Как найти ускорение альфа частицы

Движение альфа частицы по окружности

Задание 17. α-частица движется по окружности в однородном магнитном поле между полюсами магнита под действием силы Лоренца. После замены магнита по таким же траекториям стали двигаться протоны, обладающие той же скоростью. Как изменились индукция магнитного поля и модуль силы Лоренца?

Для каждой величины определите соответствующий характер изменения:

3) не изменилась

На α-частицу со стороны магнитного поля действует сила Лоренца , где q – заряд частицы; v – скорость частицы; B – модуль магнитной индукции магнитного поля. Так как α-частица движется по окружности, то магнитное поле направлено перпендикулярно его движению, то есть и сила Лоренца в данном случае запишется в виде

.

В соответствии со вторым законом Ньютона, силу Лоренца также можно записать как

,

где – центростремительное ускорение. Получаем значение индукции напряженности магнитного поля:

.

Альфа-частица имеет в своем составе два протона и два нейтрона, то есть ее масса в 4 раза больше массы протона, а заряд в 2 раза больше заряда протона.

Следовательно, сила Лоренца в случае протонов, станет равной:

(уменьшится в 4 раза), а индукция магнитного поля:

Движение альфа частицы по окружности

Альфа-частица движется по окружности в однородном магнитном поле. Как изменятся ускорение альфа-частицы и частота её обращения, если уменьшить её кинетическую энергию?

Для каждой величины определите соответствующий характер изменения:

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Ускорение α-частицы Частота обращения

α-частицы

При движении заряженной частицы в однородном магнитном поле по окружности параметры системы связаны между собой соотношениями

При уменьшении кинетической энергии уменьшается и скорость частицы. Если скорость частицы уменьшится, то ускорение частицы тоже уменьшится.

Рассмотрим второе уравнение ещё раз и выразим из него радиус обращения частицы:

Частота обращения частицы обратно пропорциональна периоду: Радиус обращения частицы прямо пропорционален её скорости, следовательно, при изменении скорости отношение скорости и радиуса остаётся неизменным, то есть частота обращения частицы не изменяется.

Движение заряженной частицы в магнитном поле: формулы. Движение заряженных частиц в однородном магнитном поле

Как известно, электрическое поле принято характеризовать величиной силы, с которой оно действует на пробный единичный электрический заряд. Магнитное поле традиционно характеризуют силой, с которой оно действует на проводник с «единичным» током. Однако при его протекании происходит упорядоченное движение заряженных частиц в магнитном поле. Поэтому мы можем определить магнитное поле B в какой-то точке пространства с точки зрения магнитной силы FB, которую поле оказывает на частицу при ее движении в нем со скоростью v.

Общие свойства магнитной силы

Эксперименты, в которых наблюдалось движение заряженных частиц в магнитном поле, дают такие результаты:

  • Величина FB магнитной силы, действующей на частицу пропорциональна заряду q и скорости v частицы.
  • Если движение заряженной частицы в магнитном поле происходит параллельно вектору этого поля, то сила, действующая на нее, равна нулю.
  • Когда вектор скорости частицы составляет любой Угол θ ≠ 0 с магнитным полем, то сила действует в направлении, перпендикулярном к v и B; то есть, FB перпендикулярна плоскости, образованной v и B (см.рис. ниже).
  • Величина и направление FB зависит от скорости частицы и от величины и направления магнитного поля B.
  • Направление силы, действующей на положительный заряд, противоположно направлению такой же силы, действующей на отрицательный заряд, движущийся в ту же сторону.
  • Величина магнитной силы, действующей на движущуюся частицу, пропорциональна sinθ угла θ между векторами v и B.

Сила Лоренца

Мы можем суммировать вышеперечисленные наблюдения путем записи магнитной силы в виде FB = qv х B.

Когда происходит движение заряженной частицы в магнитном поле, сила Лоренца FB при положительном q направлена вдоль векторного произведения v x B. Оно по определению перпендикулярно как v, так и B. Считаем это уравнение рабочим определением магнитного поля в некоторой точке в пространстве. То есть оно определяется в терминах силы, действующей на частицу при ее движении. Таким образом, движение заряженной частицы в магнитном поле кратко можно определить как перемещение под действием этой силы.

Заряд, движущийся со скоростью v в присутствии как электрического поля E, так и магнитного B, испытывает действие как электрической силы qE, так и магнитной qv х В. Полное приложенное к нему воздействие равно FЛ = qE + qv х В. Его принято называть так: полная сила Лоренца.

Движение заряженных частиц в однородном магнитном поле

Рассмотрим теперь частный случай положительно заряженной частицы, движущейся в однородном поле, с начальным вектором скорости, перпендикулярным ему. Предположим, что вектор B поля направлен за страницу. Рисунок ниже показывает, что частица движется по кругу в плоскости, перпендикулярной к B.

Движение заряженной частицы в магнитном поле по окружности происходит потому, что магнитная сила FB направлена под прямым углом к v и B и имеет постоянную величину qvB. Поскольку сила отклоняет частицы, направления v и FB изменяются непрерывно, как показано на рисунке. Так как FB всегда направлена к центру окружности, она изменяет только направление v, а не ее величину. Как показано на рисунке, движение положительно заряженной частицы в магнитном поле происходит против часовой стрелки. Если q будет отрицательным, то вращение произойдет по часовой стрелке.

Динамика кругового движения частицы

Какие же параметры характеризуют вышеописанное движение заряженной частицы в магнитном поле? Формулы для их определения мы можем получить, если возьмем предыдущее уравнение и приравняем FB центробежной силе, требуемой для сохранения круговой траектории движения:

То есть радиус окружности пропорционален импульсу mv частицы и обратно пропорционален величине ее заряда и величине магнитного поля. Угловая скорость частицы

Период, с которым происходит движение заряженной частицы в магнитном поле по кругу, равен длине окружности, разделенной на ее линейную скорость:

Эти результаты показывают, что угловая скорость частицы и период кругового движения не зависит от линейной скорости или от радиуса орбиты. Угловую скорость ω часто называют циклотронной частотой (круговой), потому что заряженные частицы циркулируют с ней в типе ускорителя под названием циклотрон.

Движение частицы под углом к вектору магнитного поля

Если вектор v скорости частицы образует некоторый произвольный угол по отношению к вектору B, то ее траектория является винтовой линией. Например, если однородное поле будет направлено вдоль оси х, как показано на рисунке ниже, то не существует никакой компоненты магнитной силы FB в этом направлении. В результате составляющая ускорения ax= 0, и х-составляющая скорости движения частицы является постоянной. Однако магнитная сила FB = qv х В вызывает изменение во времени компонентов скорости vy и vz. В результате имеет место движение заряженной частицы в магнитном поле по винтовой линии, ось которой параллельна магнитному полю. Проекция траектории на плоскости yz (если смотреть вдоль оси х) представляет собой круг. Проекции ее на плоскости ху и xz являются синусоидами! Уравнения движения остаются такими же, как и при круговой траектории, при условии, что v заменяется на ν = у 2 + νz 2 ).

Неоднородное магнитное поле: как в нем движутся частицы

Движение заряженной частицы в магнитном поле, являющемся неоднородным, происходит по сложным траекториям. Так, в поле, величина которого усиливается по краям области его существования и ослабляется в ее середине, как, например, показано на рисунке ниже, частица может колебаться вперед и назад между конечными точками.

Как Земля влияет на движение космических частиц

Околоземные пояса Ван Аллена состоят из заряженных частиц (в основном электронов и протонов), окружающих Землю в форме тороидальных областей (см. рис. ниже). Движение заряженной частицы в магнитном поле Земли происходит по по спирали вокруг силовых линий от полюса до полюса, покрывая это расстояние в несколько секунд. Эти частицы идут в основном от Солнца, но некоторые приходят от звезд и других небесных объектов. По этой причине они называются космическими лучами. Большинство их отклоняется магнитным полем Земли и никогда не достигает атмосферы. Тем не менее, некоторые из частиц попадают в ловушку, именно они составляют пояса Ван Аллена. Когда они находятся над полюсами, иногда происходят столкновения их с атомами в атмосфере, в результате чего последние излучают видимый свет. Так возникают красивые Полярные сияния в Северном и Южном полушариях. Они, как правило, происходят в полярных регионах, потому что именно здесь пояса Ван Аллена расположены ближе всего к поверхности Земли.

Иногда, однако, солнечная активность вызывает большее число заряженных частиц, входящих в эти пояса, и значительно искажает нормальные силовые линии магнитного поля, связанные с Землей. В этих ситуациях полярное сияние можно иногда увидеть в более низких широтах.

Селектор скоростей

Во многих экспериментах, в которых происходит движение заряженных частиц в однородном магнитном поле, важно, чтобы все частицы двигались с практически одинаковой скоростью. Это может быть достигнуто путем применения комбинации электрического поля и магнитного поля, ориентированного так, как показано на рисунке ниже. Однородное электрическое поле направлено вертикально вниз (в плоскости страницы), а такое же магнитное поле приложено в направлении, перпендикулярном к электрическому (за страницу).

Масс-спектрометр

Этот прибор разделяет ионы в соответствии с соотношением их массы к заряду. По одной из версий этого устройства, известного как масс-спектрометр Бэйнбриджа, пучок ионов проходит сначала через селектор скоростей и затем поступает во второе поле B0, также однородное и имеющее то же направление, что и поле в селекторе (см. рис. ниже). После входа в него движение заряженной частицы в магнитном поле происходит по полукругу радиуса r перед ударом в фотопластинку Р. Если ионы заряжены положительно, луч отклоняется вверх, как показано на рисунке. Если ионы заряжены отрицательно, луч будет отклоняться вниз. Из выражения для радиуса круговой траектории частицы, мы можем найти отношение m/q

и затем, используя уравнение v=E/B, мы находим, что

Таким образом, мы можем определить m/q путем измерения радиуса кривизны, зная поля величин B, B0, и E. На практике, так обычно измеряет массы различных изотопов данного иона, поскольку все они несут один заряд q. Таким образом, отношение масс может быть определено, даже если q неизвестно. Разновидность этого метода была использована Дж. Дж. Томсоном (1856-1940) в 1897 году для измерения отношение е/mе для электронов.

Циклотрон

Он может ускорить заряженные частицы до очень высоких скоростей. И электрические, и магнитные силы играют здесь ключевую роль. Полученные высокоэнергетические частицы используются для бомбардировки атомных ядер, и тем самым производят ядерные реакции, представляющие интерес для исследователей. Ряд больниц использует циклотронное оборудование для получения радиоактивных веществ для диагностики и лечения.

Схематическое изображение циклотрона показан на рис. ниже. Частицы движутся внутри двух полуцилиндрических контейнеров D 1 и D 2, называемых дуантами. Высокочастотная переменная разность потенциалов приложена к дуантам, разделенным зазором, а однородное магнитное поле направлено вдоль оси циклотрона (южный полюс его источника на рис. не показан).

Положительный ион, выпущенный из источника в точке Р вблизи центра устройства в первом дуанте, перемещается по полукруглой траектории (показана пунктирной красной линией на рисунке) и прибывает обратно в щель в момент времени Т / 2, где Т – время одного полного оборота внутри двух дуантов.

Частота приложенной разности потенциалов регулируется таким образом, что полярность дуантов меняется на обратную в тот момент времени, когда ион выходит из одного дуанта. Если приложенная разность потенциалов регулируется таким образом, что в этот момент D2 получает более низкий электрический потенциал, чем D1 на величину qΔV, то ион ускоряется в зазоре перед входом в D2, и его кинетической энергии увеличивается на величину qΔV. Затем он движется вокруг D2 по полукруглой траектории большего радиуса (потому что его скорость увеличилась).

Через некоторое время T / 2 он снова поступает в зазор между дуантами. К этому моменту полярность дуантов снова изменяется, и иону дается еще один “удар” через зазор. Движение заряженной частицы в магнитном поле по спирали продолжается, так что при каждом проходе одного дуанта ион получает дополнительную кинетическую энергию, равную qΔV. Когда радиус его траектории становится близким к радиусу дуантов, ион покидает систему через выходную щель. Важно отметить, что работа циклотрона основана на том, что Т не зависит от скорости иона и радиуса круговой траектории. Мы можем получить выражение для кинетической энергии иона, когда он выходит из циклотрона в зависимости от радиуса R дуантов. Мы знаем, что скорость кругового движения частицы – ν = qBR /m. Следовательно, ее кинетическая энергия

Когда энергии ионов в циклотрон превышает около 20 МэВ, в игру вступают релятивистские эффекты. Мы отмечаем, что T увеличивается, и что движущиеся ионы не остаются в фазе с приложенной разностью потенциалов. Некоторые ускорители решают эту проблему, изменяя период прикладываемой разности потенциалов, так что она остается в фазе с движущимися ионами.

Эффект Холла

Когда проводник с током помещается в магнитное поле, то дополнительная разность потенциалов создается в направлении, перпендикулярном к направлению тока и магнитного поля. Это явление, впервые наблюдаемое Эдвином Холлом (1855-1938) в 1879 году, известно как эффект Холла. Он всегда наблюдается, когда происходит движение заряженной частицы в магнитном поле. Это приводит к отклонению носителей заряда на одной стороне проводника в результате магнитной силы, которую они испытывают. Эффект Холла дает информацию о знаке носителей заряда и их плотности, он также может быть использован для измерения величины магнитных полей.

Устройство для наблюдения эффекта Холла состоит из плоского проводника с током I в направлении х, как показано на рисунке ниже.

[spoiler title=”источники:”]

http://phys-ege.sdamgia.ru/problem?id=11940

http://www.syl.ru/article/203046/new_dvijenie-zaryajennoy-chastitsyi-v-magnitnom-pole-formulyi-dvijenie-zaryajennyih-chastits-v-odnorodnom-magnitnom-pole

[/spoiler]

Is it possible to calculate the acceleration of an alpha particle emitted by a radionuclide, for example Po-210? I suppose the alpha particle appears, after tunneling out of the nucleus, at rest at a small distance $r_0$ from the center. The repulsive Coulomb force quickly accelerates the alpha particle to a high speed. In the case of polonium-210 the final kinetic energy, $E$, is 5.4 MeV. The distance r0 can be calculated from $E$:

$$ E = frac{f q Q}{r_0} Rightarrow r_0 = frac{f q Q}{E} = 4⋅10^{-14} m $$

The initial acceleration at $r = r_0$, due to the repulsive Coulomb force, is:
$$ a_0 = frac{F}{m} = frac{f q Q}{{r_0}^2 m} = frac{f q Q}{left(frac{f q Q}{E}right)^2 m} = frac{E^2}{f q Q m} = 3⋅10^{27} frac{m}{s^2} $$

Is this a valid idea? I ignored Heisenberg’s uncertainty relation, because at $r = 1.3⋅r_0$ the acceleration is almost equally high, while the velocity of the particle, $ v = sqrt{frac{2}{m} (E-frac{f q Q}{r}) } $, is 8⋅106 m/s, and the De Broglie wavelength is smaller than $r$.

If the idea is invalid because the alpha particle is a probablility wave, then at what distance does it become sufficiently particle-like to allow the calculation of acceleration?

EDIT – I meant the acceleration of the center of mass of the alpha particle, a = (1/m) dp/dt. I assumed the recoil of the daughter nucleus was the instantaneous measurement. Both the alpha particle and the nucleus are not point particles, but composite systems. Would perhaps the Rutherford variant be more classic and simple, and less affected by spherical symmetry assumptions, than the initial emission of the alpha particle? Rutherford fired alpha particles from a radioactive source to a gold target, and some of the alpha particles were backscattered. So the Rutherford variant of my question is the alpha-particle emitted by Po-210-decay being backscattered by another Po-210-nucleus. According to the formulas, the same trajectories and the same x0 and a0 seem to apply, approximately, without any spherical symmetry boundary condition. Is the maximum acceleration a0 = E2 / (fqQm) approximately right in the Rutherford variant of my question?

Vlad Ivanov



Ученик

(80),
закрыт



2 года назад

Определить ускорение альфа частицы влетающей в магнитное поле со скоростью 4*10^7 м/с под углом 30 градусов к линиям индукции. Индукция поля 1 мТл. Как направлено ускорение?
Подробное решение, пожалуйста.

Куклин Андрей

Высший разум

(188910)


2 года назад

a = V^2/R
q*V*B*sinα = m*V^2/R ==> R = m*V/q*B*sinα
a = V*q*B*sinα/m = 0,5*4*10^7*1,6*10^-19*10^-3/9,1*10^-31 = 3,5*10^15 м/с^2.
Ускорение направлено перпендикулярно магнитным линиям и скорости (одновременно).


[22.11.2015 21:21]

Решение 13743:

Номер задачи на нашем сайте: 13743

ГДЗ из решебника:

Тема:

4. Электромагнетизм
Контрольная работа 4


Нашли ошибку? Сообщите в комментариях (внизу страницы)

Раздел: Физика

Полное условие:

447. Альфа-частица, имеющая скорость v=2 Мм/с, влетает под углом α=30° к сонаправленному магнитному (B=1 мТл) и электрическому (E=1 кВ/м) полям. Определить ускорение a* альфа-частицы.
* Ускорение a определяется в момент вхождения заряженной частицы в область пространства, где локализованы однородные магнитное и электрическое поля.

Решение, ответ задачи 13743 из ГДЗ и решебников:

Этот учебный материал представлен 1 способом:

Для просмотра в натуральную величину нажмите на картинку

Альфа-частица, имеющая скорость 2 Мм/с, влетает под углом 30° к сонаправленному магнитному 1 мТл и электриче..., Задача 13743, Физика

Идея нашего сайта – развиваться в направлении помощи ученикам школ и студентам.
Мы размещаем задачи и решения к ним. Новые задачи, которые недавно добавляются на наш сайт,
временно могут не содержать решения, но очень скоро решение появится, т.к. администраторы следят
за этим. И если сегодня вы попали на наш сайт и не нашли решения, то
завтра уже к этой задаче может появится решение, а также и ко многим другим задачам. основной поток посетителей к нам – это
из поисковых систем при наборе запроса, содержащего условие задачи

Счетчики: 3706
| Добавил: Admin

Добавить комментарий

Добавлять комментарии могут только зарегистрированные пользователи.

[

Регистрация

|

Вход

]

Anny – 14 сентября, 2008 – 16:25

Альфа-частица, имеющая скорость v = 2 Мм/с, влетает под углом α = 30° к сонаправленным магнитному (В = 1 мТл) и электрическому (Е = 1 кВ/м) полям. Определить ускорение альфа-частицы.

Задача № 467. Взята из методички по физике ПГТУ часть 2, 2003 год – 73 с. (Щицина Ю.К., Вотинов Г.Н., Коновалова М.А., Цаплина А.И.).

Примечание: остальные задачи удалены администрацией за несоответствие правилам — разрешается размещать только одну задачу в течение 10 дней.

Теги:

  • частицы и волны
  • магнетизм
  • задачи с подсказками
  • движение частицы в сложных полях
  • версия для печати

Добавить комментарий