y=0 не перпендикулярны, так как здесь

21031


Добавить комментарий