Как найти уравнение высоты медианы биссектрисы

Прямая на плоскости. Примеры решений

Решение проводим с помощью калькулятора.
Даны координаты треугольника: A(2,1), B(1,-2), C(-1,0).
1) Координаты векторов
Координаты векторов находим по формуле:
X = xj – xi; Y = yj – yi
здесь X,Y координаты вектора; xi, yi – координаты точки Аi; xj, yj – координаты точки Аj
Например, для вектора AB
X = x2 – x1; Y = y2 – y1
X = 1-2 = -1; Y = -2-1 = -3
AB(-1;-3)
AC(-3;-1)
BC(-2;2)
2) Модули векторов
Длина вектора a(X;Y) выражается через его координаты формулой:




3) Угол между прямыми
Угол между векторами a1(X1;Y1), a2(X2;Y2) можно найти по формуле:

где a1a2 = X1X2 + Y1Y2
Найдем угол между сторонами AB и AC

γ = arccos(0.6) = 53.13 0
4) Проекция вектора
Проекцию вектора b на вектор a можно найти по формуле:

Найдем проекцию вектора AB на вектор AC

5) Площадь треугольника
Пусть точки A1(x1; y1), A2(x2; y2), A3(x3; y3) – вершины треугольника, тогда его площадь выражается формулой:

В правой части стоит определитель второго порядка. Площадь треугольника всегда положительна.
Решение. Принимая A за первую вершину, находим:

Пример. Даны координаты вершин треугольника АВС: А(–3; –1), В(4; 6), С(8; –2).
Требуется: 1) вычислить длину стороны ВС; 2) составить уравнение стороны ВС; 3) найти внутренний угол треугольника при вершине В; 4) составить уравнение высоты АК, проведенной из вершины А; 5) найти координаты центра тяжести однородного треугольника (точки пересечения его медиан); 6) сделать чертеж в системе координат.

Задание. Даны координаты вершин треугольника ABC: A(7;4), B(-9;-8), C(-2;16). Требуется:

  1. составить уравнение медианы, проведенной из вершины B, и вычислить ее длину.
  2. составить уравнение высоты, проведенной из вершины A, и вычислить ее длину.
  3. найти косинус внутреннего угла B треугольника ABC.

Сделать чертеж.

Пример №3. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) длину стороны AB ; 2) внутренний угол A в радианах с точностью до 0,001. Сделать чертеж.
Скачать

Пример №4. Даны вершины A(1;1), B(7;4), C(4;5) треугольника. Найти: 1) уравнение высоты, проведенной через вершину C ; 2) уравнение медианы, проведенной через вершину C ; 3) точку пересечения высот треугольника; 4) длину высоты, опущенной из вершины C. Сделать чертеж.
Скачать

Пример №5. Даны вершины треугольника ABC: A(-5;0), B(7;-9), C(11;13). Определите: 1) длину стороны AB ; 2) уравнение сторон AB и AC и их угловые коэффициенты; 3) площадь треугольника.

  • Решение
  • Видео решение

Задание. Найти острый угол между прямыми x + y -5 = 0 и x + 4y – 8 = 0 .
Рекомендации к решению. Задача решается посредством сервиса Угол между двумя прямыми.
Ответ: 30.96 o

Пример №1. Даны координаты точек А1(1;0;2), A2(2;1;1), А3(-1;2;0), A4(-2;-1;-1). Найти длину ребра А1А2. Составить уравнение ребра А1А4 и грани А1А2А3. Составить уравнение высоты опущенной из точки А4 на плоскость А1А2А3. Найти площадь треугольника А1A2A3. Найти объем треугольной пирамиды А1A2А3A4.

  • Решение
  • Видео решение

Задание. По координатам вершин пирамиды А1,А2,А3,А4 найти: 1) длины ребер А1А2 и А1А3; 2) угол между ребрами А1А2 и А1А3; 3) площадь грани А1А2А3;4) объем пирамиды А1А2А3А4
A1(3;5;4,0,0), A2(8;7;4,0,0), A3(5;10;4,0,0), A4(4;7;9,0,0):Пример №10

Пример. В декартовой прямоугольной системе координат даны вершины пирамиды A, B, C, D. Найдите длину ребра AB, косинус угла между векторами, уравнение ребра, уравнение грани, уравнение высоты.
Решение

Пример. Даны вершины треугольника А(1, –1, -3), В(2, 0, -10), С(3, 0, -2).
а) Найти уравнение биссектрисы и высоты данного треугольника, проведенных из вершины A .
б) Найти уравнения всех его медиан и координаты точки их пересечения.
см. также Как найти периметр треугольника

Примеры решений по аналитической геометрии на плоскости

В этом разделе вы найдете бесплатные примеры решений задач по аналитической геометрии на плоскости об исследовании треугольника (заданного вершинами или сторонами): уравнения сторон, углы, площадь, уравнения и длины высот, медиан, биссектрис и т.п.

Решения задач о треугольнике онлайн

Задача 1. Даны вершины треугольника $A (-2, 1), B (3, 3), С (1, 0)$. Найти:
а) длину стороны $AB$;
б) уравнение медианы $BM$;
в) $cos$ угла $BCA$;
г) уравнение высоты $CD$;
д) длину высоты $СD$;
е) площадь треугольника $АВС$.

Задача 2. Найти длину высоты $AD$ в треугольнике с вершинами $A(3,2), B(2,-5), C(-6,-1)$ и написать уравнение перпендикуляра, опущенного из точки $C$ на прямую $AB$.

Задача 3. Даны вершины $A(1,1), B(7,5), C(4,5)$ треугольника. Найти:
1) длину стороны $AB$;
2) внутренний угол $A$ в радианах с точностью до 0,01;
3) уравнение высоты, проведенной через вершину $C$;
4) уравнение медианы, проведенной через вершину $C$;
5) точку пересечения высот треугольника;
6) длину высоты, опущенной из вершины $C$;
7) систему линейных неравенств, определяющую внутреннюю область треугольника.
Сделать чертеж.

Задача 4. Даны уравнения двух сторон треугольника $4x-5y+9=0$ и $x+4y-3=0$. Найти уравнение третьей стороны, если известно, что медианы этого треугольника пересекаются в точке $P(3,1)$.

Задача 5. Даны две вершины $A(-3,3)$, $B(5,-1)$ и точка $D(4,3)$ пересечения высот треугольника. Составить уравнения его сторон.

Задача 6. Найти углы и площадь треугольника, образованного прямыми $у = 2х$, $y = -2х$ и $у = х + 6$.

Задача 7. Найти точку пересечения медиан и точку пересечения высот треугольника: $А(0, – 4)$, $В(3, 0)$ и $С(0, 6)$.

Задача 8. Вычислить координаты точек середины отрезков, являющихся медианами треугольника $ABC$, если $A(-6;1)$, $B(4;3)$, $C(10;8)$.

Высоты, биссектрисы и медианы треугольника

Содержание

Из вершин треугольника к противолежащим от вершин сторонам можно проводить различные отрезки, причем так, чтобы получать «интересные данные» внутри фигуры.

К примеру, отрезок из вершины можно опустить таким образом, что в итоге он «приземлится» ровно посередине противолежащей от вершины стороны. В геометрии существует три подобных отрезка, что задают для треугольника новые геометрические параметры — высота, биссектриса и медиана.

Высота треугольника

Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$, образующий при этом перпендикуляр к стороне $AB$. Тогда отрезок $CD$ будет являться высотой треугольника $bigtriangleup$. Аналогичный перпендикуляр можно опустить как из вершины $A$, так и из вершины $B$.

Высота треугольника — перпендикуляр, проведенный из вершины к прямой, содержащей противолежащую сторону треугольника.

В остроугольном треугольнике — где углы имеют значение $ 90^<circ>,$ — провести высоту будет уже не так интуитивно просто.

Осмотрите треугольник $bigtriangleup$ выше, с тупым углом $angle$.

Нам необходимо провести высоту из вершины $K$ к стороне $PM$. Подумайте, как будет располагаться отрезок, выполните чертеж и сравните свои предположения со скрытым чертежом.

Пересечение высот в треугольнике

Выходит, что в остроугольном треугольнике высоты пересекаются в точке, расположенной строго внутри треугольника — никаких дополнительных построений не требуется.

В тупоугольном треугольнике высоты пересекаются в точке, расположенной вне треугольника, — чтобы эту точку получить, необходимо достраивать продолжение сторон. Так, в случае с нашим тупоугольным треугольником, высоты пересекаются в точке $O$ — внимание на чертеж выше.

Биссектриса

Пусть нам дан треугольник $bigtriangleup,$ где из вершины $C$ к противолежащей стороне $AB$ опущен отрезок $CD$ таким образом, что $angle$ делится отрезком $CD$ на два равных друг другу угла. Тогда отрезок $CD$ будет называться биссектрисой треугольника $bigtriangleup$ (от лат. ‘bi’ — «два», ‘secare’ — «резать»).

По аналогии с высотами, такие же отрезки, делящее угол пополам, можно опустить как из вершины $A$, так и из вершины $B$.

Биссектриса треугольника — отрезок, соединяющий вершину с противолежащей стороной и делящий при этом угол данной вершины пополам.

В отличие от высоты, биссектриса — понятие, теснее связанное с углом, чем с треугольником, поэтому ряд ее свойств больше определяет геометрию углов, чем геометрию треугольников. Например, одно из таких замечательных свойств связано со смежными углами. Оказывается, что биссектрисы, проведенные из смежных углов, будут образовывать прямой угол. Давайте это докажем!

Теорема о биссектрисах смежных углов. Биссектрисы смежных углов взаимно перпендикулярны.

Доказательство. $angle$ является смежным с $angle$. $OB$ — биссектриса $angle;$ $OD$, соответственно, биссектриса $angle$. По свойству смежных углов известно, что сумма смежных углов равняется $180^<circ>$. То есть:

Согласно условию $angle=angle=frac<angle><2>$, $angle=angle=frac<angle><2>$. Тогда уравнение выше можно представить в следующем виде:

Разделим обе части уравнения на $2$ и получим: $angle+angle=90^<circ>.$ $angle+angle$ равняется $angle$. Теорема доказана .

Медиана

Наконец, проведем отрезок $CD$ в треугольнике $bigtriangleup$ из вершины $C$ к противолежащей стороне $AB$ таким образом, что сторона $AB$ поделится на два равных друг другу отрезка. Мы получили третий важный отрезок в треугольнике — медиану (от лат. ‘medianus’ — «средний»).

Медиана треугольника — отрезок, соединяющий вершину с серединой противолежащей стороны.

Обратили внимание?

Медианы, как и биссектрисы с высотами, пересекаются в одной точке внутри треугольника. Исключением является тупоугольный треугольник и его высоты: они пересекаются вне треугольника.

Доказать это, к сожалению, нам пока не по силам, ибо требуется знание нескольких важных теорем, которые мы обязательно изучим в курсе далее. Как только, так сразу. Пока — принять, понять, поверить.

Решим задачу!

В $bigtriangleup$ проведена медиана $AD$ к стороне $BC$. Продолжение медианы проходит через точку $E$, расположенную вне треугольника так, что $AD=DE$. Докажите, что треугольники $bigtriangleup$ и $bigtriangleup$ равны.

Дано:

Найти:

Решение
Рассмотрим $bigtriangleup$ и $bigtriangleup$. В них углы $angle$ и $angle$ равны как вертикальные. По заданному условию $AD=DE$. Также имеем равенство сторон $CD=DB$ — по определению медианы: отрезка, делящего противолежащую от угла сторону на два равных отрезка.

Следовательно $bigtriangleup= bigtriangleup$ по первому признаку равенства треугольников: двум сторонам и углу, лежащему между ними.

[spoiler title=”источники:”]

http://www.matburo.ru/ex_ag.php?p1=agtr

http://obrazavr.ru/geometriya/7-klass-geometriya/treugolniki/vysoty-bissektrisy-i-mediany-treugolnika/vysoty-bissektrisy-i-mediany-treugolnika/

[/spoiler]

Пример решения
некоторых заданий из типовой работы
«Аналитическая геометрия на плоскости»

Даны вершины
,

,


треугольника АВС. Найти:

  1. Уравнения всех
    сторон треугольника;

  2. Систему линейных
    неравенств, определяющих треугольник
    АВС;

  3. Уравнения высоты,
    медианы и биссектрисы треугольника,
    проведенных из вершины А;

  4. Точку пересечения
    высот треугольника;

  5. Точку пересечения
    медиан треугольника;

  6. Длину высоты,
    опущенной на сторону АВ;

  7. Угол А;

  8. Сделать чертеж.

Решение:

Пусть вершины
треугольника имеют координаты: А
(1; 4), В
(5; 3), С
(3; 6). Сразу нарисуем чертеж:

1. Чтобы выписать
уравнения всех сторон треугольника,
воспользуемся уравнением прямой,
проходящей через две заданные точки с
координатами (x0,
y0)
и (x1,
y1):

=

Таким образом,
подставляя вместо (x0,
y0)
координаты точки А,
а вместо (x1,
y1)
координаты точки В,
мы получим уравнение прямой АВ:

Полученное уравнение
будет уравнением прямой АВ,
записанным в общей форме. Аналогично
находим уравнение прямой АС:

И так же уравнение
прямой ВС:

2. Заметим, что
множество точек треугольника АВС
представляет собой пересечение трех
полуплоскостей, причем каждую полуплоскость
можно задать с помощью линейного
неравенства. Если мы возьмем уравнение
любой из сторон ∆АВС,
например АВ,
тогда неравенства


и

задают точки,
лежащие по разные стороны от прямой АВ.
Нам нужно выбрать ту полуплоскость, где
лежит точка С. Подставим ее координаты
в оба неравенства:


и
.

Правильным будет
второе неравенство, значит, нужные точки
определяются неравенством

.

Аналогично поступаем
с прямой ВС, ее уравнение
.
В качестве пробной используем точку А
(1, 1):

,

значит, нужное
неравенство имеет вид:

.

Если проверим
прямую АС (пробная точка В), то получим:

,

значит, нужное
неравенство будет иметь вид

Окончательно
получаем систему неравенств:

Знаки «≤», «≥»
означают, что точки, лежащие на сторонах
треугольника, тоже включены во множество
точек, составляющих треугольник АВС.

3. а) Для того, чтобы
найти уравнение высоты, опущенной из
вершины А на
сторону ВС,
рассмотрим уравнение стороны ВС:

.
Вектор с координатами

перпендикулярен стороне ВС
и, значит, параллелен высоте. Запишем
уравнение прямой, проходящей через
точку А
параллельно вектору
:

Это уравнение
высоты, опущенной из т. А
на сторону ВС.

б) Найдем координаты
середины стороны ВС
по формулам:

Здесь

– это координаты т. В,
а

– координаты т. С.
Подставим и получим:

Прямая, проходящая
через эту точку и точку А
является искомой медианой:

в) Уравнение
биссектрисы мы будем искать, исходя из
того, что в равнобедренном треугольнике
высота, медиана и биссектриса, опущенные
из одной вершины на основание треугольника,
равны. Найдем два вектора

и

и их длины:

,

Тогда вектор

имеет такое же направление, что и вектор
,
а его длина

Точно так же единичный вектор

совпадает по направлению с вектором

Сумма векторов

есть вектор, который
совпадает по направлению с биссектрисой
угла А.
Таким образом, уравнение искомой
биссектрисы можно записать виде:

4) Уравнение одной
из высот мы уже построили. Построим
уравнение еще одной высоты, например,
из вершины В.
Сторона АС
задается уравнением

Значит, вектор

перпендикулярен АС,
и, тем самым, параллелен искомой высоте.
Тогда уравнение прямой, проходящей
через вершину В
в направлении вектора

(т. е. перпендикулярно АС),
имеет вид:

Известно, что
высоты треугольника пересекаются в
одной точке. В частности, эта точка
является пересечением найденных высот,
т.е. решением системы уравнений:


– координаты этой
точки.

5. Середина АВ
имеет координаты
.
Запишем уравнение медианы к стороне
АВ. Эта
прямая проходит через точки с координатами
(3, 2) и (3, 6), значит, ее уравнение имеет
вид:

Заметим, что ноль
в знаменателе дроби в записи уравнения
прямой означает, что эта прямая проходит
параллельно оси ординат.

Чтобы найти точку
пересечения медиан достаточно решить
систему уравнений:

Точка пересечения
медиан треугольника имеет координаты
.

6. Длина высоты,
опущенной на сторону АВ,
равна расстоянию от точки С
до прямой АВ
с уравнением

и находится по формуле:

7. Косинус угла А
можно найти по формуле косинуса угла
между векторами

и
,
который равен отношению скалярного
произведения этих векторов к произведению
их длин:

:

Соседние файлы в папке Математика

  • #
  • #
  • #
  • #
  • #
  • #
  • #

Решить треугольник Онлайн по координатам

Данный онлайн-сервис вычисляет (показываются промежуточные расчёты) следующие параметры треугольника:

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.



2.9. Типовая задача с треугольником

Многие помнят из школы признаки равенства треугольников, признаки подобия треугольников и мучительное заучивание доказательств теорем. Как в

сердцАх сказал один мой одноклассник, «не понимаю, на### доказывать равенство треугольников, если и так видно, что они одинаковые». Мы тоже не

будем ничего доказывать, поскольку аналитическая геометрия рассматривает треугольник совсем с другой стороны.

Типовая задача, как правило, формулируется так: Даны три вершины треугольника. Требуется найти… много чего требуется

найти…. Повезёт, если будет пункта 3-4, но чаще всего их 5-6 и даже больше. И вам повезло – разберём всё! Или почти всё:

Задача 95

Даны вершины треугольника . Требуется:

1) составить уравнения сторон  и найти их угловые коэффициенты;
2) найти длину стороны ;
3) найти ;
4) составить прямой , проходящей через точку  параллельно прямой ;
5) составить уравнение высоты и найти её длину;
6) вычислить площадь треугольника ;
7) составить уравнение медианы ;
8) найти точку пересечения .
и для особо опасных энтузиастов:
9) найти уравнение биссектрисы ;
10) найти центр тяжести  треугольника;
11) составить систему линейных неравенств, определяющих треугольник.

С чего начать решение? Начать целесообразно с выполнения чертежа. По условию этого можно не делать, но для самоконтроля и

самопроверки всегда строим чертёж на черновике, не устану это рекомендовать:

Ещё раз напоминаю, что самый выгодный масштаб 1 единица = 1

см (2 тетрадные клетки). Всё хорошо видно, и расстояния удобно измерять линейкой.

Вперёд без страха и сомнений:

1) Составим уравнения сторон  и найдём их угловые

коэффициенты.
Поскольку известны вершины треугольника, то уравнения каждой стороны составим по двум

точкам.

Составим уравнение стороны  по точкам :

Для проверки мысленно либо на черновике подставляем координаты каждой точки в полученное уравнение.

Теперь

найдём угловой коэффициент. Для этого перепишем общее уравнение в виде уравнения с угловым коэффициентом:

Таким образом, угловой коэффициент:

Самостоятельно разбираемся со сторонами  и сверяемся, что

получилось:

2) Найдём длину стороны .  Используем соответствующую формулу для точек :

Сторону легко измерить обычной линейкой, хотя это не сильно строгая проверка 🙂

3) Найдём . Это Задача 31, повторим:

Используем формулу .
Найдём векторы:

Таким образом:
, и сам угол:
, ну что же, похоже на правду, желающие могут приложить транспортир, у кого

он есть.

Внимание! При выполнении этого пункта лучше не использовать формулы ориентированного угла

между прямыми, так как они всегда дают острый угол.

4) Составим уравнение прямой , проходящей через точку  параллельно прямой . Это стандартная задача, и мы ленимся отработать её вновь!

Из общего уравнения прямой  вытащим направляющий вектор .

Составим уравнение прямой  по точке  и направляющему вектору :

5) Составим уравнение высоты и найдём её длину.
Первую часть задания мы тоже решали:

Из уравнения стороны  снимаем вектор нормали . Уравнение высоты

 составим по точке  и направляющему вектору :

Обратите внимание, что координаты точки  нам не известны.

Иногда уравнение высоты находят из соотношения угловых коэффициентов перпендикулярных прямых: . В данном случае , тогда: . Уравнение высоты  составим по точке  и угловому коэффициенту :

Длину высоты можно найти двумя способами.

Существует окольный путь:

а) находим  – точку

пересечения высоты и стороны ;

б) находим длину отрезка  по двум

известным точкам.

Но зачем? – ведь есть удобная формула расстояния от точки  до прямой :

6) Вычислим площадь треугольника. Используем «школьную» формулу:

7) Уравнение медианы  составим в два шага:

а) Найдём точку  – середину стороны . Используем формулы координат середины отрезка.

Известны концы , и тогда середина:

б) Уравнение медианы  составим по точкам :

 – для проверки подставим координаты точек .

8) Найдём точку пересечения  высоты и медианы:
      в

Первое уравнение умножили на 5, складываем их почленно:
 – подставим в первое уравнение:

9) Биссектриса делит угол пополам:

Из свойств биссектрисы внутреннего угла следует соотношение длин следующих отрезков:

Длины сторон уже найдены в предыдущих пунктах: .

Таким образом, . Координаты точки  найдём по формулам деления отрезка в данном отношении. Да,

параметр «лямбда» получился просто сказочным, ну а кому сейчас легко? Точки  известны и понеслась нелёгкая:

Примечание: на последнем шаге я умножил числитель и знаменатель на сопряжённое выражение  – чтобы использовать формулу  и

избавиться от иррациональности в знаменателе.

Разбираемся со второй координатой:

аким образом:  

И предчувствие вас не обмануло, уравнение биссектрисы  составим по точкам  по формуле :

обратите внимание на технику упрощений:

Проверил, всё сходится. На практике, конечно, вычисления почти всегда будут проще. Никого не хотел запугать, так уж получилось =)

10) Найдём центр тяжести треугольника.

Но сначала поймём, что такое центр тяжести плоской фигуры. Мысленно вырежьте из тонкого однородного картона любую фигуру. …Почему-то фигура зайца

в голову пришла. Так вот: если слегка насадить данную фигуру центром тяжести (какой же я изверг =)) на вертикально расположенную иголку, то

теоретически фигура не должна свалиться.

Центром тяжести треугольника является точка пересечения его медиан. В треугольнике три медианы и пересекаются они в одной точке.

Из пункта 7 нам уже известна одна из медиан: .  Как решить задачу?

Напрашивается очевидный алгоритм: можно найти уравнение второй медианы (любой из двух оставшихся) и точку пересечения этих медиан. Но есть путь

короче! Нужно только знать полезное свойство:

Точка пересечения медиан делит каждую из медиан в

отношении , считая от вершины треугольника. Поэтому справедливо

отношение
Нам известны концы отрезка – точки  и .
По формулам деления отрезка в данном отношении:

Таким образом, центр тяжести треугольника:
И заключительный пункт задачи, для освоения которого нужно уметь решать недавно разобранные линейные

неравенства:

11) Составим систему линейных неравенств, определяющих треугольник.

Для удобства я перепишу найденные уравнения сторон:

Рассмотрим прямую . Треугольник лежит в полуплоскости, где находится

вершина . Составим вспомогательный многочлен  и вычислим его значение в точке : . Поскольку сторона  принадлежит треугольнику, то неравенство будет нестрогим:

Внимание! Если вам не понятен этот алгоритм, то обратитесь к

Задаче 90.

Рассмотрим прямую . Треугольник расположен ниже данной прямой, поэтому

очевидно неравенство .

И, наконец, для  составим многочлен , в который подставим координаты точки : .
Таким образом, получаем третье неравенство: .

Итак, треугольник  определяется следующей системой линейных

неравенств:

Готово.

Какой можно сделать вывод?


Многие задачи аналитической геометрии прозрачны и просты,
главное, не допустить вычислительных ошибок.

Следует отметить, что по настоящему трудные задачи в аналитической геометрии встречаются редко, и вы справитесь практически с любой из них!

Главное, придерживаться методики решения и проявить маломальское упорство.

Ну что, может ещё задачку? Да ладно, не надо стесняться, я же по глазам вижу, что хотите =) 

Но сейчас на очереди другая увлекательная тема, продолжаем изучать геометрию плоскости:

3.1. Алгебраическая линия и её порядок

2.8. Как научиться решать задачи по геометрии?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Ника

Высший разум

(181432)


13 лет назад

Решение:
1) Найдем уравнение медианы АМ, для этого найдем координаты точки М (4;3;5)
(х-1)/(4-1)=(у-2)/(3-2)=(z-3)/(5-3)
(x-1)/3=(y-2)/1=(z-3)/2 – искомое уравнение медианы.
2) Найдем каноническое уравнение высоты АН, для этого найдем уравнение стороны ВС:
(x-3)/2=(y-4)/(-2)=(z-4)/2
Направляющий вектор этой прямой n(2;-2;2) является нормальным вектором для плоскости проходящей через точку А и перпендикулярно прямой ВС
2(x-1)-2(y-2)+2(z-3)=0
x-y+z-2=0 – уравнение плоскости, найдем основание перпендикуляра, точку Н:
(x-3)/2=t
(y-4)/(-2)=t
(z-4)/2=t
Получили:
x=2t+3
y=2t+4
z=2t+4
2t+3-2t-4+2t+4-2=0
2t=-1
t=-0.5
Тогда H(2;3;3)
Уравнение высоты:
(x-1)/1=(y-2)/1=(z-3)/0

Елена Гужвенко

Гений

(53581)


13 лет назад

Помогу про высоту.
1) Найти вектор ВС=(2,-2,3), он будет перпендикулярен высоте АН.
2) Найдем координаты любого вектора (х, у, z), параллельного АН, то есть перпендикулярного ВС.
Возьмем х=0, у=1, найдем z с помощью скалярного произведения ВС на (0,1,z):
2*0+(-2)*1+3*z=0
-2=-3z
z=2/3
Нашли вектор, параллельный АН, тогда уравнение высоты АН:
(x-1)/0=(y-2)/1=(z-3)/(2/3) каноническое уравнение высоты АН

Добавить комментарий