Как найти уравнение стороны ас треугольника авс

Как составить уравнение сторон треугольника по  координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Пример.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

Решение:

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ - 4 = k cdot 7 + b; \ end{array} right. Rightarrow k = - frac{5}{{12}};b = - frac{{13}}{{12}}.]

Таким образом, уравнение стороны AB

    [y = - frac{5}{{12}}x - frac{{13}}{{12}}.]

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

    [left{ begin{array}{l} - 4 = k cdot 7 + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = - frac{{11}}{4};b = frac{{61}}{4}.]

Отсюда уравнение стороны BC —

    [y = - frac{{11}}{4}x + frac{{61}}{4}.]

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

    [left{ begin{array}{l} 1 = k cdot ( - 5) + b; \ 7 = k cdot 3 + b; \ end{array} right. Rightarrow k = frac{3}{4};b = frac{{19}}{4}.]

Уравнение стороны AC —

    [y = frac{3}{4}x + frac{{19}}{4}.]

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Составить уравнение стороны ab треугольника abc

Как составить уравнение сторон треугольника по координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

Таким образом, уравнение стороны AB

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

Отсюда уравнение стороны BC —

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

УСЛОВИЕ:

Даны вершины треугольника ABC. Найти: а) уравнение стороны AB; б) уравнение высоты CH; в) уравнение медианы AM; г) точку персечения медианы AM и высоты CH; д) уравнение прямой, проходящей через вершину C параллельно стороне AB; е) расстояние от точки C до прямой AB
A(-3,8); B(-6;2); C(0,-5)

РЕШЕНИЕ ОТ u821511235 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Добавил vk247797756 , просмотры: ☺ 17346 ⌚ 2018-11-27 17:51:50. математика 1k класс

Решения пользователей

Написать комментарий

Делим обе части равенства на π

и умножаем на 4

+pi k, k in Z
Можно правую часть записать в виде двух ответов:

x=1+8n in Z : это . [b] -15; -7; 1; 9; 17; ..[/b].

x=3+ 8n, n in Z : это[b] -13; -5; 3; 11; . [/b]

[b]x=-5 – наибольшее отрицательное [/b]

О т в е т. x=1+8n in Z или x=3+ 8n, n in Z

корни чередуются так:

. -15;-13;-7;-5; 1;3; 9;11; 17; 19; .

[b]x=-5 – наибольшее отрицательное [/b] (прикреплено изображение)

a=1 – старший коэффициент
b=1 – средний коэффициент
с=-2 – свободный член

4.
x^2=a-5
При a-5=0 ⇒ при а=5
уравнение имеет один корень х=0

5.
Δ Прямоугольный, так как верно равенство: b^2=a^2+c^2
5^2=3^2+4^2
25=9+16
Значит, ∠ B=90 градусов и ∠ А+ ∠ С=90 градусов.

∠ А- ∠ С=36 градусов.
∠ А+ ∠ С=90 градусов.

складываем оба равенства:

2* ∠ А=126 градусов.

По формулам приведения:

sin^2x+sinx-2=0
D=9
sinx=-2 или sinx=1

sinx=-2 уравнение не имеет корней, -1 ≤ sinx ≤ 1

sinx=1 ⇒ x=(π/2)+2πk, k ∈ Z или х=90 ° +360 ° *k, k ∈ Z

Найдем корни, принадлежащие указанному отрезку с помощью неравенства:

-286 ° ≤ 90 ° +360 ° *k ≤ 204 °

-286 °-90 ° ≤ 360 ° *k ≤ 204 ° -90 °

-376 ° ≤ 360 ° *k ≤ 114 °

Неравенство верно при k=[green]-1[/green] и k=[red]0[/red]

Значит, указанному отрезку принадлежат два корня:

x=90 ° +360 °* ([green]-1[/green])=-270 °

x=90 ° +360 °*[red]0[/red]=90 °

7. KT- средняя линия трапеции:

Cредняя линия трапеции делит высоту трапеции пополам ( см. рис)

Высоты треугольников АКО и СОК равны половине высоты трапеции

S_( Δ АКО)+S_( Δ COK)=44

S_( Δ АКО)+S_( Δ COK)=KO*(h/4) +OT*(h/4)=

О т в е т. [b]176[/b]

B=-2
[i]l[/i]=8 – количество ребер четырехугольной пирамиды

Что ты хочешь узнать?

Ответ

Проверено экспертом

а) Длина стороны АВ:

б) Уравнение сторон АВ и ВС и их угловые коэффициенты: АВ : Х-Ха = У-Уа
Хв-Ха Ув-Уа

Получаем уравнение в общем виде:
АВ: 4х – 8 = 3у – 6 или
АВ: 4х – 3у – 2 = 0
Это же уравнение в виде у = кх + в:
у = (4/3)х – (2/3).
Угловой коэффициент к = 4/3.

ВС: 2х + у – 16 = 0.
ВС: у = -2х + 16.
Угловой коэффициент к = -2.

в) Внутренний угол В:Можно определить по теореме косинусов.
Находим длину стороны ВС аналогично стороне АВ:
BC = √((Хc-Хв)²+(Ус-Ув)²) = 2.236067977
cos В= ( АВ²+ВС²-АС²) / ( 2*АВ*ВС) = 0.447214
Угол B = 1.107149 радиан = 63.43495 градусов.

Можно определить векторным способом:
Пусть координаты точек
A: (Xa, Ya) = (2; 2) .
B: (Xb, Yb) = (5; 6).
С: (Xc, Yc) = (6; 4).

Находим координаты векторов AB и BС:
AB= (Xb-Xa; Yb-Ya) = ((5 – 2); (6 – 2)) = (3; 4);
BС= (Xc-Xв; Yс-Yв) = ((6 – 5); (4 – 6)) = (1; -2).
Находим длины векторов:
|AB|=√((Xb-Xa)² + (Yb-Ya)^2) = 5 ( по пункту а)
|ВС|=√((Xс-Xв)²+(Yс – Yв) = √(1²+(-2)²) = √5 = 2.236067977 .
b=cos α=(AB*ВС)/(|AB|*|ВС|
AB*ВC = (Xв – Xa)*(Xc – Xв) + (Yв – Ya)*(Yc – Yв) =
= 3*1 + 4*(-2) = 3 – 8 = -5.
b = cosα = |-5| / (5*2.236067977) = 5 / 11.18034 = 0.4472136 20
Угол α=arccos(b) = arc cos 0.4472136 = 1.1071487 радиан = 63.434949°.

г) Уравнение медианы АЕ.
Находим координаты точки Е (это основание медианы АЕ), которые равны полусумме координат точек стороны ВС.

3x – 6 = 3,5y – 7
3x – 3,5y + 1 =0, переведя в целые коэффициенты:
6х – 7у + 2 = 0,
С коэффициентом:
у = (6/7)х + (2/7) или
у = 0.85714 х + 0.28571.

[spoiler title=”источники:”]

http://mathhelpplanet.com/static.php?p=onlain-reshit-treugolnik

http://4apple.org/sostavit-uravnenie-storony-ab-treugolnika-abc/

[/spoiler]

Пример 1:

Построить треугольник, вершины которого находятся в точках А (2; 4), В (-3; 2), С (-3; -4). Найти:

1) уравнения сторон треугольника АВС;

2) координаты точки пересечения медиан;

3) длину и уравнение высоты, опущенной из вершины А;

4) площадь треугольника.

Решение от преподавателя:

Уравнение, прямой проходящей через две точки
1) Уравнения сторон треугольника АВС

2) Координаты точки пересечения медиан

Медиана – отрезок, соединяющий вершину треугольника с серединой противоположной стороны.

Координаты т. E как середины отрезка ВС.

Уравнение АЕ

Координаты т. К как середины отрезка АВ.

Уравнение СК

3) Длина и уравнение высоты, опущенной из вершины А

Расстояние от точки до прямой

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

Уравнение AN

4) Площадь треугольника

Длина ВС

Пример 2:

Решение от преподавателя:


Пример 3:

По координатам вершин треугольника ABC найти:

  • периметр треугольника;
  • уравнения сторон AB и BC;
  • уравнение высоты AD; угол ABC;
  • площадь треугольника.

Сделать чертеж.

А(1; 2); В (–1; 2); С(3; 0).

Решение от преподавателя:



Пример 4:

Даны координаты вершин треугольникаА, В, С.

Требуется найти:

1) уравнение и длину стороны ВС;

2) уравнение и длину высоты, проведённой из вершиныА;

3) уравнение медианы, проведённой из вершиныА;

4) площадь треугольника.

Сделать чертёж.

А(4;-3), B(-2;-1), C(3;-2).

Решение от преподавателя:

Пример 5:

Решение от преподавателя:

1)

2)

3) Находим координаты точки М – середины стороны ВС:

       

Определяем длину медианы АМ:

4) Составляем уравнение медианы – прямой АМ:

5) Если ВН – высота, проведенная из вершины В к стороне АС, то, поскольку ВН проходит через точку В перпендикулярно вектору , то составляем уравнение высоты по формуле , где (a,b) – координаты вектора перпендикулярного искомой прямой,  – координаты точки, принадлежащей этой прямой. Находим координаты вектора АС:

и подставляем в формулу, ,

6) Длину высоты ВН находим как расстояние от точки В до прямой АС:

7) Площадь треугольника АВС:

8) Находим угол ВАС треугольника:

9) Составляем уравнение прямой, проходящей через т.А параллельно ВС:

Ответ:

Пример 6:

Решение от преподавателя:

  1. Уравнение прямой 
    Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b1%7d%7d%7bx_%7b2%7d%20-%20x_%7b1%7d%7d%20=%20frac%7by%20-%20y_%7b1%7d%7d%7by_%7b2%7d%20-%20y_%7b1%7d%7d
    Уравнение прямой AB 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-4%20-%2010%7d%20=%20frac%7by%20%2B%202%7d%7b4%20-%20(-2)%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%2010%7d%7b-14%7d%20=%20frac%7by%20%2B%202%7d%7b6%7d
    или 
    y = -3/7x + 16/7 или 7y + 3x – 16 = 0 
  2. Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 
    https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b10%20%2B%20(-4)%7d%7b2%7d%20=%203
    https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%204%7d%7b2%7d%20=%201
    M(3;1) 
    Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-8;2) и М(3;1), поэтому: 
    Каноническое уравнение прямой: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b3%20-%20(-8)%7d%20=%20frac%7by%20-%202%7d%7b1%20-%202%7d
    или 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%208%7d%7b11%7d%20=%20frac%7by%20-%202%7d%7b-1%7d
    или 
    y = -1/11x + 14/11 или 11y + x – 14 = 0 
  3. Уравнение высоты через вершину C 
    Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
    Найдем уравнение высоты через вершину C 
    https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-8)%7d%7b3%7d%20=%20frac%7by%20-%202%7d%7b7%7d
    y = 7/3x + 62/3 или 3y -7x – 62 = 0
  4. уравнение параллельной прямой AB, проходящей через точку (-8,2)
    Уравнение прямой AB: y = -3/7x + 16/7
    Уравнение KN параллельно AB находится по формуле:
    y – y0 = k(x – x0)
    Подставляя x0 = -8, k = -3/7, y0 = 2 получим:
    y-2 = -3/7(x-(-8))
    или
    y = -3/7x – 10/7 или 7y + 3x +10 = 0

Пример 7:

Даны координаты вершин треугольника: A(1,1), B(4,13), C(10,5). 

Решение от преподавателя:

4) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -1/4x + 15/2 или 4y +x -30 = 0 
Данное уравнение можно найти и другим способом. Для этого найдем угловой коэффициент k1 прямой AB. 
Уравнение AB: y = 4x -3, т.е. k1 = 4 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
4k = -1, откуда k = -1/4 
Так как перпендикуляр проходит через точку C(10,5) и имеет k = -1/4,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 10, k = -1/4, y0 = 5 получим: 
y-5 = -1/4(x-10) 
или 
y = -1/4x + 15/2 или 4y + x – 30 = 0 
Найдем точку пересечения с прямой AB: 
Имеем систему из двух уравнений: 
y -4x +3 = 0 
4y + x – 30 = 0 
Из первого уравнения выражаем y и подставим во второе уравнение. 
Получаем: 
x = 42/17 
y = 117/17 
D(42/17;117/17
Длина высоты треугольника, проведенной из вершины C 
Расстояние d от точки M1(x1;y1) до прямой Ax + By + С = 0 равно абсолютному значению величины: 

Найдем расстояние между точкой C(10;5) и прямой AB (y -4x +3 = 0) 

5,7) Уравнение медианы треугольника 
Обозначим середину стороны BC буквой Е. Тогда координаты точки Е найдем по формулам деления отрезка пополам. 


Е(7;9) 
Уравнение медианы AЕ найдем, используя формулу для уравнения прямой, проходящей через две заданные точки A(1;1) иЕ(7;9), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 4/3-1/3 или 3y -4x +1 = 0 
Найдем длину медианы. 
Расстояние между двумя точками выражается через координаты формулой: 

6) CDдиаметр окружности. Центр окружности точка О лежит в середине отрезка CD

Уравнение окружности  (x-x0)2+(y-y0)2=r2

(x-106/17)2+(y-101/17)2=256/17 

8) Уравнение прямой, параллельной CD, проходящей через точку A 

Так как прямая  проходит через точку А(1,1) и имеет k = -1/4, ( так как уравнение CD:y = -1/4x + 15/2 или 4y + x – 30 = 0 ),
то будем искать уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 1, k = -1/4, y0 = 1получим: 
y-1 = -1/4(x-1) 
или 
y = -1/4x + ¼+1 или 4y + x – 5 = 0 

Пример 8:

Решение от преподавателя:

Точка D – середина стороны АВ , ее координаты равны полусумме координат А и В. Получим D(1, -1)

Пример 9:

Даны координаты вершин треугольника АВС: А (3,-2), В (-5,-4),  С (-1,6).

Найдите: 1) уравнения сторон треугольника АВ, ВС и АС;

2) периметр (сумму длин) треугольника;

3) уравнение высоты СН;

4) расстояние d от точки С до прямой АВ;

5) сделайте чертеж.

Решение от преподавателя:

Решение.

1) уравнения сторон треугольника АВ, ВС и АС

Уравнение, прямой проходящей через две точки

2) периметр (сумму длин) треугольника

Расстояние между двумя точками

3) уравнение высоты СН

Уравнение прямой, проходящей через точку перпендикулярно другой прямой

4) расстояние d от точки С до прямой АВ

Расстояние от точки до прямой

Пример 10:

Даны вершины A (x1; y1), B (x2; y2), C (x3; y3)    треугольника.

Найти: 1) уравнение стороны AB;

2) уравнение медианы, проведенной из вершины C;

3) уравнение высоты, проведенной из вершины C ;

4) уравнение прямой, проходящей через вершину C параллельно стороне AB .

A (6; 0), B (2; − 6), C (−3; −9).

Решение от преподавателя:

Пример 11:

Решение от преподавателя:

Пример 12:

Дан треугольник  с координатами вершин найти:

а) длину стороны AB;

б) косинус угла ABC;

в) площадь треугольника ABC (через векторное произведение);

Решение от преподавателя:

Пример 13:

Решение от преподавателя:

Даны координаты вершин треугольника: A(6,0), B(2,-6), C(-3,-9). 
1) Уравнение прямой 
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 
Каноническое уравнение прямой: 

или 

или 
y = 3/2x -9 или 2y -3x +18 = 0 

2) Уравнение медианы треугольника 
Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(4;-3) 
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(-3;-9) и М(4;-3), поэтому: 
Каноническое уравнение прямой: 

или 

или 
y = 6/7-45/7 или 7y -6x +45 = 0 
3) Уравнение высоты через вершину C 
Прямая, проходящая через точку N0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями: 

Найдем уравнение высоты через вершину C 

y = -2/3x -11 или 3y +2x + 33 = 0 
4) Уравнение прямой, параллельной AB, проходящей через С(-3,-9) 
Уравнение прямой AB: 2y -3x +18 = 0 
Уравнение СN параллельно AB находится по формуле: 

Или     2y -3x +9 = 0 

Пример 14:

Даны вершины треугольника А(8,1), В(0,3), С(-2,-3). Напишите уравнения стороны AB, медианы AD, высоты BE.

Решение от преподавателя:

Даны координаты вершин треугольника: A(8,1), B(0,3), C(-2,-3). 
1) Уравнение прямой (АВ)
Прямая, проходящая через точки A1(x1; y1) и A2(x2; y2), представляется уравнениями: 

Уравнение прямой AB 


или 

или 
 4y + x – 12 = 0 

2)Уравнение медианы (АD)

Обозначим середину стороны BC буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам. 


M(-1;0) 
Уравнение медианы AM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана AМ проходит через точки A(8;1) и М(-1;0), поэтому: 

или 

или 
y = 1/9x + 1/9 или 9y -x – 1 = 0 
3) Уравнение высоты через вершину B

Найдем уравнение высоты через вершину B 

Для этого найдем угловой коэффициент k1 прямой AC. 

Уравнение прямой AC 
уравнение прямой, проходящей через 2 точки: 

или 

или 
y = 2/5-11/5  т.е. k1 = 2/5 
Найдем угловой коэффициент k перпендикуляра из условия перпендикулярности двух прямых: k1*k = -1. 
Подставляя вместо k1 угловой коэффициент данной прямой, получим: 
2/5k = -1, откуда k = -5/2 
Так как перпендикуляр проходит через точку B(0,3) и имеет k = -5/2,то будем искать его уравнение в виде: y-y0 = k(x-x0). 
Подставляя x0 = 0, k = -5/2, y0 = 3 получим: 
y-3 = -5/2(x-0) 
или 
y = -5/2x + 3 или 2y + 5x – 6 = 0    – уравнение (ВЕ)

Пример 15:

Дан треугольник АВС. Найти:

а) величину угла А;

б) уравнение стороны АС;

в) уравнение высоты и медианы, опущенных из вершины В.

Сделать чертеж.

А(-1,2); В(1,3); С(3,-4).

Решение от преподавателя:

Пример 16:

Треугольник задан вершинами А(-6; -2);  В(4; 8); С(2; -8). Найти:

а) уравнение прямой BN, параллельной  стороне АС;

б) уравнение медианы CD;

в) уравнение высоты АЕ;

Решение от преподавателя:

а) уравнение прямой BN, параллельной  стороне АС;

Уравнение прямой AC:

Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b2%20-%20(-6)%7d%20=%20frac%7by%20%2B%202%7d%7b-8%20-%20(-2)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%206%7d%7b8%7d%20=%20frac%7by%20%2B%202%7d%7b-6%7d
или
y = -3/4-13/2 или 4y + 3x +26 = 0

Уравнение BN параллельно AC находится по формуле:
y – y0 = k(x – x0)
Подставляя x0 = 4, k = -3/4, y0 = 8 получим:
y-8 = -3/4(x-4)
или
y = -3/4x + 11 или 4y + 3x – 44 = 0

б) уравнение медианы CD;

Обозначим середину стороны AB буквой М. Тогда координаты точки M найдем по формулам деления отрезка пополам.
https://chart.googleapis.com/chart?cht=tx&chl=x_%7bm%7d%20=%20frac%7bx_%7bA%7d%20%2B%20x_%7bB%7d%7d%7b2%7d%20=%20frac%7b-6%20%2B%204%7d%7b2%7d%20=%20-1
https://chart.googleapis.com/chart?cht=tx&chl=y_%7bm%7d%20=%20frac%7by_%7bA%7d%20%2B%20y_%7bB%7d%7d%7b2%7d%20=%20frac%7b-2%20%2B%208%7d%7b2%7d%20=%203
M(-1;3)
Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(2;-8) и М(-1;3), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-1%20-%202%7d%20=%20frac%7by%20%2B%208%7d%7b3%20-%20(-8)%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%202%7d%7b-3%7d%20=%20frac%7by%20%2B%208%7d%7b11%7d
или
y = -11/3-2/3 или 3y + 11x +2 = 0

в) уравнение высоты АЕ;

Прямая, проходящая через точку Е0(x0;y0) и перпендикулярная прямой Ax + By + C = 0 имеет направляющий вектор (A;B) и, значит, представляется уравнениями:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20x_%7b0%7d%7d%7bA%7d%20=%20frac%7by%20-%20y_%7b0%7d%7d%7bB%7d
Найдем уравнение высоты через вершину A
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-6)%7d%7b-8%7d%20=%20frac%7by%20-%20(-2)%7d%7b1%7d
y = -1/8x – 11/4 или 8y +x + 22 = 0

Пример 17:

A(1, 2), В(5, 8), С(11, 3).

Решение от преподавателя:


Пример 18:

В ∆ABC вершины имеют координаты точки А (-3;4), точки В (-4;-3), точки С (8;1).

Составить уравнения стороны (AB), высоты (ВК)  и медианы (CМ).

Решение от преподавателя:

Уравнение прямой AB
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b-4%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b-3%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b0%7d%20=%20frac%7by%20-%204%7d%7b-7%7d
или
x +4 = 0 или x = -4
Уравнение прямой AC
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b8%20-%20(-4)%7d%20=%20frac%7by%20-%204%7d%7b1%20-%204%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20%2B%204%7d%7b12%7d%20=%20frac%7by%20-%204%7d%7b-3%7d
или
y = -1/4x + 3 или 4y + x – 12 = 0

Найдем уравнение высоты через вершину B
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%20(-4)%7d%7b1%7d%20=%20frac%7by%20-%20(-3)%7d%7b4%7d
y = 4x + 13 или y -4x – 13 = 0

Уравнение медианы CM найдем, используя формулу для уравнения прямой, проходящей через две заданные точки. Медиана CМ проходит через точки C(8;1) и М(-4;1/2), поэтому:
Каноническое уравнение прямой:
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-4%20-%208%7d%20=%20frac%7by%20-%201%7d%7b%7b1%20over%202%7d%20-%201%7d
или
https://chart.googleapis.com/chart?cht=tx&chl=frac%7bx%20-%208%7d%7b-12%7d%20=%20frac%7by%20-%201%7d%7b%7b-1%20over%202%7d%7d
или
y = 1/24x + 2/3 или 24y -x – 16 = 0

Пример 19:

Дан треугольник ABC с координатами вершин A(-5;-3; 2), B(-2;-6;-3) и C(-2; 2;-1).
Найти:
а) длину стороны АВ;
б) косинус угла ABC;
в) площадь треугольника АВС (через векторное произведение).

Решение от преподавателя:

Уравнение длины сторон треугольника


Уравнение длины сторон треугольника

4.7

Средняя оценка: 4.7

Всего получено оценок: 181.

4.7

Средняя оценка: 4.7

Всего получено оценок: 181.

Уравнение длин сторон треугольника – это первые вкрапления высшей математики в математику школьного курса. Понимание данной тематики приближает ученика к университетскому уровню, вместе с тем делая более понятной тему функции.

Функция

Что такое функция? Это зависимость одной величины от другой. В математической функции чаще всего две неизвестных: независимая и зависимая или х и у соответственно.

Что это значит? Это значит, что х может принимать абсолютно любое значение, а у будет под него подстраиваться, меняясь в соответствии с коэффициентами функции.

Существуют ситуации, когда функция имеет несколько переменных. Зависимая у всегда 1, но факторов, которые влияют на неё может быть несколько. Не всегда такую функцию получается отразить на графике. В лучшем случае графически можно отобразить зависимость у от 2 переменных.

Как проще всего представить зависимость у(х)?

Да очень просто. Представьте себе избалованного ребенка и богатую любящую мать. Они вместе приходят в магазин и начинают клянчить конфеты. Кто знает, сколько конфет мальчик потребует сегодня?

Никто, но в зависимости от количества конфет увеличится сумма, которую мама оплатит на кассе. В этом случае, зависимой величиной является сумма в чеке, а независимой – количество конфет, которое захочет мальчик сегодня.

Очень важно понимать, что одному значению функции у, всегда соответствует 1 значение аргумента х. Но, как и с корнями квадратного уравнения, эти значения могут совпадать.

Уравнение прямой линии

Зачем нам нужно уравнение прямой, если мы говорим об уравнении длин сторон треугольника?

Да затем, что каждая из сторон треугольника это отрезок. А отрезок это ограниченная часть прямой. То есть мы можем задать уравнения прямых. А в точках их пересечения ограничить линии, тем самым обрезав прямые и превратив их в отрезки.

Уравнение прямой выглядит следующим образом:

$$y_1=a_1x+b_1$$

$$y_2=a_2x+b_2$$

$$y_3=a_3x+b_3$$

Уравнение сторон треугольника

Необходимо найти уравнение длин сторон треугольника с вершинами в точках А(3,7) ; В(5,3); С(12;9)

Все координаты положительны, значит, треугольник будет расположен в 1 координатной четверти.

Поочередно составим уравнения каждой из линий треугольника.

  • Первой будет линия АВ. Координаты точек подставим в уравнение прямой на место х и у. Таким образом мы получим систему из двух линейных уравнений. Решив ее можно найти значение коэффициентов для функции:

А(3,7) ; В(5,3):

7=3а+b

3=5a+b

Из первого уравнения выразим b и подставим во второе.

b=7-3a

3=5a+7-3a

2a=-4

a=-2

Подставим значение а и найдем b.

b=7-3a=7-3*(-2)=7+6=13

Составим уравнение прямой.

у=-2х+13

  • Аналогично составим два оставшихся уравнения.

В(5,3); С(12;9)

3=5а+b

9=12a+b

b=3-5a

9=12a+b=12a+3-5a

9=7a+3

7a=6

$$a={6over7}$$

$$b=3-5*{6over7}=-{9over7}$$

$$y={6over7}x-{9over7}$$

  • А(3,7) ; С(12;9)

7=3а+b

9=12a+b

b=7-3a

9=12a+b=12a+7-3a=9a+7

9a=2

$$a={2over9}$$

$$b=7-{6over9}={57over9}$$

$$y={2over9}x+{57over9}$$

  • Запишем уравнение длин сторон треугольника:

у=-2х+13

$$y={6over7}x-{9over7}$$

$$y={2over9}x+{57over9}$$

Заключение

Что мы узнали?

Мы узнали, что такое функция, поговорили у функции прямой линии и научились выводить уравнения сторон треугольника по координатам его вершин.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.7

Средняя оценка: 4.7

Всего получено оценок: 181.


А какая ваша оценка?

Добавить комментарий