Как найти ускорение центра масс стержня

  • Печать

Ускорение центра масс

Теорема о движении центра масс является общей теоремой динамики, она утверждает, что ускорение центра масс не зависит от действия внутренних сил.

Ускорение центра масс согласно теореме движения центра масс, определяется как сумма внешних сил (по отношению к системе), при этом принято считать, что силы приложены к некой материальной точке, расположенной в центре масс.

При поступательном движении любого твердого тела, ускорение всех его точек независимо от момента времени одинаково и, таким образом, эквивалентно ускорению центра масс. Исходя из этого, теорему движения центра масс можно использовать для исследования и решения задач поступательного движения твердых тел.

Ускорение центра масс формула

Общий вид:

а =∑F

Скатывание шара по наклонной поверхности:

Пример возможных задач

Найти линейное ускорение центра масс некого шара, который скатывается без скольжения по наклонной плоскости. Угол наклона 20 град., начальная скорость шара 0.

Ответ

В виду того, что шар находится в неподвижном состоянии, сила трения принимается равной 0. Таким образом, решение задачи сводится к уравнению:

а = g*sin(α) = 9.81*sin(20) = 9.81*0.34 = 3,3354 м/с2

Содержание:

Принцип Даламбера для материальной точки:

Законы Ньютона содержат в себе все необходимое для рассмотрения движения любых механических систем. Но первоначально они применялись только для рассмотрения движения свободной материальной точки и свободного твердого тела до тех пор, пока не была дополнительно сформулирована аксиома связей. Для рассмотрения движения несвободных систем Даламбер предложил специальный принцип, получивший название принципа Даламбера. Этот принцип был сформулирован в терминах «потерянных» движений.

В настоящее время, когда считается справедливой аксиома связей, уравнения движения несвободной материальной точки являются такими же, как и для свободной, только к действующим на точку активным или заданным силам добавляют силы реакций связей.

Современное выражение принципа Даламбера не отличается по содержанию от уравнений движения материальной точки, но для многих задач оно более удобно. Принцип Даламбера для свободной материальной точки эквивалентен основному закону динамики. Для несвободной точки он эквивалентен основному закону вместе с аксиомой связей.

Уравнение движения материальной точки массой m относительно инерциальной системы отсчета под действием приложенных активных сил и реакций связей имеет вид

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Рис. 82

Сила Принцип Даламбера в теоретической механике является _ равнодействующей активных сил, Принцип Даламбера в теоретической механике— равнодействующей реакций связей, Принцип Даламбера в теоретической механике — ускорением точки относительно инерциальной системы отсчета. Назовем силой инерции материальной точки произведение массы точки на вектор ускорения, взятое с обратным знаком, т.е. Принцип Даламбера в теоретической механике. Если использовать понятие силы инерции точки и перенести все слагаемые (1) в правую часть уравнения, то получим

Принцип Даламбера в теоретической механике

Так как силы Принцип Даламбера в теоретической механике, Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике (рис. 82) образуют систему сходящихся сил и удовлетворяют условию (2), то они являются системой сил, эквивалентной нулю, т. е.

Принцип Даламбера в теоретической механике

Уравнение (2) или эквивалентное ему условие (3) выражает принцип Даламбера для точки: при движении материальной точки активные силы и реакции связей вместе с силой инерции точки образуют равновесную систему сил.

Из (2) в проекциях на координатные оси получаем три условия равновесия сил:

Принцип Даламбера в теоретической механике

Ускорение точки относительно инерциальной системы отсчета. можно разложить на составляющие по осям декартовой системы координат, а также на касательное и нормальное ускорения и на переносное, относительное ускорения и ускорение Кориолиса, если движение точки считать сложным, состоящим из переносного и относительного. Соответственно силу инерции Принцип Даламбера в теоретической механике можно разложить на такие же составляющие:

Принцип Даламбера в теоретической механике

Касательная сила инерции

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике— касательное ускорение; нормальная, или центробежная, сила инерции

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — нормальное ускорение. Переносная и относительная силы инерции, а также сила инерции Кориолиса через ускорения выражаются соответственно так:

Принцип Даламбера в теоретической механике

Аналогично выражаются через проекции ускорения на прямоугольные оси координат проекции силы инерции Принцип Даламбера в теоретической механике. На силы инерции существует несколько точек зрения. Согласно первой точке зрения, сила инерции условно прикладывается к точке, чтобы уравнению движения (1) придать более удобную форму условия равновесия (2). Поэтому силу инерции Принцип Даламбера в теоретической механике называют фиктивной, даламберовой, условной и т. д. С этой точки зрения силы инерции в принципе Даламбера не являются настоящими, реальными силами и отличаются не только от обычных сил, создаваемых действием тел, но даже и от сил инерции в относительном движении.

Согласно другой, наиболее распространенной точке зрения, сила инерции считается приложенной по частям к «ускоряющим» телам. Для обоснования приводят следующие рассуждения. Материальная точка движется с ускорением Принцип Даламбера в теоретической механике потому  что на нее действуют какие-то тела с силой, равной Принцип Даламбера в теоретической механике (см. рис. 83). По закону о равенстве сил действия и противодействия материальная точка должна оказывать противодействие этим телам с такой же по модулю, но противоположной по направлению силой — Принцип Даламбера в теоретической механике, которая, согласно (2), равна силе инерции Принцип Даламбера в теоретической механике, т.е. Принцип Даламбера в теоретической механике.

Это соотношение дает основание считать, что сила инерции приложена к «ускоряющим» телам, т. е. телам, которые сообщают точке ускорение.

Действительно, сила инерции Принцип Даламбера в теоретической механике является векторной суммой сил действия точки на «ускоряющие» ее тела. Она служит суммарной оценкой этого действия. Однако при рассмотрении относительного движения_точки вводятся переносная Принцип Даламбера в теоретической механике и кориолисова силы инерции Принцип Даламбера в теоретической механике. Для подвижного наблюдателя их следует считать приложенными к движущейся материальной точке, но для них невозможно указать материальные тела, действием которых на точку можно объяснить эти силы.

Переносная и кориолисова силы инерции являются частью полной силы инерции Принцип Даламбера в теоретической механике. Если для части силы невозможно указать тела, которые ее создают, то это же справедливо и для всей силы инерции Принцип Даламбера в теоретической механике. Однако в рассматриваемом случае указывается материальный объект, который действует с силой инерции Принцип Даламбера в теоретической механике на ускоряющие тела. Этим объектом является движущаяся с ускорением материальная точка.

Согласно третьей точке зрения, силу инерции считают приложенной к движущейся материальной точке, по крайней мере это справедливо для наблюдателя, который находится в собственной системе отсчета этой точки. Собственной системой отсчета материальной точки называют такую систему отсчета, относительно которой точка находится в покое, т. е. относительно которой ее относительные скорость и ускорение равны нулю. В этой системе отсчета справедливо условие относительного равновесия для сил

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — переносная сила инерции в собственной системе отсчета. Но в собственной системе отсчета Принцип Даламбера в теоретической механике и кориолисово ускорение Принцип Даламбера в теоретической механике, а тогда Принцип Даламбера в теоретической механике и, следовательно, Принцип Даламбера в теоретической механике.

Таким образом, принцип Даламбера есть условие относительного равновесия для сил в собственной системе отсчета. Относительно собственного наблюдателя сила инерции Принцип Даламбера в теоретической механике приложена к движущейся точке, а следовательно, к ней приложена и совпадающая с  перенорной силой инерции в собственной системе отсчета Принцип Даламбера в теоретической механике сила инерции абсолютного движения Принцип Даламбера в теоретической механике. Силу Принцип Даламбера в теоретической механике в этом случае считают дополнительным действием на точку поля Вселенной. Такая точка зрения на силы инерции требует изменения понятия приложенной силы и изменения некоторых основных аксиом динамики (см. Приложение).

Принцип Даламбера для системы материальных точек

Рассмотрим систему Принцип Даламбера в теоретической механике материальных точек. К каждой точке системы в общем случае приложены равнодействующая активных сил и равнодействующая реакций связей. Применяя принцип Даламбера к каждой точке системы, получим

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — сила инерции для Принцип Даламбера в теоретической механике-й точки (рис.83). Условия (6) можно представить в эквивалентной форме:

Принцип Даламбера в теоретической механике

N векторных условий (6) или (7) выражают принцип Даламбера для системы: при движении механической системы активная сила и реакция связей вместе с силой инерции составляют равновесную систему сил для каждой точки системы.

Принцип Даламбера для системы по своему содержанию не отличается от уравнений движения точек системы.

Представим равнодействующую силу, приложенную к каждой точке системы, разложенной не на активную силу и реакцию связей, а на внутреннюю и внешнюю силы по

отношению ко всей системе:

Принцип Даламбера в теоретической механике

Тогда принцип Даламбера для системы можно представить в другой форме:

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Рис. 83

Из принципа Даламбера для системы в форме (6) или (8) можно получить следствия в виде шести условии равновесия для сил, действующих на точки системы, и сил инерции.

Если просуммировать левые части (6) по всем точкам системы, то

Принцип Даламбера в теоретической механике

Умножая векторно каждое из соотношений (6) слева на радиус-вектор точки Принцип Даламбера в теоретической механике и опять суммируя по точкам системы, получаем

Принцип Даламбера в теоретической механике

Следствие из принципа Даламбера (10) справедливо как для неподвижной в рассматриваемой инерциальной системе отсчета точки, так и движущейся, так как начало радиусов-векторов Принцип Даламбера в теоретической механике можно выбирать в любой точке.

Условия (9) и (10), если выразить их через проекции на координатные оси, дадут шесть условий равновесия, аналогичных условиям равновесия сил, приложенных к твердому телу, в статике.

Если использовать принцип Даламбера в форме (8), то получим следствия в форме

Принцип Даламбера в теоретической механике

так как внутренние силы системы по свойству этих сил удовлетворяют условиям

Принцип Даламбера в теоретической механике

Если спроецировать (11) и (12) на координатные оси, то опять получим шесть условий равновесия для сил. Особенностью условий равновесия сил в форме (11) и (12) является отсутствие в них внутренних сил, что делает их особенно удобными при решении многих задач динамики системы.

В действительности условие (11) представляет собой теорему об изменении количества движения, а (12) — теорему об изменении кинетического момента для системы, если их представить в форме

Принцип Даламбера в теоретической механике

Сравнивая (11) с (11′) и (12) с (12′), получаем формулы для вычисления главных вектора и момента сил инерции системы через количество движения и кинетический момент:

Принцип Даламбера в теоретической механике

В (12′) точка Принцип Даламбера в теоретической механике неподвижна в выбранной инерциальной системе отсчета. Следовательно, по формуле (14) можно вычислить главный момент сил инерции только для неподвижной точки Принцип Даламбера в теоретической механике. Для движущейся точки вместо (12′) следует использовать ранее доказанную теорему об изменении кинетического момента для движущейся точки Принцип Даламбера в теоретической механике:

Принцип Даламбера в теоретической механике

После замены в (12) точки Принцип Даламбера в теоретической механике на Принцип Даламбера в теоретической механике и сравнения с (12″) получим формулу для вычисления главного момента сил инерции относительно движущейся точки Принцип Даламбера в теоретической механике:

Принцип Даламбера в теоретической механике

В формуле (14′) Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике — соответственно скорости точки Принцип Даламбера в теоретической механике и центра масс Принцип Даламбера в теоретической механике относительно рассматриваемой инерциальной системы отсчета; Принцип Даламбера в теоретической механике — масса системы.

Так как Принцип Даламбера в теоретической механике, то для главного вектора сил инерции получаем формулу

Принцип Даламбера в теоретической механике

Здесь Принцип Даламбера в теоретической механике — масса системы, Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике — скорость и ускорение центра масс соответственно.

В тех случаях движения твердого тела, когда силы инерции приводятся к равнодействующей, последняя совпадает по модулю и направлению с главным вектором этих сил. Но равнодействующая сил инерции необязательно проходит через центр масс тела, хотя ее модуль и направление всегда определяются по формуле (15).

Проецируя векторы из (14) на ось Принцип Даламбера в теоретической механике, получаем

Принцип Даламбера в теоретической механике

Аналогичные формулы можно получить и для других координатных осей. В случае вращения твердого тела вокруг неподвижной оси Принцип Даламбера в теоретической механике, как известно,

Принцип Даламбера в теоретической механике

Подставляя это значение Принцип Даламбера в теоретической механике в (14″), имеем

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

По формуле (16) вычисляют момент сил инерции относительно оси вращения при вращательном движении твердого тела вокруг неподвижной оси. Этот момент создают касательные силы инерции, так как нормальные силы инерции для каждой точки тела пересекают ось вращения и, следовательно, момента не создают.

Из принципа Даламбера для системы можно получить еще одно следствие — теорему об изменении кинетической энергии. Для этого умножаем (8) скалярно на Принцип Даламбера в теоретической механике и суммируем полученные соотношения по всем точкам. Получаем

Принцип Даламбера в теоретической механике

или в других обозначениях

Принцип Даламбера в теоретической механике

Сравнивая (17) с теоремой об изменении кинетической энергии системы в дифференциальной форме

Принцип Даламбера в теоретической механике

получаем выражение для суммы элементарных работ сил инерции через кинетическую энергию системы Принцип Даламбера в теоретической механике:

Принцип Даламбера в теоретической механике

Интегрируя (18), получаем

Принцип Даламбера в теоретической механике

Таким образом, сумма работ сил инерции на каком-либо перемещении системы равна изменению кинетической энергии на этом перемещении, взятому с обратным знаком.

Силы инерции твердого тела в частных случаях его движения

Методы решения задач динамики с использованием сил инерции называют кинетостатическими.

При поступательном движении

Если твердое тело движется поступательно, то ускорения его точек одинаковы. Силы инерции этих точек составляют систему параллельных сил, направленных в одну сторону. Такая система сил приводится к равнодействующей силе Принцип Даламбера в теоретической механике, которая равна главному вектору, т. е.

Принцип Даламбера в теоретической механике

Линия действия равнодействующей силы инерции в этом случае проходит через центр масс, так как главный момент сил инерции точек тела относительно центра масс

Принцип Даламбера в теоретической механике

Действительно, согласно следствию из принципа Даламбера (12) для центра масс, имеем

Принцип Даламбера в теоретической механике

При поступательном движении тело не совершает вращения вокруг центра масс и поэтому Принцип Даламбера в теоретической механике. Следовательно, и Принцип Даламбера в теоретической механике.

При вращении вокруг неподвижной оси

Если выбрать за центр приведения сил инерции точку Принцип Даламбера в теоретической механике на оси вращения Принцип Даламбера в теоретической механике, то в этой точке получим главный вектор и главный момент сил инерции:

Принцип Даламбера в теоретической механике

Если центр масс находится на оси вращения, то Принцип Даламбера в теоретической механике. Проекции главного момента сил инерции на неподвижные оси координат в общем случае можно вычислить по формулам

Принцип Даламбера в теоретической механике

Моменты сил инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике вычисляются в следующем параграфе. Они равны нулю, если ось Принцип Даламбера в теоретической механике является главной осью инерции для точки Принцип Даламбера в теоретической механике.

При плоском движении

Выбрав за центр приведения сил инерции центр масс, получим в этой точке главный вектор и главный момент сил инерции. Для главного вектора сил инерции имеем

Принцип Даламбера в теоретической механике

Для главного момента сил инерции относительно центра масс С, который является движущейся точкой при плоском движении тела, получим формулы, аналогичные формуле (14), выведенной для неподвижной точки Принцип Даламбера в теоретической механике.

Согласно следствию из принципа Даламбера (12), главный момент сил инерции относительно центра масс удовлетворяет условию

Принцип Даламбера в теоретической механике

С другой стороны, из теорем об изменении кинетического момента относительно центра масс для абсолютного и относительного движений имеем

Принцип Даламбера в теоретической механике

Из этих соотношений следует

Принцип Даламбера в теоретической механике

Проекции Принцип Даламбера в теоретической механике, Принцип Даламбера в теоретической механике на оси координат с началом в центре масс и движущиеся поступательно вместе с центром масс соответственно

Принцип Даламбера в теоретической механике

где ось Принцип Даламбера в теоретической механике перпендикулярна плоскости, параллельно которой совершают движение точки тела.

Моменты сил инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике вычисляются так же, как и при вращении тела вокруг неподвижной оси. Они равны нулю, если ось Принцип Даламбера в теоретической механике является главной осью инерции для точки Принцип Даламбера в теоретической механике. Это, в частности выполняется, если тело имеет плоскость симметрии, проходящую через центр масс и параллельную плоскости движения тела.

Пример 1. Груз Принцип Даламбера в теоретической механике силой тяжести Принцип Даламбера в теоретической механике опускается вниз по грани призмы с силой тяжести Принцип Даламбера в теоретической механике, приводя в движение груз Принцип Даламбера в теоретической механике, имеющий силу тяжести Принцип Даламбера в теоретической механике, с помощью нити, перекинутой через невесомый блок Принцип Даламбера в теоретической механике.

Считая пол, грани призмы и грузов гладкими, определить давление призмы на пол и выступ, препятствующий перемещению призмы, а также силу натяжения нити. Углы наклона боковых граней призмы Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике (рис. 84,а,б).

Решение. Применим к системе, состоящей из призмы, грузов, нити и блока, следствия из принципа Даламбера, составив условия равновесия внешних сил и сил инерции системы.

Предположим, что ускорение груза Принцип Даламбера в теоретической механике направлено вниз и равно Принцип Даламбера в теоретической механике. Для абсолютных значений сил инерции грузов Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике соответственно имеем

Принцип Даламбера в теоретической механике

Направления сил инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике указаны на рисунке.

Принцип Даламбера в теоретической механике

Рис. 84

Составляя условия равновесия внешних сил системы Принцип Даламбера в теоретической механике и сил инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике в проекциях на координатные оси Принцип Даламбера в теоретической механике, Принцип Даламбера в теоретической механике получим:

для Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

для Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Из этих уравнений имеем а.

Принцип Даламбера в теоретической механике

Для определения силы натяжения нити Принцип Даламбера в теоретической механике и ускорения грузов применим принцип Даламбера к каждому грузу в отдельности, составив условия равновесия внешних сил грузов и сил инерции на направление нити. Получим:

для груза Принцип Даламбера в теоретической механике (рис. 84, а)

Принцип Даламбера в теоретической механике

для груза Принцип Даламбера в теоретической механике (рис. 85,6)

Принцип Даламбера в теоретической механике

так как Принцип Даламбера в теоретической механике для случая невесомого блока. Из (б) и (б’), исключая Принцип Даламбера в теоретической механике, определяем Принцип Даламбера в теоретической механике:

Принцип Даламбера в теоретической механике

Для того чтобы груз двигался вниз, должно выполняться условие Принцип Даламбера в теоретической механике или

Принцип Даламбера в теоретической механике

Подставляя полученное значение Принцип Даламбера в теоретической механике в (а), получаем

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Давление призмы на выступ, согласно закону о равенстве сил действия и противодействия, будет Принцип Даламбера в теоретической механике; давление призмы на пол Принцип Даламбера в теоретической механике.

Для определения натяжения нити Принцип Даламбера в теоретической механике следует подставить значение ускорения а в одно из уравнений (б) или (б’). Тогда

Принцип Даламбера в теоретической механике

Пример 2. Однородный тонкий стержень Принцип Даламбера в теоретической механике силой тяжести Принцип Даламбера в теоретической механике и длиной Принцип Даламбера в теоретической механике жестко скреплен с вертикальным валом Принцип Даламбера в теоретической механике под углом а (рис. 85,а). Вал Принцип Даламбера в теоретической механике вместе со стержнем Принцип Даламбера в теоретической механике вращается с постоянной угловой скоростью Принцип Даламбера в теоретической механике.

Определить реакции стержня в заделке Принцип Даламбера в теоретической механике.

Решение. Применим к внешним силам и силам инерции стержня Принцип Даламбера в теоретической механике следствия из принципа Даламбера в форме условий равновесия сил. Неизвестные реакцию Принцип Даламбера в теоретической механике и векторный момент в заделке Принцип Даламбера в теоретической механике разложим по осям координат.

Если разбить весь стержень на элементарные участки одинаковой длины, то ускорения середин этих участков распределятся вдоль стержня по линейному закону (рис. 85,6), так как ускорение каждой точки стержня Принцип Даламбера в теоретической механике, где Принцип Даламбера в теоретической механике — расстояние Принцип Даламбера в теоретической механике-й точки до оси вращения. Силы инерции элементарных участков стержня, принимаемых за точки, распределятся тоже по линейному закону, образуя треугольник. Распределенные так параллельные силы имеют равнодействующую силу, линия действия которой отстоит от основания треугольника на расстоянии Принцип Даламбера в теоретической механике по стержню и Принцип Даламбера в теоретической механике от вершины треугольника. Равнодействующая сила Принцип Даламбера в теоретической механике всегда равна главному вектору Принцип Даламбера в теоретической механике распределенных по треугольнику сил. Для главного вектора сил инерции имеем

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — ускорение центра масс стержня, т. е. его средней точки. Таким образом,

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Рис. 85

Составим шесть условий равновесия сил, приняв, что стержень в рассматриваемый момент времени находится в координатной плоскости Принцип Даламбера в теоретической механике. Тогда для проекций сил и моментов их относительно осей координат Принцип Даламбера в теоретической механике имеем:

Принцип Даламбера в теоретической механике

Подставляя в эти уравнения значение Принцип Даламбера в теоретической механике и решая их относительно неизвестных, получаем:

Принцип Даламбера в теоретической механике

Для силы реакции и момента в заделке имеем

Принцип Даламбера в теоретической механике

Принцип Д’Аламбера

Представим себе находящуюся в движении любую несвободную систему материальных точек Принцип Даламбера в теоретической механике с массами Принцип Даламбера в теоретической механике (рис. 302).

Принцип Даламбера в теоретической механике

Рис. 302.

Обозначим равнодействующие задаваемых сил, приложенных к каждой точке системы Принцип Даламбера в теоретической механике соответственно через Принцип Даламбера в теоретической механике. Рассмотрим в некоторый момент какую-либо точку системы Принцип Даламбера в теоретической механике.

Если бы точка Принцип Даламбера в теоретической механике не была связана с другими точками системы, то ее ускорение было бы Принцип Даламбера в теоретической механике но при наличии связей ее с другими точками системы ускорение будет иным.

Пусть равнодействующая всех сил, с которыми остальные точки системы действуют на точку Принцип Даламбера в теоретической механике, будет сила Принцип Даламбера в теоретической механике тогда точку Принцип Даламбера в теоретической механике можно рассматривать как свободную, находящуюся под действием сил: Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике. Сложив эти силы по правилу параллелограмма, найдем их равнодействующую Принцип Даламбера в теоретической механике, и основное уравнение динамики запишется так:    

Принцип Даламбера в теоретической механике

Перепишем его в форме: Принцип Даламбера в теоретической механике. Член Принцип Даламбера в теоретической механике, очевидно, имеет размерность силы. Обозначив Принцип Даламбера в теоретической механике замечаем, что последнее уравнение, переписанное в форме Принцип Даламбера в теоретической механике, является уравнением равновесия сил Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике, или, что то же, сил Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике.

Назовем вектор Принцип Даламбера в теоретической механике силой инерции точки Принцип Даламбера в теоретической механике и тогда можем сказать, что силы, приложенные к материальной точке, и реакции связей уравновешиваются силой инерции. Или, что то же, реакция связей Принцип Даламбера в теоретической механике уравновешивается силами Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике.

Поступая аналогично с остальными точками системы, путем присоединения силы инерции к каждой точке, приходим к следующему началу д’Аламбера, которое читается так:

Если в какой-либо момент к движущейся системе материальных точек приложить все силы, действующие на нее в этот момент, и все силы инерции, то система будет в равновесии; при этом все реакции связей будут те же самые, которые имеют место при движении.

  • Заказать решение задач по теоретической механике

Таким образом, начало д’Аламбера, изложенное в «Трактате по динамике» (1743 г.), дает очень удобный прием решения задач динамики для случаев, когда системы являются связанными, т. е. подчиненными связям. Путем присоединения к точкам системы фиктивных сил инерции задача динамики легко сводится к соответствующей задаче статики.

Прикладывая к точкам системы силы инерции, последние приходится при решении задач складывать по правилам статики. Особенно просто складываются силы инерции при поступательном движении твердого тела. В этом случае параллельные между собой и направленные в одну сторону силы инерции заменяются одной силой: Принцип Даламбера в теоретической механике, приложенной в центре тяжести тела, так как центр параллельных сил инерции совпадает с центром тяжести. Последнее доказывается тем, что при одновременном повороте всех сил инерции вертикально вниз и умножении их на Принцип Даламбера в теоретической механике мы получаем взамен сил инерции силы тяжести точек тела. Иногда бывает полезно силу инерции точки в криволинейном ее движении представить в виде нормальной Принцип Даламбера в теоретической механике и касательной Принцип Даламбера в теоретической механике составляющих:

Принцип Даламбера в теоретической механике

направленных соответственно в сторону, противоположную нормальному и касательному ускорениям.

Примеры решения задач на принцип Даламбера

Для уяснения изложенного разберем сначала несколько задач на применение начала д’Аламбера к одной материальной точке, а затем уже к системам материальных точек.

Задача №1

На арочный мост АВ, имеющий в точках А и В неподвижные опоры, расположенные на одной горизонтали, въезжает автомобиль весом Q = 3000 кГ с постоянной скоростью Принцип Даламбера в теоретической механике. Проезжая часть моста описана по дуге окружности радиуса Принцип Даламбера в теоретической механике. Определить наибольшие давления Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механикеавтомобиля на мост в двух случаях, когда проезжая часть моста направлена соответственно выпуклостью кверху и книзу (рис. 303).

Принцип Даламбера в теоретической механике

Рис. 303.

При какой скорости Принцип Даламбера в теоретической механике автомобиля возможно его отделение от проезжей части моста?

Решение. Принимая автомобиль за материальную точку, замечаем, что для двух указанных случаев наибольшее давление автомобиля на мост будет тогда, когда он находится соответственно в наивысшей и наинизшей точках проезжей части, так как в этом случав все силы, приложенные к автомобилю, направлены по одной прямой.

Для нахождения давления автомобиля на мост в первом случае применяем начало д’Аламбера, для чего к силам, действующим на автомобиль, а именно к его весу Q и нормальной реакции моста N, присоединяем силу инерции Ф, направленную в сторону, обратную ускорению автомобиля Принцип Даламбера в теоретической механике и равную Принцип Даламбера в теоретической механике. Так как теперь мы имеем уже дело с задачей статики, то составляем уравнение равновесия сил Q, N и Ф  в виде равенства нулю суммы их проекций на вертикальное направление:

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

С такой же силой автомобиль будет оказывать давление на мост. Если выпуклость моста направлена книзу, то при решении задачи по началу д’Аламбера надо силу инерции Ф в этом случае направить уже вниз, так как ускорение автомобиля направлено вверх.

Обозначив для рассматриваемого случая нормальную реакцию моста через Принцип Даламбера в теоретической механике, найдем:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

Сравнивая величины Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике замечаем, что во втором случае давление автомобиля на мост значительно больше, чем в первом.

Полагая в первом уравнении N=0, найдем наибольшую скорость Принцип Даламбера в теоретической механике, при которой возможно отделение автомобиля от проезжей части моста: Принцип Даламбера в теоретической механике, или

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Задача №2

Автомобиль движется по криволинейному участку дороги радиусом Принцип Даламбера в теоретической механике со скоростьюПринцип Даламбера в теоретической механике. Каков должен быть поперечный уклон полотна дороги, характеризуемый Принцип Даламбера в теоретической механике (где Принцип Даламбера в теоретической механике — угол наклона полотна дороги к горизонту), для того чтобы давление движущегося автомобиля было направлено перпендикулярно к полотну дороги.   

Принцип Даламбера в теоретической механике

Рис. 304.

Решение. Рассматривая автомобиль как материальную точку, приложим к центру тяжести его С силу инерции Ф, равную Принцип Даламбера в теоретической механике и направленную в сторону, противоположную нормальному ускорению точки С (рис. 304). Теперь три силы, приложенные к точке С — вес автомобиля Q, нормальная реакция дороги N и сила инерции Ф, согласно началу д’Аламбера, взаимно уравновешиваются, поэтому треугольник этих сил должен быть замкнут.

Построив этот треугольник, находим:

Принцип Даламбера в теоретической механике

Задача №3

Вал АВ, соединенный жестко со стержнем CD, вращается, делая Принцип Даламбера в теоретической механике. К концам стержня CD, наклоненного под углом Принцип Даламбера в теоретической механике 45° к валу АВ, прикреплены два одинаковых груза весом Q = 50 кГ каждый (рис. 306). Найти реакции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике подшипников А и В при Принцип Даламбера в теоретической механике.

Принцип Даламбера в теоретической механике

Рис. 306.

Решение. Для нахождения реакций подшипников Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике применим начало д’Аламбера, для чего к каждому из грузов С и присоединим силу инерции Ф, равную Принцип Даламбера в теоретической механике

Теперь вал АВ вместе с прикрепленным к нему стержнем CD и грузами находится в равновесии под действием сил тяжести грузов, реакций подшипников и фиктивных сил инерции.

Неизвестные реакции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике определим теперь хотя бы из следующих двух уравнений равновесия:    

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Задача №4

Однородный стержень вращается вокруг вертикальной оси с постоянной угловой скоростью Принцип Даламбера в теоретической механике (рис. 307, а). Размеры стержня указаны на чертеже. Найти установившийся угол Принцип Даламбера в теоретической механике, образованный между стержнем и его вертикальной осью вращения.

Принцип Даламбера в теоретической механике

Рис. 307.

Решение. Разобьем весь стержень на ряд элементарных отрезков длиной dx каждый (рис. 307, б); тогда элементарная сила инерции, приходящаяся на выделенный элемент, будет:

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — вес единицы длины стержня.

Момент элементарной силы инерции относительно точки О будет:

Принцип Даламбера в теоретической механике

Так как после присоединения сил инерции стержень будет находиться в равновесии, то для. определения угла Принцип Даламбера в теоретической механике составим уравнение равновесия в форме равенства нулю суммы моментов всех сил тяжести и сил инерции относительно точки О:

Принцип Даламбера в теоретической механикеПринцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Задача №5

На блок с неподвижной осью вращения, представляющий однородный диск радиусом R и весом Принцип Даламбера в теоретической механике, намотан канат, к концу которого подвешен груз весомПринцип Даламбера в теоретической механике (рис. 308). Найти ускорение Принцип Даламбера в теоретической механике груза и натяжение каната, если груз будет предоставлен самому себе. Массой каната пренебречь.

Принцип Даламбера в теоретической механике

Рис. 308.

Решение. Для решения задачи воспользуемся началом д’Аламбера. Заданными силами, действующими на систему, состоящую из груза и блока, являются веса Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике. Так как ускорение груза направлено вниз, то его сила инерции направлена вверх и равна Принцип Даламбера в теоретической механике.

Для вычисления сил инерции блока выделим элемент, ограниченный радиусами Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике и дугой ds;  тогда сила инерции этого элемента может быть представлена в виде двух составляющих — нормальной Принцип Даламбера в теоретической механике и касательной Принцип Даламбера в теоретической механике причем:

Принцип Даламбера в теоретической механике

где Принцип Даламбера в теоретической механике — вес единицы площади блока.

Найдем теперь момент относительно оси вращения О всех сил инерции, приходящихся на элементарное кольцо, ограниченное окружностями радиусов Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике; он равен:

Принцип Даламбера в теоретической механике

Сюда вошел момент только касательных сил ннерцни; момент же нормальных сил инерции блока относительно точки О обращается в нуль.

Так как после присоединения сил инерции ко всем точкам системы последняя находится в равновесии, то для определения ускорения груза Принцип Даламбера в теоретической механике приравниваем нулю сумму моментов всех заданных сил н сил инерции системы относительно оси вращения О:

Принцип Даламбера в теоретической механике

Имея в виду равенства:

Принцип Даламбера в теоретической механике

найдем окончательно:

Принцип Даламбера в теоретической механике

Чтобы определить натяжение Т каната, воспользуемся следующим приемом: разорвем канат и взамен этого введем его реакцию, равную Т. Тогда, рассматривая отдельно равновесие груза Принцип Даламбера в теоретической механике (рис. 308 справа), найдем:

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Задача №6

По установленной на рельсах платформе В, представляющей наклонную плоскость, перемещается под влиянием силы тяжести груз А, который можно считать за материальную точку (рис. 310). При движении груза по платформе, последняя будет перемещаться вправо. Пренебрегая силами трения, определить ускорение Принцип Даламбера в теоретической механике платформы, а также давление Принцип Даламбера в теоретической механике груза на платформу, если масса груза равна т, а масса платформы М.

Решение. Заданная нам система состоит из груза А, при; нятого нами за материальную точку, и платформы В, движущейся поступательно. Применим принцип д’Аламбера, для чего приложим ко всем точкам системы силы инерции.

Так как точка А совершает сложное движение и ее ускорение складывается из относительного Принцип Даламбера в теоретической механике, направленного вниз параллельно наклонной плоскости, и переносного Принцип Даламбера в теоретической механике, равного ускорению платформы, то и сила инерции точки А состоит из двух компонентов: Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике, направленных прямо противоположно ускорениям Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике. Сила ннерции Ф платформы приложена в ее центре тяжести С и направлена в противоположную сторону ускорению Принцип Даламбера в теоретической механике. Теперь уже система находится в равновесии под действием заданных сил Принцип Даламбера в теоретической механике сил инерции Принцип Даламбера в теоретической механике и реакций рельсов Принцип Даламбера в теоретической механике (сила давления Принцип Даламбера в теоретической механике груза на платформу и реакция Принцип Даламбера в теоретической механике платформы взаимно уравновешиваются).

Принцип Даламбера в теоретической механике

Рис. 310.  

Напишем уравнение равновесия сил, приложенных к системе, в форме равенства нулю проекций нх на ось, совпадающую с направлением рельсов:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике 

Это уравнение содержит два неизвестных Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике. Составим второе уравнение, исходя из рассмотрения равновесия точки А, для чего приравняем нулю сумму проекций всех сил, приложенных к точке А, на ось, параллельную наклонной плоскости (рис. 310, вверху):

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

После сокращения на Принцип Даламбера в теоретической механике получим:

Принцип Даламбера в теоретической механике

Из уравнений (а) и (б) определяем Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Давление груза на платформу равно реакции плоскости Принцип Даламбера в теоретической механике но противоположно по направлению. Для нахождения Принцип Даламбера в теоретической механике составим равенство нулю суммы проекций всех сил, приложенных к точке А, на направление оси, совпадающей с направлением Принцип Даламбера в теоретической механике.

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Переходя к изучению движения любой системы материальных точек, мы применим принцип виртуальных перемещений, включив, согласно началу д’Аламбера, в число приложеных сил — силы инерции.

Пусть движущаяся система состоит из Принцип Даламбера в теоретической механике материальных точек и подчинена двусторонним и идеальным связям. Обозначим равнодействующую всех задаваемых сил, приложенных к Принцип Даламбера в теоретической механике точке через Принцип Даламбера в теоретической механике, а равнодействующую реакций связей — через Принцип Даламбера в теоретической механике; тогда, введя силу инерции Принцип Даламбера в теоретической механике, запишем уравнение, выражающее принцип возможных перемещений для Принцип Даламбера в теоретической механике точки:

Принцип Даламбера в теоретической механике

а для всей системы:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

В силу идеальности связей сумма работ их реакций на возможном перемещении системы обращается в нуль:

Принцип Даламбера в теоретической механике

Отсюда прнходим к общему уравнению динамики, выраженному в векторной форме:

Принцип Даламбера в теоретической механике

или в проекциях:

Принцип Даламбера в теоретической механике       Принцип Даламбера в теоретической механике

Это и есть общее уравнение динамики, или уравнение д’ Аламбера — Лагранжа, выражающее начало д’Аламбера в аналитической форме. Из него можно вывести уравнения равновесия и движения любых материальных систем.  

Применение этого уравнения выясним на отдельных задачах.    

Задача №7

Груз А весом Принцип Даламбера в теоретической механикенаходится на горизонтальной гладкой плоскости и скреплен с нитью, перекинутой в точке С через малый блок, массой которого пренебрегаем (рис. 311).

К концу нити подвешен свободно груз В весом Принцип Даламбера в теоретической механике Найти ускорение Принцип Даламбера в теоретической механикегруза В  и натяжение нити Т.

Принцип Даламбера в теоретической механике

Рис. 311.

Решение. Пусть грузы А и В движутся с ускорением Принцип Даламбера в теоретической механике Остановим систему и приложим к грузам А и В силы инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике. Дадим теперь системе возможное перемещение Принцип Даламбера в теоретической механике переместив грузы, хотя бы слева направо, и составим уравнение работ:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Натяжение нити Т легко определится, если нить оборвать и рассмотреть равновесие одного из грузов, например В. Тогда, приравнивая нулю сумму проекций всех сил, приложенных к В на вертикальное направление, найдем:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

Задача №8

К системе блоков (рис. 312) подвешены грузы: Принцип Даламбера в теоретической механике и  Принцип Даламбера в теоретической механике. Пренебрегая массами блоков, определить ускорение Принцип Даламбера в теоретической механике груза Принцип Даламбера в теоретической механике и натяжение нити Т.

Принцип Даламбера в теоретической механике

Рис. 312.

Решение. Приложим к грузам силы инерции Принцип Даламбера в теоретической механике и Принцип Даламбера в теоретической механике и дадим системе возможное перемещение. Если груз Принцип Даламбера в теоретической механике опустим вниз на величину Принцип Даламбера в теоретической механике, то груз Принцип Даламбера в теоретической механике поднимется вверх на Принцип Даламбера в теоретической механике.

Отсюда следует, что ускорение второго груза будет также в четыре раза меньше ускорения первого груза.

Напишем теперь уравнение работ:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

откуда

Принцип Даламбера в теоретической механике

Натяжение нити T найдем из рассмотрения равновесия, например, первого груза:

Принцип Даламбера в теоретической механике

или

Принцип Даламбера в теоретической механике

Задача №9

Найти, при каком числе оборотов в минуту регулятора вокруг вертикальной оси угол Принцип Даламбера в теоретической механике отклонения его плеч от вертикали будет равен 45° (рис. 313). Данные величины: длина плеч регулятора Принцип Даламбера в теоретической механике, расстояние от оси вращения до шарнира Принцип Даламбера в теоретической механике, вес каждого из шаров Q = 2 кГ, жесткость пружины с= 10 кГ/см, вес муфты Принцип Даламбера в теоретической механике и при Принцип Даламбера в теоретической механике пружина не растянута и не сжата.

Принцип Даламбера в теоретической механике

Рис. 313.

Решение. Пусть при Принцип Даламбера в теоретической механике угол отклонения плеч регулятора от вертикали равен Принцип Даламбера в теоретической механике. При этом на систему, состоящую из двух шаров и муфты, действуют следующие заданные силы: веса шаров Принцип Даламбера в теоретической механике, вес муфты Принцип Даламбера в теоретической механике, а также сила упругости пружины Р:

Принцип Даламбера в теоретической механике

Все эти силы направлены по вертикали вниз.

Решим задачу, пользуясь началом д’Аламбера, для чего приложим к шарам равные по величине силы инерции:

Принцип Даламбера в теоретической механике

При составлении уравнения работ все вычисления сведем в таблицу 13. В таблицу 13 введены силы Принцип Даламбера в теоретической механикеи Принцип Даламбера в теоретической механике, приложенные к шару, находящемуся справа от оси вращения.

Таблица 13

Принцип Даламбера в теоретической механике

Принцип Даламбера в теоретической механике

Отсюда

Принцип Даламбера в теоретической механике

или   

Принцип Даламбера в теоретической механике

Но так как Принцип Даламбера в теоретической механике, то

Принцип Даламбера в теоретической механике

  • Динамические реакции при вращении твердого тела вокруг неподвижной оси
  • Векторное исчисление
  • Виды связей
  • Параллельные силы
  • Теорема об изменении кинетического момента
  • Теорема об изменении кинетической энергии
  • Потенциальное силовое поле
  • Закон сохранения механической энергии

Содержание:

  1. Динамика механической системы
  2. Геометрия масс
  3. Механическая система. Центр масс механической системы
  4. Порядок решения задач на определение центра масс механической системы
  5. Примеры решения задач на тему: Определение центра масс механической системы
  6. Моменты инерции твердого тела относительно оси
  7. Моменты инерции некоторых однородных тел
  8. Примеры решения задач на тему: Моменты инерции твердого тела относительно оси
  9. Теорема о движении центра масс механической системы
  10. Закон сохранения движения центра масс
  11. Порядок решения задач на применение теоремы о движении центра масс
  12. Примеры решения задач на тему: Теорема о движении центра масс механической системы
  13. Теорема об изменении количества движения точки и механической системы
  14. Импульс силы
  15. Теорема об изменении количества движения точки и системы
  16. Закон сохранения количества движения системы
  17. Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы
  18. Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы
  19. Теорема об изменении момента количества движения точки и механической системы
  20. Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси
  21. Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы
  22. Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы
  23. Теорема об изменении кинетической энергии механической системы
  24. Кинетическая энергия механической системы
  25. Определение кинетической энергии твердого тела в различных случаях его движения
  26. Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы
  27. Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Динамика механической системы – изучает движение совокупности материальных точек и твердых тел, объединяемых общими законами.

На странице -> решение задач по теоретической механике собраны решения задач и заданий с решёнными примерами по всем темам теоретической механики.

Динамика механической системы

В предыдущей главе рассматривались задачи, связанные с движением материальной точки, которая находится под действием приложенных к ней сил. Однако часто приходится встречаться с такими случаями, когда движение одной точки невозможно рассматривать изолированно от движения других материальных точек. Это заставляет нас перейти к изучению движения совокупности материальных точек, или механических систем.

В механике под механической системой материальных точек или тел имеют в виду такую их совокупность, в которой положение или движение каждой точки (или тела) зависит от положения или движения всех других.

Совокупность тел, между которыми отсутствуют силы взаимодействия и движение которых никаким образом не связано друг с другом, механическую систему не создают. Механические системы бывают свободными и несвободными.

Система материальных точек, движение которых не ограничено никакими связями, а определяется только действующими на эти точки силами, называется системой свободных точек.

Система материальных точек, движение которых ограничивается наложенными на точки связями, называется системой несвободных точек.

Решение задач динамики механической системы базируется на теоремах динамики и некоторых принципах, которые будут рассмотрены в данной главе.

Геометрия масс

Геометрия точки масс, в просторечии известная как точки масс , является проблемой геометрии – метод решения , который применяет физический принцип центра масс к геометрическим задачам, включающим треугольники и пересекающиеся чевианы . Все задачи, которые могут быть решены с использованием геометрии материальных точек, также могут быть решены с использованием аналогичных треугольников, векторов или соотношений площадей, но многие студенты предпочитают использовать массовые точки.

Механическая система. Центр масс механической системы

В механике под механической системой подразумевают совокупность взаимодействующих между собой материальных точек или тел.

Частным случаем механической системы является абсолютно твердое тело.

Массой механической системы называется сумма масс всех точек, входящих в систему:

Динамика механической системы

где Динамика механической системы – масса материальной точки с номером Динамика механической системы,

Динамика механической системы – число всех точек системы.

Центром масс (центром инерции) механической системы называется точка Динамика механической системы (рис.5.1), радиус-вектор Динамика механической системы которой определяется по формуле:

Динамика механической системы

где Динамика механической системы – масса системы материальных точек;

Динамика механической системы – радиус-вектор точки с массой Динамика механической системы.

Декартовы координаты центра масс системы материальных точек определяются по зависимостям:

Динамика механической системы

Здесь Динамика механической системы – координаты Динамика механической системы-ой материальной точки.

Динамика механической системы

Для твердого тела центр масс совпадает с центром тяжести.

Порядок решения задач на определение центра масс механической системы

Решение задач, в которых необходимо определить положение центра масс и уравнение его траектории, рекомендуется проводить в следующей последовательности:

Выбрать систему координат.

Записать координаты центров тяжести каждой из масс системы, выразив их в виде функций времени:

Динамика механической системы

Определить координаты центра масс системы по формулам (5.1), при этом Динамика механической системы будут функциями времени, то есть, полученные выражения будут параметрическими уравнениями движения центра масс.

Для нахождения уравнений траектории центра масс надо с последних выражений (пункт 3) исключить время.

Примеры решения задач на тему: Определение центра масс механической системы

Задача № 1

Определить положение центра масс центробежного регулятора, изображенного на рис.5.2, если вес каждого из шаров Динамика механической системы и Динамика механической системы равен Динамика механической системы, вес муфты Динамика механической системы равен Динамика механической системы. Пули Динамика механической системы и Динамика механической системы  считать материальными точками. Массой стержней пренебречь.

Решение. Система координат, относительно которой необходимо определить положение центра масс, изображена на рис.5.2.

Для определения положения центра масс системы надо определить его координаты по формулам (5.1):

Динамика механической системы

где Динамика механической системы

Динамика механической системы – координаты центра масс пуль Динамика механической системыДинамика механической системы и муфты Динамика механической системы.

Следовательно,

Динамика механической системы

Находим координаты центров масс:

пули Динамика механической системыДинамика механической системы

пули Динамика механической системыДинамика механической системы

муфты Динамика механической системыДинамика механической системы

Тогда: 

Динамика механической системы

поскольку

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

Найти уравнение движения центра масс шарнирного параллелограмма Динамика механической системы а также уравнение траектории его центра масс при вращении кривошипа Динамика механической системы с постоянной угловой скоростью Динамика механической системы. Звенья параллелограмма – однородные стержни (рис.5.3), и Динамика механической системы

Динамика механической системы

Решение. Начало системы координат свяжем с шарниром Динамика механической системы кривошипа Динамика механической системы. Ось Динамика механической системы направим справа по линии Динамика механической системы а ось Динамика механической системы – перпендикулярно линии Динамика механической системы.

Поскольку звенья 1,2,3 параллелограмма однородны, то центры масс их лежат посередине звеньев (точки Динамика механической системы).

Из размеров звеньев вытекает: Динамика механической системы

Определим координаты центров масс звеньев механизма как функции угла поворота Динамика механической системы (рис.5.3):

Динамика механической системы

Для определения координат центра масс шарнирного параллелограмма Динамика механической системы воспользуемся зависимостью (5.1):

Динамика механической системы

Динамика механической системы

Для определения уравнения траектории центра масс (точки Динамика механической системы) исключим параметр Динамика механической системы из уравнений (1) и (2). С этой целью выполним следующие преобразования:

Динамика механической системы

Сложим, соответственно, левые и правые части этих уравнений:

Динамика механической системы

Таким образом, траекторией центра масс шарнирного параллелограмма является окружность:

с радиусом, равным Динамика механической системы, с центром в точке Динамика механической системы с координатами Динамика механической системы

Ответ: Динамика механической системы Динамика механической системы

Задача № 3

Определить траекторию центра масс механизма эллипсографа (рис.5.4), который состоит из муфт Динамика механической системы и Динамика механической системы весом Динамика механической системы каждая, кривошипа Динамика механической системы весом Динамика механической системы и линейки Динамика механической системы весом Динамика механической системы, если Динамика механической системы

Динамика механической системы

Считать, что линейка и кривошип есть однородные стержни, а муфты – точечные массы.

Решение. Механизм состоит из 4 подвижных звеньев. Для удобства решения задачи пронумеруем звенья соответственно рис.5.4.

Система координат, относительно которой будет определяться траектория центра масс механизма показана на рисунке.

Сначала определим координаты центров масс всех звеньев механизма:

Динамика механической системы

Для определения координат центра масс механизма эллипсографа воспользуемся формулой (5.1):

Динамика механической системы

Следовательно, координаты центра масс эллипсографа имеют значения:

Динамика механической системы

Для нахождения уравнения траектории центра масс в явном виде необходимо из этих уравнений исключить угол Динамика механической системы. Решив оба уравнения относительно Динамика механической системы и Динамика механической системы, возводя их затем к квадрату и сложив, получим:

Динамика механической системы

Траекторией центра масс является окружность с центром в точке Динамика механической системы и радиусом Динамика механической системы, который равен:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Определить зависимость от угла поворота кривошипа Динамика механической системы координат центра масс кривошипно-ползунного механизма, что изображено на рис.5.5. Длина кривошипа Динамика механической системы, его вес Динамика механической системы, длина шатуна Динамика механической системы, его вес Динамика механической системы, вес ползуна Динамика механической системы.

Решение. Выберем систему координат Динамика механической системы как показано на рис.5.5. Рассмотрим механизм в произвольном положении, которое определяется углом Динамика механической системы (для любого положения Динамика механической системы, так как Динамика механической системы).

Применяя формулу (5.1), получим:

Динамика механической системы

где Динамика механической системы – координаты центров тяжести тел, составляющих систему,

Динамика механической системы – масса всей системы.

С рис.5.5 находим:

Динамика механической системы

Масса всей системы в данном случае равна:

Динамика механической системы

Подставляя в выражения (1) и (2) значения координат центров масс тел механической системы и величину массы системы Динамика механической системы, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Определить уравнение траектории центра масс кулисного механизма (рис.5.6), если вес кривошипа Динамика механической системы равен Динамика механической системы, вес ползуна Динамика механической системы равен Динамика механической системы, а вес кулисы и штанги Динамика механической системы равен Динамика механической системы. Кривошип, который вращается с постоянной угловой скоростью Динамика механической системы, считать тонким однородным стержнем, а ползун Динамика механической системы – точечной массой. Центр тяжести кулисы и штанги расположен в точке Динамика механической системы, причем Динамика механической системы. При расчетах принять:

Динамика механической системы

Будем считать, что в начальный момент ползун Динамика механической системы занимал крайнее правое положение.

Решение. Выберем оси декартовых координат, как показано на рисунке, где положение кулисного механизма соответствует моменту времени Динамика механической системы. Так как кривошип вращается равномерно, то его угол поворота равен Динамика механической системы

Для определения положения центра масс системы Динамика механической системы необходимо найти его координаты Динамика механической системы и Динамика механической системы по формуле (5.1).

Поскольку механическая система состоит из трех тел – кривошипа Динамика механической системы, ползуна Динамика механической системы и кулисы со штангой Динамика механической системы, то:

Динамика механической системы

Индекс 1 соответствует кривошипу, индекс 2 – ползуну Динамика механической системы, индекс 3 – кулисе со штангой.

Динамика механической системы

Из рисунка видно:

Динамика механической системы

Подставим значения Динамика механической системы в формулы для определения Динамика механической системы и Динамика механической системы.

Динамика механической системы

Исключим время Динамика механической системы в уравнениях, которые определяют движение центра масс.

Для этого решим оба уравнения относительно Динамика механической системы и Динамика механической системы:

Динамика механической системы

Возведем эти уравнения к квадрату и добавим:

Динамика механической системы

Таким образом, траекторией центра масс кулисного механизма является эллипс с полуосями Динамика механической системы и Динамика механической системы

Центр эллипса лежит на оси Динамика механической системы и отдален от начала координат Динамика механической системы вправо на расстояние Динамика механической системы

Ответ: Динамика механической системы

Моменты инерции твердого тела относительно оси

Влияние собственных свойств тела на вращательное движение значительно сложнее, чем в поступательном движении.

Также как масса тела является мерой инертности тела при его поступательном движении, так и момент инерции тела относительно данной оси является мерой инертности тела при его вращательном движении.

Как мера инертности тела момент инерции входит во все формулы вращательного движения. Не зная момента инерции тела, не умея его определить, нельзя решать задачи, которые связаны с вращательным или сложным движением тела, частью которого является вращательное движение.

Момент инерции тела (системы) относительно оси, например Динамика механической системы, обозначим Динамика механической системы (индекс указывает на ось, относительно которой определяется момент инерции).

Моментом инерции тела относительно оси, например Динамика механической системы, называется скалярная величина, равная сумме произведений масс точек тела на квадраты их расстояний к оси:

Динамика механической системы

Если тело сплошное, то под Динамика механической системы необходимо понимать массу элементарной частицы тела Динамика механической системы, тогда момент инерции будет выражаться интегралом:

Динамика механической системы

где Динамика механической системы – расстояние доли Динамика механической системы от оси.

Этот интеграл берется по всей массе тела. Очевидно, что величина момента инерции зависит от размеров и формы тела , а также от закона распределения массы в теле.

Момент инерции измеряется в системе СИ – в Динамика механической системы, в технической системе – в Динамика механической системы.

Для тел правильной геометрической формы определение моментов инерции делается с помощью интегрального вычисления. Если тело имеет неправильную форму, то момент инерции его определяется либо приблизительно, путем разбития тела на несколько тел, которые имеют правильную геометрическую форму, либо экспериментально.

Для однородного тела, при плотности Динамика механической системы:

Динамика механической системы

где интеграл берется по всему объему тела.

Для однородной материальной поверхности:

Динамика механической системы

где Динамика механической системы – масса единицы плоскости поверхности и интеграл берется по всей плоскости поверхности.

Для однородной материальной линии:

Динамика механической системы

где Динамика механической системы – масса единицы длины линии. Интеграл берется по длине Динамика механической системы.

Для одной материальной точки, которая находится на расстоянии Динамика механической системы от оси, момент инерции равен:

Динамика механической системы

Иногда при определении момента инерции тела пользуются понятием радиуса инерции. Радиусом инерции тела относительно оси, например Динамика механической системы, называется линейная величина Динамика механической системы, определяемая равенством:

Динамика механической системы

где Динамика механической системы – масса тела.

Следовательно, радиус инерции определяет расстояние от оси Динамика механической системы к точке, в которой необходимо сосредоточить всю массу Динамика механической системы тела, чтобы момент инерции точки относительно этой оси равнялся моменту инерции тела.

Момент инерции системы относительно начала координат равен

Динамика механической системы

Моменты инерции относительно координатных осей (осевые моменты) выражаются зависимостями:

Динамика механической системы

Существует простая зависимость между моментами инерции тела относительно параллельных осей, одна из которых проходит через его центр масс (теорема Гюйгенса-Штейнера).

Момент инерции тела относительно любой оси равен моменту инерции тела относительно оси, проходящей через центр масс тела параллельно данной оси, плюс произведение массы тела на квадрат расстояния между осями:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через центр масс и параллельна данной;

Динамика механической системы – момент инерции тела относительно данной оси;

Динамика механической системы – расстояние между осями.

Из выражения (5.4) вытекает, что наименьшим момент инерции тела будет относительно той оси, которая проходит через центр его масс.

Моменты инерции некоторых однородных тел

Форма тела. Схема тела. Момент инерции.
Тонкий прямолинейный стержень Динамика механической системы Динамика механической системы
-„- Динамика механической системы Динамика механической системы
Круглая пластинка малой толщины Динамика механической системы Динамика механической системы
Кольцо (материальная окружность) Динамика механической системы Динамика механической системы
Круглый цилиндр Динамика механической системы Динамика механической системы
Прямоугольный параллелепипед Динамика механической системы Динамика механической системы
Полый шар со стенками малой толщины Динамика механической системы Динамика механической системы
Шар  Динамика механической системы Динамика механической системы

Примеры решения задач на тему: Моменты инерции твердого тела относительно оси

Задача №1

Маятник, изображенный на рис. 5.7, состоит из тонкого однородного стержня длиной Динамика механической системы и массой Динамика механической системы и круглого однородного диска с радиусом Динамика механической системы и массой Динамика механической системы

Динамика механической системы

Определить момент инерции Динамика механической системы относительно оси его вращения Динамика механической системы (ось Динамика механической системы направлена перпендикулярно плоскости рисунка).

Решение. Маятник состоит из двух тел: стержня и диска, поэтому

Динамика механической системы

где Динамика механической системы и Динамика механической системы моменты инерции относительно оси Динамика механической системы стержня и диска, соответственно.

Момент инерции стержня равен (см. 5.5):

Динамика механической системы

Момент инерции диска найдем по формуле (5.4):

Динамика механической системы

где Динамика механической системы – момент инерции диска относительно оси, которая проходит параллельно оси Динамика механической системы через его центр масс, точку Динамика механической системы, а расстояние от центра масс к оси Динамика механической системыДинамика механической системы

Итак

Динамика механической системы

Пользуясь выражениями для моментов инерции стержня (2) и диска (3), найдем момент инерции маятника относительно оси Динамика механической системы:

Динамика механической системы

После подстановки в выражение (4) числовых данных, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №2.

Определить момент инерции Динамика механической системы стального вала радиуса Динамика механической системы см и массой Динамика механической системы относительно его образующей. Вал считать однородным сплошным цилиндром (рис.5.8).

Динамика механической системы

Решение. Для определения момента инерции стального вала относительно оси Динамика механической системы, надо воспользоваться формой Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси Динамика механической системы, которая проходит через центр масс тела.,

Динамика механической системы – масса вала,

Динамика механической системы – расстояние между осями, равное радиусу вала.

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

Определить осевые моменты инерции Динамика механической системы и Динамика механической системы изображенной на рис.5.9 однородной прямоугольной пластинки весом Динамика механической системы.

Динамика механической системы

Решение. Определим момент инерции пластинки относительно оси Динамика механической системы. Для этого выделим на расстоянии Динамика механической системы полоску шириной Динамика механической системы.

Момент инерции этой тонкой полоски относительно оси Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – масса полоски.

Масса полоски равна:

Динамика механической системы

где Динамика механической системы – площадь полоски;

Динамика механической системы– масса единицы площади поверхности пластинки.

Тогда:

Динамика механической системы

а момент инерции всей пластинки будет равен сумме моментов инерции всех полосок, на которые можно разбить пластинку:

Динамика механической системы

При предельном переходе, то есть, когда Динамика механической системы

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим массу пластинки:

Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы находим аналогичным путем и получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Определить момент инерции относительно оси Динамика механической системы Динамика механической системы однородного прямоугольного параллелепипеда весом Динамика механической системы (рис.5.10).

Решение. Выделим элементарный параллелепипед со сторонами основания Динамика механической системы и высотой Динамика механической системы Расстояние элементарного параллелепипеда от осей Динамика механической системы и Динамика механической системы равно Динамика механической системы и Динамика механической системы соответственно.

Момент инерции элементарного параллелепипеда относительно оси Динамика механической системы равен:

Динамика механической системы

где: Динамика механической системы – масса элементарного параллелепипеда, равна:

Динамика механической системы

Динамика механической системы

Тогда, Динамика механической системы

а момент инерции всего параллелепипеда

Динамика механической системы

При предельном переходе, то есть при Динамика механической системы то сумма, которая стоит справа, переходит в двойной интеграл:

Динамика механической системы

Вычислим двойной интеграл:

Динамика механической системы

Масса параллелепипеда:

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Определить момент инерции относительно оси Динамика механической системы тонкой однородной параболической пластинки (рис.5.11) массой Динамика механической системы. Предельная прямая пластинки параллельна оси Динамика механической системы и удалена от нее на расстояние Динамика механической системы. Уравнение параболы, которая ограничивает пластинку, имеет вид Динамика механической системы

Динамика механической системы

Решение. Проведем на пластинке (рис.5.11) две прямые, параллельные оси Динамика механической системы и удаленные от нее на расстоянии Динамика механической системы и Динамика механической системы

Вычислим момент инерции относительно оси Динамика механической системы элементарной полоски, которая ограничена этими прямыми и параболическим контуром пластинки (заштрихована на рисунке):

Динамика механической системы

где Динамика механической системы – элементарная масса плоскости, которая равна:

Динамика механической системы

Здесь Динамика механической системы – плотность пластинки,

Динамика механической системы – площадь пластинки.

Итак,

Динамика механической системы

Из уравнения Динамика механической системы вытекает Динамика механической системы

Таким образом

Динамика механической системы

Момент инерции пластинки относительно оси Динамика механической системы равен:

Динамика механической системы

Масса пластинки Динамика механической системы

где площадь пластинки Динамика механической системы

Тогда 

Динамика механической системы

Следовательно,

Динамика механической системы

Ответ: Динамика механической системы

Задача №6

Определить для тонкого равнобедренного треугольника Динамика механической системы, основание которого равно Динамика механической системы, высота Динамика механической системы и масса Динамика механической системы (рис.5.12), его моменты инерции относительно основания и относительно высоты.

Динамика механической системы

Решение. С серединой Динамика механической системы основания равнобедренного треугольника свяжем начало системы координат Динамика механической системы; ось Динамика механической системы проведем по основанию Динамика механической системы, а ось Динамика механической системы – перпендикулярно  основанию.

Для определения момента инерции треугольника относительно основания (относительно оси Динамика механической системы) выделим на расстоянии Динамика механической системы элементарную полоску шириной Динамика механической системы.

Момент инерции этой полоски относительно оси Динамика механической системы составит:

Динамика механической системы

где Динамика механической системы, масса полоски длиной Динамика механической системы, равна:

Динамика механической системы

Тогда момент инерции элементарной полоски относительно основания будет равен:

Динамика механической системы

Найдем зависимость между координатой Динамика механической системы и длиной полоски Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы (рис.5.12) следует:

Динамика механической системыили Динамика механической системы

откуда

Динамика механической системы

Подставив (2) у (1’), получим:

Динамика механической системы

а момент инерции треугольника Динамика механической системы относительно основания определится как

Динамика механической системы

или

Динамика механической системы

В интеграле (3) границы координаты Динамика механической системы меняются от Динамика механической системы к Динамика механической системы.

Высчитаем интеграл (3):

Динамика механической системы

Выразим момент инерции Динамика механической системы через массу Динамика механической системы треугольника Динамика механической системы:

Динамика механической системы

Преобразуем выражение (4):

Динамика механической системы

или

Динамика механической системы

Перейдем к определению момента инерции треугольника Динамика механической системы относительно его высоты Динамика механической системы.

Поскольку у треугольника Динамика механической системы высота Динамика механической системы является осью симметрии, то достаточно определить момент инерции относительно этой оси для прямоугольного треугольника Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции треугольника Динамика механической системы;

Динамика механической системы – момент инерции треугольника Динамика механической системы.

Расчетная схема для определения момента инерции Динамика механической системы приведена на рис.5.13.

Динамика механической системы

Выделим элементарную полоску на расстоянии Динамика механической системы от оси Динамика механической системы, ширина полоски – Динамика механической системы, длина – Динамика механической системы

Определим момент инерции этой полоски относительно оси Динамика механической системы:

Динамика механической системы

где Динамика механической системы – масса элементарной полоски.

Определим зависимость между длиной полоски Динамика механической системы и координатой Динамика механической системы. Из сходства треугольников Динамика механической системы и Динамика механической системы получается:

Динамика механической системы или Динамика механической системы

откуда

Динамика механической системы

Подставив (6) у (5), получим:

Динамика механической системы

Момент инерции треугольника Динамика механической системы относительно оси Динамика механической системы (относительно высоты Динамика механической системы), равен:

Динамика механической системы

или

Динамика механической системы

Определим интеграл (7):

Динамика механической системы

Окончательно,

Динамика механической системы

Тогда, момент инерции треугольника Динамика механической системы относительно высоты Динамика механической системы будет равен:

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 34.9, 34.12, 34.16 [2].

Теорема о движении центра масс механической системы

Силы, действующие на механическую систему, можно условно поделить на внешние и внутренние.

Силы, которые действуют на точки данной механической системы со стороны точек или тел, не входящих в эту систему, называются внешними.

Силы, действующие на точки механической системы со стороны точек данной системы, называются внутренними.

Внешние силы обозначаются верхним индексом Динамика механической системы, внутренние – Динамика механической системы: Динамика механической системы -внешняя сила, Динамика механической системы – внутренняя сила.

Внутренние силы обладают следующими свойствами:

а) геометрическая сумма (главный вектор) внутренних сил равна нулю:

Динамика механической системы

б) геометрическая сумма моментов (главный момент) всех внутренних сил относительно любого центра Динамика механической системы или оси равна нулю:

Динамика механической системы

Динамика механической системы

Теорема о движении центра масс механической системы формулируется следующим образом:

Произведение массы системы на ускорение ее центра масс равно геометрической сумме всех внешних сил, действующих на систему.

Динамика механической системы

где Динамика механической системы – масса системы;

Динамика механической системы – ускорение центра масс;

Динамика механической системы – сумма внешних сил, которые действуют на систему.

Из сравнения приведенной выше формулы со вторым законом динамики, который, как известно, записан для материальной точки:

Динамика механической системы

можно сделать следующий вывод:

Центр масс механической системы движется как материальная точка, в которой сосредоточено массу всей системы и к которой приложены те же внешние силы, действующие на систему.

Теорема о движении центра масс системы, если ее записать в проекциях на оси декартовой системы координат, имеет вид:

Динамика механической системы

где Динамика механической системы – координаты центра масс механической системы.

Из приведенных уравнений следует, что внутренние силы непосредственно не влияют на движение центра масс. Теорема позволяет исключить из рассмотрения все ранее неизвестные внутренние силы.

Задачи динамики поступательного движения твердого тела решаются с помощью теоремы о движении центра масс системы материальных точек.

Действительно, применив эту теорему, мы определим уравнение траектории, скорость и ускорение центра тяжести твердого тела. При поступательном движении твердого тела траектории всех его точек одинаковы, одинаковы и их скорости и ускорения.

Закон сохранения движения центра масс

Из теоремы о движении центра масс вытекает несколько следствий:

а) если геометрическая сумма всех внешних сил, действующих на систему, равна нулю, то центр масс механической системы находится в покое или движется равномерно и прямолинейно.

Пусть Динамика механической системы, тогда 

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если изначально центр масс был в покое, то он и останется в покое. Если же начальная скорость не равна нулю, то центр масс движется прямолинейно и равномерно с этой скоростью;

б) если геометрическая сумма внешних сил, действующих на систему, не равна нулю, но сумма их проекций на какую-нибудь ось (например, ось Динамика механической системы) равна нулю, то центр масс системы вдоль этой оси или не движется, или движется равномерно.

Если Динамика механической системы, то:

Динамика механической системы или Динамика механической системы, поэтому Динамика механической системы

Если при этом равна нулю начальная скорость, то есть Динамика механической системы, то Динамика механической системы, то есть Динамика механической системы

Таким образом видим, что в этом случае координата центра масс Динамика механической системы механической системы во время ее движения остается неизменной.

При Динамика механической системы проекция центра масс на ось Динамика механической системы движется равномерно.

Все эти результаты выражают законы сохранения движения центра масс системы.

Порядок решения задач на применение теоремы о движении центра масс

Рекомендуется такая последовательность решения задач:

Изобразить на рисунке все внешние силы, действующие на систему;

Выбрать систему координат;

Записать теорему о движении центра масс в векторной форме;

Спроектировать это векторное уравнение на оси координат;

Высчитать суммы проекций всех внешних сил на оси координат и подставить их в проекции уравнения движения;

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема о движении центра масс механической системы

Задача № 1

Определить главный вектор внешних сил, действующих на колесо весом Динамика механической системы, которое скатывается без скольжения с наклонной плоскости, если его центр масс Динамика механической системы движется по закону Динамика механической системы (рис.6.1).

Динамика механической системы

Решение. Покажем внешние силы, которые действуют на колесо: силу тяжести Динамика механической системы и реакцию поверхности Динамика механической системы, которые проходят через центр масс колеса Динамика механической системы.

Запишем теорему о движении центра масс в векторной форме:

Динамика механической системы

Выбираем систему координат Динамика механической системы и спроектируем уравнение (1) на оси Динамика механической системы и Динамика механической системы:

Динамика механической системы

Поскольку Динамика механической системы. то Динамика механической системы и Динамика механической системы. То есть, главный вектор внешних сил является параллельным оси Динамика механической системы:

Динамика механической системы

Найдем проекцию ускорения центра масс на ось Динамика механической системы:

Динамика механической системы

Итак, 

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Колесо весом Динамика механической системы и радиусом Динамика механической системы катится со скольжением по прямолинейной горизонтальной рейке в результате действия постоянной силы Динамика механической системы, которая приложена к его центру тяжести Динамика механической системы (рис.6.2).

Динамика механической системы

Определить скорость центра масс колеса, если в начальный момент оно находилось в покое. Коэффициент трения скольжения равен Динамика механической системы.

Решение. На колесо действуют внешние силы: Динамика механической системы – сила тяжести колеса, Динамика механической системы – движущая сила, Динамика механической системы – нормальная реакция рейки, Динамика механической системы – сила трения скольжения, которая направлена вдоль рельса в сторону, противоположную силе Динамика механической системы.

Запишем теорему о движении центра масс колеса в векторной форме:

Динамика механической системы

где Динамика механической системы – ускорение центра масс колеса.

Спроектируем это уравнение на оси координат Динамика механической системы:

Динамика механической системы

Во время движения колеса Динамика механической системы Итак Динамика механической системы из второго уравнения (1) получаем:

Динамика механической системы

Поскольку при качении колеса со скольжением сила трения достигает своего максимального значения, то

Динамика механической системы

Подставим (3) в первое из уравнений (1) и получим:

Динамика механической системы

Поскольку 

Динамика механической системы

то

Динамика механической системы

Согласно начальным условиям при Динамика механической системы с тех пор находим, что произвольная постоянная Динамика механической системы

Итак, закон изменения скорости центра масс колеса Динамика механической системы имеет вид:

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

На однородную призму Динамика механической системы, которая лежит на горизонтальной плоскости, положили однородную призму Динамика механической системы (рис.6.3,а), поперечные сечения призм – прямоугольные треугольники, вес призмы Динамика механической системы втрое больше веса призмы Динамика механической системы. Необходимые размеры показаны на рисунке.

Определить длину Динамика механической системы, на которую передвинется призма Динамика механической системы, когда призма Динамика механической системы, спускаясь по поверхности призмы Динамика механической системы, дойдет к горизонтальной плоскости. Предположить, что все поверхности, которые соприкасаются, идеально гладкие.

Решение. Рассмотрим движение механической системы, состоящей из 2-х призм Динамика механической системы и Динамика механической системы. Призма Динамика механической системы, спускаясь по призме Динамика механической системы справа, как будто выжимает ее, отодвигает налево (рис.6.3, б).

Для решения этой задачи применим теорему о движении центра масс.

На систему действуют внешние силы: тяжести Динамика механической системы призмы Динамика механической системы, тяжести Динамика механической системы призмы Динамика механической системы, нормальная реакция плоскости Динамика механической системы (рис.6.3). Внешняя сила трения призм по идеально гладкой поверхности равна нулю.

Таким образом, все внешние силы системы вертикальны. Внутренние силы системы (давление призмы Динамика механической системы на призму Динамика механической системы, реакция на это давление, а также силы трения между призмами Динамика механической системы и Динамика механической системы), нас не интересуют.

Введем систему координат Динамика механической системы, ось Динамика механической системы направим по горизонтали справа и запишем теорему о движении центра масс системы в проекции на ось Динамика механической системы:

Динамика механической системы

Поскольку внешние силы перпендикулярны оси Динамика механической системы, то

Динамика механической системы

Тогда

Динамика механической системы

где Динамика механической системы – постоянная интегрирования.

В начальный момент времени система находилась в состоянии покоя, то есть скорость центра масс Динамика механической системы Итак, Динамика механической системы

Из этого следует, что Динамика механической системы, то есть, абсцисса центра масс, независимо от перемещения призм, остается постоянной.

Динамика механической системы

Запишем выражение для определения координаты центра масс в начале движения:

Динамика механической системы

где Динамика механической системы – абсцисса центра масс призмы Динамика механической системы,

Динамика механической системы – абсцисса центра масс призмы Динамика механической системы.

Выражение для определения координаты центра масс системы, когда призма Динамика механической системы опускается по боковой грани призмы Динамика механической системы к горизонтальной плоскости:

Динамика механической системы

где Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы,

Динамика механической системы – новое значение абсциссы центра масс призмы Динамика механической системы.

Поскольку Динамика механической системы, то 

Динамика механической системы

или 

Динамика механической системы

Перепишем это уравнение следующим образом:

Динамика механической системы

Найдем перемещение центров масс призм Динамика механической системы и Динамика механической системы:

Динамика механической системы

Присутствие слагаемого (Динамика механической системы) в последнем уравнении учитывает перемещение призмы Динамика механической системы вместе с призмой Динамика механической системы слева на величину Динамика механической системы.

Подставим значение перемещений в уравнение (1):

Динамика механической системы.

Решим это уравнение относительно Динамика механической системы, имея в виду, что Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Три груза (рис.6.4), весом Динамика механической системы соединенные невесомой нитью, которая не растягивается, и которая перекинута через неподвижные блоки Динамика механической системы и Динамика механической системы. Во время опускания груза 1 вниз груз 2 перемещается по верхнему основанию четырехугольной усеченной пирамиды Динамика механической системы весом Динамика механической системы справа, а груз 3 поднимается по боковой грани Динамика механической системы вверх. Пренебрегая трением между срезанной пирамидой Динамика механической системы и полом, определить перемещение Динамика механической системы усеченной пирамиды Динамика механической системы относительно пола, если груз Динамика механической системы опустится на Динамика механической системы

Решение. Изобразим все внешние силы, которые приложены к материальной системе, состоящей из пирамиды и трех грузов (рис.6.4). Внешними силами являются: Динамика механической системы – сила тяжести пирамиды; Динамика механической системы – силы тяжести грузов; Динамика механической системы – нормальная реакций

Динамика механической системы

горизонтальной плоскости. Направим ось Динамика механической системы по горизонтали справа и запишем теорему о движении центра масс системы материальных точек в проекции на эту ось:

Динамика механической системы

Поскольку все внешние силы перпендикулярны оси Динамика механической системы, то Динамика механической системы

Следовательно, Динамика механической системы

тогда

Динамика механической системы

В начальный момент времени система была в состоянии покоя, то есть Динамика механической системы, поэтому Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Таким образом, абсцисса центра масс системы не зависит от перемещений грузов, входящих в систему, и остается неизменной относительно неподвижной системы координат Динамика механической системы.

Запишем выражение для определения Динамика механической системы для начального момента времени, когда грузы находились в состоянии покоя:

Динамика механической системы

где Динамика механической системы – абсциссы центров масс пирамиды Динамика механической системы и грузов 1,2 и 3.

Если груз 1 опустится на величину Динамика механической системы при неподвижной пирамиде, то координата Динамика механической системы при этом не изменится. Тогда груз 2 переместится вправо на величину Динамика механической системы и координата его центра масс будет равна Динамика механической системы. Груз 3 тоже подвинется по наклонной поверхности Динамика механической системы на величину Динамика механической системы, при этом по направлению оси Динамика механической системы его положение изменится на величину Динамика механической системы и координата центра масс будет Динамика механической системы. То есть, относительно пирамиды центр масс системы изменит свое положение, но не изменит его относительно неподвижной системы координат, поскольку должен выполняться закон сохранения движения центра масс. И тогда пирамида должна переместиться налево на некоторую величину Динамика механической системы.

Грузы 1,2 и 3 вместе с пирамидой также переместятся влево на расстояние Динамика механической системы, и новые координаты всех центров масс будут равны:

Динамика механической системы

Запишем выражение для определения положения абсциссы центра масс для нового положения системы:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

После приведения подобных получим:

Динамика механической системы

или

Динамика механической системы

Окончательно

Динамика механической системы

После подстановки числовых величин, получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Электрический двигатель весом Динамика механической системы с горизонтальным валом без всяких креплений установлен на гладком горизонтальном фундаменте.

На валу электродвигателя (рис.6.5) под прямым углом закреплен одним концом однородный стержень Динамика механической системы длиной Динамика механической системы и весом Динамика механической системы, на второй конец стержня насажен точечный груз Динамика механической системы весом Динамика механической системы; угловая скорость вала равна Динамика механической системы.

Определить:

Закон горизонтального движения электродвигателя;

Угловую скорость вала электродвигателя, при которой электродвигатель будет «подскакивать» над фундаментом;

Наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими закреплен корпус электродвигателя на фундаменте.

Решение. Будем рассматривать электромотор, стержень и груз как одну механическую систему. Внешними силами, которые действуют на эту систему, являются: сила тяжести электродвигателя Динамика механической системы, сила тяжести стержня Динамика механической системы, сила тяжести груза Динамика механической системы, а также реакции фундамента Динамика механической системы и Динамика механической системы. Все эти силы вертикальны. 

Динамика механической системы

Начало неподвижной системы координат возьмем в точке Динамика механической системы, соответствующей положению центра вала электродвигателя, когда стержень направлен вертикально вверх (рис.6.5, а).

Поскольку проекция на ось Динамика механической системы главного вектора действующих на систему внешних сил равна нулю, то дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы имеет вид:

Динамика механической системы

где Динамика механической системы – масса системы.

В нашем случае Динамика механической системы или

Динамика механической системы

Тогда дифференциальное уравнение движения центра масс (1) приводится к виду:

Динамика механической системы

откуда Динамика механической системы

Предполагая, что в начальный момент скорость центра масс системы равна нулю, то есть, при пуске электродвигателя он был неподвижным, получим Динамика механической системы

Следовательно, Динамика механической системы, то есть, центр масс системы не перемещается вдоль оси Динамика механической системы.

Поскольку в начальный момент времени центр масс системы находится на оси Динамика механической системы (то есть, Динамика механической системы), то и в любой момент времени Динамика механической системы

При вращении стержня координаты центров масс электрического двигателя, стержня и груза Динамика механической системы будут варьироваться.

Предположим, что в некоторый момент времени Динамика механической системы координата центра масс мотора станет равной Динамика механической системы, тогда координаты центров масс стержня и груза Динамика механической системы будут равны Динамика механической системы и Динамика механической системы (рис.6.5,b).

Поскольку все время Динамика механической системы, то

Динамика механической системы

где Динамика механической системы На рисунке 6.5,b показан момент, когда координата Динамика механической системы отрицательна.

Тогда

Динамика механической системы

откуда 

Динамика механической системы

 и, следовательно:

Динамика механической системы

Таким образом, центр электродвигателя совершает гармонические колебания вдоль оси Динамика механической системы с амплитудой, равной:

Динамика механической системы

и периодом

Динамика механической системы

Определим угловую скорость вала, при которой электродвигатель будет «подскакивать» над фундаментом.

Для этого составим дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы:

Динамика механической системы

или 

Динамика механической системы

где Динамика механической системы – суммарная реакция фундамента.

Значение Динамика механической системы найдем из выражения для координаты центра масс:

Динамика механической системы

поскольку

Динамика механической системы

Последнее уравнение перепишем в виде:

Динамика механической системы

Возьмем из обеих частей равенства вторую производную по времени

Динамика механической системы

Из уравнений (2) и (3) вытекает, что

Динамика механической системы

итак,

Динамика механической системы

Минимальное значение реакции фундамента будет при Динамика механической системы:

Динамика механической системы

Если Динамика механической системы, то это значит, что электромотор не прижимается к фундаменту. Итак, искомое значение угловой скорости, при которой электродвигатель начинает “подскакивать” над фундаментом, найдем из условия

Динамика механической системы

откуда

Динамика механической системы

В завершение определим наибольшее горизонтальное усилие Динамика механической системы, которое действует на болты, если ими будет закреплен корпус электродвигателя на фундаменте.

На рис.6.5 штрих-пунктирными линиями показаны оси болтов и горизонтальные реакции болтов Динамика механической системы и Динамика механической системы.

В этом случае дифференциальное уравнение движения центра масс системы вдоль оси Динамика механической системы будет:

Динамика механической системы

Значение Динамика механической системы найдем по формуле:

Динамика механической системы

или 

Динамика механической системы

Тогда

Динамика механической системы

При этом уравнение (4) принимает вид:

Динамика механической системы

Из последнего уравнения выходит:

Динамика механической системы

Таким образом, максимальное горизонтальное усилие, действующее на болты, будет при Динамика механической системы:

Динамика механической системы

Ответ: 

Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 35.1; 35.6; 35.10; 35.20 [2].

Теорема об изменении количества движения точки и механической системы

Теорема об изменении количества движения (импульса) системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает количество движения с импульсом внешних сил, действующих на тела, составляющие систему.

Импульс силы

Для характеристики действия силы за некоторый промежуток времени вводится понятие импульса силы.

Если сила Динамика механической системы – постоянная, то импульс силы Динамика механической системы равен

Динамика механической системы

Направление импульса силы Динамика механической системы совпадает с направлением Динамика механической системы.

Единица измерения импульса в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если сила Динамика механической системы переменная, то импульс силы за конечный промежуток времени Динамика механической системы определяется как интеграл:

Динамика механической системы

Импульс силы – сложная физическая величина, которая одновременно учитывает влияние модуля, направления и времени действия силы на изменение состояния движения тела.

Модуль импульса силы можно определить через его проекции на оси координат:

Динамика механической системы

где Динамика механической системы – проекции силы;

Динамика механической системы – проекции импульса на оси координат.

Углы между вектором Динамика механической системы и осями координат определяются из следующих соотношений:

Динамика механической системы

Теорема об изменении количества движения точки и системы

Одной из мер движения точки является количество ее движения.

Количеством движения точки называется вектор Динамика механической системы, который равен произведению массы Динамика механической системы точки на ее скорость Динамика механической системы и направлен по вектору скорости:

Динамика механической системы.

Понятие количества движения было введено в механику Декартом и положено в основу механики Ньютоном.

Единица измерения количества движения в системе СИ – Динамика механической системы, в системе МкГс – Динамика механической системы.

Если спроектировать вектор количества движения на оси координат, то ее проекции определяются следующим образом:

Динамика механической системы

Теорема об изменении количества движения точки в дифференциальной форме имеет вид:

Динамика механической системы

Производная по времени от количества движения материальной точки равна геометрической сумме всех сил, действующих на эту точку.

Теорема об изменении количества движения точки в интегральной форме:

Динамика механической системы

Изменение количества движения точки за некоторый промежуток времени равно геометрической сумме импульсов всех сил, которые приложены к точке.

Векторному уравнению (7.1) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Большинство практических задач решается с использованием выражения (7.2).

Количеством движения механической системы называется векторная величина Динамика механической системы, равная геометрической сумме (главному вектору) количеств движения всех точек этой системы.

Динамика механической системы

Найти Динамика механической системы можно путем построения многоугольника количеств движения всех точек системы (рис.7.1).

Замыкающая сторона векторного многоугольника будет представлять собой вектор Динамика механической системы.

Величина Динамика механической системы может быть какой угодно, даже равняться нулю, когда многоугольник, построенный из векторов Динамика механической системы, оказывается замкнутым.

Динамика механической системы

Формулу (7.3) можно записать в виде:

Динамика механической системы

где Динамика механической системы – масса всей системы;

Динамика механической системы – скорость центра масс системы.

Из этой формулы следует, что количество движения системы равно нулю, когда скорость центра масс равна нулю. Например, если тело вращается вокруг неподвижной оси, которая проходит через его центр масс, то количество движения тела равно нулю.

В случае, когда колесо катится, вектор Динамика механической системы характеризует только поступательную часть плоского движения колеса.

Теорема об изменении количества движения системы в дифференциальной форме выразится формулой:

Динамика механической системы

где Динамика механической системы – главный вектор всех внешних сил, которые действуют на механическую систему.

Производная по времени от количества движения механической системы равна геометрической сумме всех действующих на точки системы внешних сил.

В проекциях на оси координат уравнение (7.5) соответствует уравнениям:

Динамика механической системы

В интегральной форме теорема об изменении количества движения системы имеет вид:

Динамика механической системы

где Динамика механической системы – количество движения системы в начальный момент времени.

Динамика механической системы – количество движения системы в конечный момент времени.

Изменение количества движения механической системы за некоторый промежуток времени равно геометрической сумме импульсов внешних сил, которые действуют на систему за тот же промежуток времени.

Векторному уравнению (7.7) соответствуют три уравнения в проекциях на оси координат:

Динамика механической системы

Практическая ценность теоремы заключается в том, что она позволяет исключить из рассматривания неизвестные внутренние силы.

Закон сохранения количества движения системы

Выводы из теоремы об изменении количества движения системы, которые еще имеют название законов сохранения количества движения:

1. Если главный вектор внешних сил, действующих на систему, равен нулю, то вектор количества движения системы не меняется:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

2. Если сумма проекций внешних сил на какую-либо ось, например Динамика механической системы, равна нулю, то проекция количества движения системы на эту ось сохраняется постоянной:

если Динамика механической системы

то Динамика механической системы и Динамика механической системы

Эти результаты выражают законы сохранения количества движения системы. Из них вытекает, что внутренние силы не могут изменить количество движения системы.

Порядок решения задач на применение теоремы об изменении количества движения точки и механической системы

Для материальной точки:

Изобразить на рисунке все силы, приложенные к материальной точке, то есть активные силы и реакции связей.

Выбрать систему координат.

Записать теорему об изменении количества движения точки в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Для механической системы:

Изобразить на рисунке все внешние силы.

Выбрать систему координат.

Записать теорему об изменении количества движения системы в векторной форме.

Спроектировать это векторное уравнение на оси выбранной системы координат.

Решить полученные уравнения и определить искомые величины.

Примеры решения задач на тему: Теорема об изменении количества движения точки и механической системы

Задача № 1

Железнодорожный поезд движется по горизонтальному и прямолинейному участку пути (рис.7.2). Во время торможения до полной остановки развивается сила сопротивления, равная Динамика механической системы веса поезда. В момент начала торможения скорость Динамика механической системы поезда составляла 72 км/ч.

Динамика механической системы

Определить время Динамика механической системы и путь Динамика механической системы торможения.

Решение. Изобразим силы, действующие на поезд во время торможения: сила тяжести поезда Динамика механической системы, нормальная реакция пути Динамика механической системы, сила сопротивления Динамика механической системы, которая по величине равна Динамика механической системы

Выберем систему координат. Поскольку движение прямолинейное и горизонтальное, достаточно рассмотреть движение по направлению оси Динамика механической системы.

Запишем теорему об изменении количества движения поезда (рассматривая его как материальную точку) в интегральной форме:

Динамика механической системы

где Динамика механической системы – масса поезда,

Динамика механической системы – конечная и начальная скорость поезда,

Динамика механической системы – сумма импульсов сил Динамика механической системы, Динамика механической системыДинамика механической системы которые действуют на поезд во время торможения.

Спроектируем векторное уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Проекции импульсов сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, поскольку векторы Динамика механической системы и Динамика механической системы  перпендикулярны оси.

Сила сопротивления Динамика механической системы во время торможения по величине не изменяется, следовательно, ее импульс равен:

Динамика механической системы

Скорость в конце участка торможения равна нулю, то есть Динамика механической системы

Окончательно, уравнение импульсов (2) в проекции на ось Динамика механической системы приобретет вид:

Динамика механической системы

или 

Динамика механической системы

откуда

Динамика механической системы

С учетом числовых значений величин Динамика механической системы и Динамика механической системы имеем:

Динамика механической системы

Путь торможения определим из формулы для равнопеременного движения:

Динамика механической системы

В этом случае ускорение поезда определяется из формулы:

Динамика механической системы

то есть, 

Динамика механической системы

Тогда

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

По шероховатой наклонной плоскости, которая составляет с горизонтом угол Динамика механической системы, спускается тяжелое тело без начальной скорости.

Определить время Динамика механической системы, за которое тело пройдет путь длиной Динамика механической системы, если коэффициент трения Динамика механической системы и Динамика механической системы.

Решение. Во время движения на тело действуют сила тяжести тела Динамика механической системы, нормальная реакция поверхности Динамика механической системы и сила трения Динамика механической системы, которая направлена в сторону, противоположную движению(рис.7.3).

Динамика механической системы

Направим ось Динамика механической системы вдоль наклонной поверхности вниз и запишем теорему об изменении количества движения в векторной форме:

Динамика механической системы

Спроектируем ровность (1) на ось Динамика механической системы:

Динамика механической системы

Проекция импульса нормальной реакции Динамика механической системы на ось Динамика механической системы равна нулю, поскольку сила Динамика механической системы перпендикулярна Динамика механической системы.

Учитывая, что во время движения сила тяжести Динамика механической системы и сила трения Динамика механической системы не меняются , то

Динамика механической системы

Кроме того

Динамика механической системы

Итак, уравнение импульса (2) примет вид:

Динамика механической системы

Вычислим силу трения:

Динамика механической системы

Тогда уравнение (3) примет вид:

Динамика механической системы

или Динамика механической системы

откуда

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Используя полученную зависимость, сначала подсчитаем ускорение тела, а после этого – время движения.

Поскольку

Динамика механической системы

то

Динамика механической системы и Динамика механической системы

Из формулы Динамика механической системы, учитывая, что при Динамика механической системы получим Динамика механической системы

Из этой формулы находим время движения Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 3

На полигоне пушка, которая наклонена под углом Динамика механической системы к горизонту, делает выстрел в мишень. Сила тяжести ствола пушки – Динамика механической системы Динамика механической системы Сила тяжести снаряда равна Динамика механической системы Скорость снаряда у дульного среза Динамика механической системы

Определить скорость Динамика механической системы свободного отката ствола пушки в момент вылета снаряда.

Решение. В задаче рассматривается движение материальной системы, состоящей из ствола и снаряда (рис.7.4).

Динамика механической системы

На систему действуют внешние силы: тяжести ствола Динамика механической системы и тяжести снаряда Динамика механической системы. Внутренние силы определяются давлением пороховых газов Динамика механической системы. Эти силы необходимо исключить из рассмотрения, согласно теореме о количестве движения механической системы.

Применим теорему об изменении количества движения системы:

Динамика механической системы

где Динамика механической системы – количество движения системы в конечный момент времени;

Динамика механической системы – количество движения системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил (Динамика механической системыДинамика механической системы).

Ось Динамика механической системы направим перпендикулярно векторам внешних сил Динамика механической системы и Динамика механической системы.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку проекции сил Динамика механической системы и Динамика механической системы на ось Динамика механической системы равны нулю, то и проекции импульсов Динамика механической системы и Динамика механической системы также равны нулю. Итак:

Динамика механической системы или Динамика механической системы

Таким образом, проекция количества движения системы на ось Динамика механической системы в конечный момент времени равна проекции количества движения системы в начальный момент времени.

В начальный момент времени (до выстрела) снаряд и ствол были неподвижны, следовательно, их количества движения равнялись нулю и

Динамика механической системы

В момент вылета снаряда проекция количества движения системы на ось равна:

Динамика механической системы

или

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

откуда

Динамика механической системы и Динамика механической системы

С учетом числовых значений:

Динамика механической системы

Знак минус показывает, что скорость ствола направлена в сторону, противоположную скорости снаряда.

Ответ: Динамика механической системы

Задача № 4

Буксирный пароход весом Динамика механической системы набрал скорость Динамика механической системы, после чего натянулся буксирный канат, и баржа весом Динамика механической системы двинулась вслед за пароходом.

Определить общую скорость парохода и баржи Динамика механической системы, считая, что движущая сила и сила сопротивления воды уравновешиваются, то есть, (Динамика механической системыДинамика механической системыдв = Динамика механической системысоп (Динамика механической системы).

Решение. Для определения скорости Динамика механической системы применим теорему об изменении количества движения системы.

На систему, которая состоит из парохода и баржи, действуют внешние силы: силы тяжести Динамика механической системы и Динамика механической системы, силы выталкивания Динамика механической системы и Динамика механической системы, которые приложены к баржи и буксиру, а также движущая сила Динамика механической системыдв и сила сопротивления воды Динамика механической системысоп (рис.7.5).

Динамика механической системы

Внутренняя сила – натяжение буксирного каната Динамика механической системы – неизвестна.

Ось Динамика механической системы направим горизонтально, вправо.

Запишем теорему об изменении количества движения данной системы в интегральной форме:

Динамика механической системы

где Динамика механической системы – количество движения системы баржа-буксир в тот момент времени, когда они начинают двигаться с одинаковой скоростью;

Динамика механической системы – количество движения этой системы в начальный момент времени;

Динамика механической системы – сумма импульсов всех внешних сил.

Спроектируем уравнение (1) на ось Динамика механической системы:

Динамика механической системы

Поскольку по условиям Динамика механической системыдв = Динамика механической системысоп, а направлены они в разные стороны, то

Динамика механической системы

Кроме того, проекции на ось Динамика механической системы сил тяжести парохода и баржи, а также выталкивающих сил Динамика механической системы и Динамика механической системы, равны нулю. Следовательно, проекции импульсов этих сил на ось Динамика механической системы тоже равны нулю. Таким образом уравнение проекций принимает вид:

Динамика механической системы или Динамика механической системы

Подсчитаем количество движения парохода и баржи в начальный момент времени, когда скорость парохода равна Динамика механической системы, а скорость баржи Динамика механической системы.

Динамика механической системы

Совместимое движение парохода и баржи происходит с одинаковой скоростью Динамика механической системы, поэтому количество движения системы в это время

Динамика механической системы

Поскольку

Динамика механической системы

то Динамика механической системы

Отсюда имеем

Динамика механической системы

Ответ: Динамика механической системы

Задача № 5

Механическая система состоит из грузов 1 и 2 массами Динамика механической системы и Динамика механической системы соответственно, а также прямоугольной вертикальной плиты 3 массой Динамика механической системы которая движется вдоль горизонтальных направляющих( рис.7.6). В момент времени Динамика механической системы, когда скорость плиты Динамика механической системы груз под действием внутренних сил начинают двигаться по желобам плиты. Груз 1 движется по дуге окружности с радиусом Динамика механической системы по закону Динамика механической системы, где Динамика механической системы выражено в радианах, Динамика механической системы – в секундах (ось, от которой ведется положительное направление отсчета угла Динамика механической системы показано на рисунке). Груз 2 движется от точки Динамика механической системы прямолинейно по закону Динамика механической системы, где Динамика механической системы выражено в метрах, Динамика механической системы – в секундах (на рисунке груз 2 изображен в положении положительного отсчета координаты Динамика механической системы), угол Динамика механической системы.

Определить зависимость Динамика механической системы, то есть, скорость движения плиты как функцию времени, считая грузы материальными точками и пренебрегая всеми силами сопротивления движения.

Решение. Рассмотрим механическую систему в произвольном положении (рис.7.6).

Изобразим все внешние силы, действующие на систему: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы и реакцию направляющей Динамика механической системы.

Проведем координатные оси Динамика механической системы так, чтобы ось Динамика механической системы проходила через точку Динамика механической системы, где находится центр масс плиты Динамика механической системы в начальный момент времени Динамика механической системы

Определим Динамика механической системы с помощью теоремы об изменении количества движения Динамика механической системы механической системы в проекции на ось Динамика механической системы.

Поскольку все внешние силы, действующие на систему, вертикальны, то Динамика механической системы и, согласно (7.10), имеем: 

Динамика механической системы или Динамика механической системы,                (1)

где Динамика механической системы – проекция количества движения системы в момент времени Динамика механической системы

Динамика механической системы– проекция количества движения системы в произвольный момент времени Динамика механической системы.

Определим количества движения Динамика механической системы и Динамика механической системы:

Динамика механической системы

где Динамика механической системы

Выразим координаты Динамика механической системы и Динамика механической системы через координату Динамика механической системы.

С рис.7.6 видно, что в произвольный момент времени абсцисса первого груза

Динамика механической системы

а абсцисса второго груза

Динамика механической системы

Тогда

Динамика механической системы

Динамика механической системы

Подставляя полученные выражения для Динамика механической системы и Динамика механической системы в (3), получим:

Динамика механической системы

Поскольку Динамика механической системы то 

Динамика механической системы

В соответствии с (1), выражения (2) и (4) равны, то есть:

Динамика механической системы

Отсюда окончательно получим: 

Динамика механической системы

Ответ: Динамика механической системы

Задачи, которые рекомендуются для самостоятельной работы: 28.3; 28.7; 36.9; 36.11; 36.16 [2].

Теорема об изменении момента количества движения точки и механической системы

Наряду с количеством движения, как векторной меры поступательного движения, для вращательного движения можно ввести момент количества движения.

Для материальной точки массой Динамика механической системы, которая имеет скорость Динамика механической системы, момент количества движения Динамика механической системы относительно любого центра Динамика механической системы определяется из выражения (рис.8.1):

Динамика механической системы

Динамика механической системы

Вектор момента количества движения прикладывается в точке Динамика механической системы, относительно которой он вычисляется. Если спроектировать обе части уравнения (8.1) на оси декартовой системы координат, получим моменты количества движения точки относительно осей координат:

Динамика механической системы

Кинетическим моментом Динамика механической системы или главным моментом количества движения механической системы относительно данного центра называется вектор, равный геометрической сумме моментов количеств движения всех материальных точек системы относительно этого же центра:

Динамика механической системы

Подобно тому, как количество движения системы является характеристикой поступательного движения, кинетический момент является характеристикой вращательного движения системы.

Кинетический момент твердого тела, которое вращается относительно оси Динамика механической системы с угловой скоростью Динамика механической системы, равной произведению угловой скорости тела на его момент инерции относительно оси вращения:

Динамика механической системы

Производная по времени от момента количества движения точки, взятого относительно любого неподвижного центра Динамика механической системы равна моменту силы, действующей на эту точку, относительно того же центра:

Динамика механической системы

Спроектировав это уравнение на оси координат, получим:

Динамика механической системы

Если рассматривать движение системы, на которую действуют внешние Динамика механической системы и внутренние силы Динамика механической системы, то производная по времени от кинетического момента механической системы относительно некоторого центра равна геометрической сумме моментов всех внешних сил относительно того же центра:

Динамика механической системы

Проектируя обе части уравнения на неподвижные оси Динамика механической системы и учитывая, что проекция вектора, который изображает момент силы относительно точки на ось, равна моменту силы относительно этой оси, получим:

Динамика механической системы

Теорема об изменении кинетического момента позволяет изучать вращательное движение твердого тела вокруг оси и точки, или вращательную часть движения тела в общем случае движения свободного твердого тела.

Практическая ценность теоремы заключается еще и в том, что она позволяет при изучении движения системы исключить из рассмотрения неизвестные внутренние силы.

Из теорем об изменении кинетического момента системы (8.7)-(8.8) вытекают важные выводы:

Если сумма моментов относительно центра Динамика механической системы всех внешних сил, действующих на систему, равна нулю, то кинетический момент системы Динамика механической системы относительно той же точки является постоянным по величине и направлению, то есть,

если Динамика механической системы, то Динамика механической системы и Динамика механической системы

Если сумма моментов всех внешних сил, действующих на систему, относительно некоторой оси, например Динамика механической системы, равна нулю, то проекция кинетического момента на эту же ось является постоянной по величине, то есть,

если Динамика механической системы. то Динамика механической системы и Динамика механической системы

Дифференциальное уравнение вращательного движения тела вокруг неподвижной оси

Кинетический момент тела относительно оси вращения по уравнению (8.4) , если ось Динамика механической системы является осью вращения тела, равен:

Динамика механической системы

Следовательно, 

Динамика механической системы

Сумма моментов внешних сил Динамика механической системы относительно оси вращения называется вращательным моментом и обозначается

Динамика механической системы

Таким образом, дифференциальное уравнение вращательного движения тела имеет вид:

Динамика механической системы

Из (8.9) следует, что произведение момента инерции тела относительно оси вращения на угловое ускорение тела равно вращательному моменту

Динамика механической системы

Это уравнение позволяет решать следующие задачи:

– если заданы уравнения вращения тела Динамика механической системы и его момент инерции Динамика механической системы, то можно определить вращательный момент:

Динамика механической системы

– если заданы внешние силы, приложенные к телу, начальные условия вращения Динамика механической системы и Динамика механической системы, момент инерции Динамика механической системы тела, то можно найти уравнение вращения тела Динамика механической системы:

Динамика механической системы

– определить момент инерции тела Динамика механической системы относительно оси вращения, если известны величины Динамика механической системы и Динамика механической системы:

Динамика механической системы

Из уравнения Динамика механической системы вытекают отдельные случаи:

1. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы, то и Динамика механической системы. В этом случае тело вращается равномерно.

2. Если Динамика механической системы, то Динамика механической системы, а если Динамика механической системы то и Динамика механической системы. Итак, твердое тело вращается равнопеременно. 

Порядок решения задач на применение теоремы об изменении момента количества движения точки и механической системы

Задачи, которые относятся к этой теме, можно разделить на следующие четыре основных типа:

Вычисление кинетического момента.

Изучение движения конкретной точки механической системы, если эта точка участвует во вращательном движении системы.

Изучение вращательного движения твердого тела.

Изучение движения механической системы, в которую входят тела, совершающие как поступательные, так и вращательные движения.

Задачи первого типа могут быть решены с помощью общих формул (8.4), (8.5).

Порядок решения задач второго типа может быть следующим:

  • Выбрать систему координат.
  • Изобразить все внешние силы, приложенные к материальной точке; в случае произвольной точки к этим силам добавить реакции внешних связей.
  • Записать в скалярной форме выражение теоремы об изменении момента количества движения точки.
  • Высчитать сумму моментов сил, которые приложены к материальной точке.
  • Определить количество движения материальной точки и его момент относительно осей.
  • Подставить данные пунктов 4 и 5 в уравнения (8.6) теоремы об изменении момента количества движения материальной точки.
  • Решить, в соответствии с условием, прямую или обратную задачу динамики точки.

При решении задач третьего типа сохранять рекомендации первых двух пунктов, а далее делать следующим образом:

  • Записать дифференциальное уравнение вращательного движения тела вокруг неподвижной оси (8.9).
  • Динамика механической системы
  • Определить момент инерции твердого тела относительно неподвижной оси.
  • Подсчитать сумму моментов всех внешних сил относительно оси вращения.
  • Величины, полученные в п. п. 4 и 5, подставить в уравнение (8.9).
  • Записать начальные условия.
  • Решить уравнение п. 6 в зависимости от условия, как прямую или обратную задачу.

При решении задач четвертого типа необходимо предварительно расчленить заданную систему на отдельные твердые тела, и к каждому из них, в зависимости от характера движения, применить одну из теорем: об изменении количества движения – в случае поступательного движения тел расчлененной системы; об изменении кинетического момента – при наличии тел, которые совершают вращательные движения.

Примеры решения задач на тему: Теорема об изменении момента количества движения точки и механической системы

Задача №1

Однородный круглый диск весом Динамика механической системы и с радиусом Динамика механической системы катится без скольжения по горизонтальной плоскости, делая вокруг собственной оси 60 об/мин (рис.8.2).

Динамика механической системы

Определить главный момент количеств движения диска Динамика механической системы  относительно оси Динамика механической системы, которая проходит через центр диска перпендикулярно плоскости движения.

Решение. Главный момент количеств движения системы (кинетический момент) относительно оси вращения равен (8.6):

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси вращения,

Динамика механической системы – угловая скорость вращения.

В данном случае кинетический момент относительно оси, проходящей через центр диска Динамика механической системы, равен:

Динамика механической системы

Динамика механической системы

Ответ: Динамика механической системы

Задача №2

Во время вращения барабана 1 весом Динамика механической системы и радиусом Динамика механической системы вокруг неподвижной оси Динамика механической системы на его боковую поверхность наматывается невесомая и нерастяжимая нить, что вызывает движение груза 2 весом Динамика механической системы, который скользит по неподвижной гладкой горизонтальной плоскости (рис.8.3).

Динамика механической системы

Определить главный момент количества движения (кинетический момент) системы относительно оси Динамика механической системы и выразить его как зависимость от угловой скорости. Барабан считать однородным круглым цилиндром. Ось Динамика механической системы направлена перпендикулярно рисунку.

Решение. В состав механической системы входят два твердых тела: барабан 1 и груз 2.

Следовательно, кинетический момент системы равен:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана;

Динамика механической системы – кинетический момент груза относительно неподвижной оси Динамика механической системы.

Кинетический момент барабана равен (8.5):

Динамика механической системы

где

Динамика механической системы

тогда

Динамика механической системы

Главный момент количества движения груза, который движется поступательно, определяется как момент количества движения материальной точки, то есть:

Динамика механической системы

поскольку

Динамика механической системы

то

Динамика механической системы

Окончательно

Динамика механической системы

Ответ: Динамика механической системы

Задача №3

Шарик Динамика механической системы, который находится в сосуде с жидкостью и прикреплен к концу стержня Динамика механической системы длиной Динамика механической системы, приводится в вращение вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы (рис.8.4, а). Сила сопротивления жидкости пропорциональна угловой скорости вращения Динамика механической системы: Динамика механической системы, где Динамика механической системы – масса шарика, Динамика механической системы – коэффициент пропорциональности.

Динамика механической системы

Определить, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, а также число оборотов Динамика механической системы, которое сделает стержень с шариком за этот промежуток времени. Массу шарика считать сосредоточенной в ее центре, массой стержня пренебречь.

Решение. Ось Динамика механической системы направим вдоль оси вращения Динамика механической системы и покажем силы, действующие на вал с шариком: силу сопротивления Динамика механической системы, которая направлена в сторону, противоположную вращению (рис.8.4, б), силу тяжести шарика Динамика механической системы, реакции Динамика механической системы подшипника Динамика механической системы и Динамика механической системы подпятника Динамика механической системы.

Все силы указаны на рисунках, направления сил Динамика механической системы и Динамика механической системы изображены произвольно.

Запишем дифференциальное уравнение вращательного движения шарика относительно оси Динамика механической системы:

Динамика механической системы

где момент инерции шарика

Динамика механической системы

Поскольку момент силы тяжести Динамика механической системы относительно оси Динамика механической системы равен нулю ( Динамика механической системы параллельна оси Динамика механической системы), то вращательный момент Динамика механической системы равен моменту силы сопротивления Динамика механической системы относительно оси Динамика механической системы (как известно, момент силы сопротивления всегда отрицательный):

Динамика механической системы

Следовательно, дифференциальное уравнение вращательного движения имеет вид:

Динамика механической системы

или

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Следовательно,

Динамика механической системы

Высчитаем, через какой промежуток времени Динамика механической системы угловая скорость вращения станет вдвое меньше начальной, то есть, Динамика механической системы.

Динамика механической системы

Откуда:

Динамика механической системы

Для определения числа оборотов, которые сделает стержень с шариком за промежуток времени Динамика механической системы, необходимо найти зависимость угла поворота Динамика механической системы от времени Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Разделим переменные и проинтегрируем это дифференциальное уравнение:

Динамика механической системы

Произвольную постоянную Динамика механической системы определим по начальным условиям: при Динамика механической системы.

Динамика механической системы

Итак закон изменения угла поворота Динамика механической системы по времени имеет вид:

Динамика механической системы

или

Динамика механической системы

При Динамика механической системы, угол поворота Динамика механической системы равен

Динамика механической системы

Поскольку за 1 оборот шарик обернется на Динамика механической системы, то количество оборотов Динамика механической системы составит

Динамика механической системы

Ответ: Динамика механической системы

Задача №4

Для определения момента трения в цапфах, на вал насажен маховик весом Динамика механической системы, радиус инерции маховика Динамика механической системы Маховику придана угловая скорость, соответствующая Динамика механической системы об/мин. Без внешнего воздействия на него, он остановился через Динамика механической системы мин.

Определить момент трения Динамика механической системы, считая его постоянным.

Решение. Направим ось Динамика механической системы вдоль неподвижной оси вращения. Изобразим на рис.8.5 внешние нагрузки, действующие на вал и маховик: силу тяжести маховика Динамика механической системы, реакции опор Динамика механической системы и Динамика механической системы  и момент сил трения Динамика механической системы.

Запишем теорему об изменении кинетического момента относительно оси вращения:

Динамика механической системы

Поскольку мы рассматриваем вращение твердого тела, то 

Динамика механической системы

Найдем вращательный момент внешних сил относительно оси вращения Динамика механической системы, если учтем, что момент сил Динамика механической системы, Динамика механической системы и Динамика механической системы относительно оси Динамика механической системы равны нулю, поскольку эти силы пересекают ось. Следовательно, вращательный момент равен моменту сил трения и направлен в сторону, противоположную вращению маховика.

Таким образом

Динамика механической системы

Высчитаем величины, которые входят в это уравнение:

Динамика механической системы

где Динамика механической системы – угловая скорость маховика в момент остановки, Динамика механической системы,

Динамика механической системы – угловая скорость в начальный момент времени.

Поскольку Динамика механической системы то Динамика механической системы

С учетом значений Динамика механической системы и Динамика механической системы получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача №5

Однородный цилиндр (рис.8.6) радиусом Динамика механической системы вращается вокруг своей геометрической оси Динамика механической системы угловой скоростью Динамика механической системы.

Динамика механической системы

Определить, как изменится угловая скорость Динамика механической системы цилиндра, если ось вращения перейдет в положение Динамика механической системы, которое совпадает с образующей цилиндра?

Решение. На цилиндр действует сила тяжести Динамика механической системы, которая направлена вертикально вниз.

Запишем теорему об изменении кинетического момента цилиндра:

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра,

Динамика механической системы – сумма моментов внешних сил относительно оси вращения.

Поскольку сила Динамика механической системы параллельна оси вращения, то

Динамика механической системы и Динамика механической системы

Итак, Динамика механической системы, тогда

Динамика механической системы

где Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

Динамика механической системы – момент инерции цилиндра относительно оси Динамика механической системы,

По теореме Гюйгенса-Штейнера

Динамика механической системы

где Динамика механической системы – масса цилиндра.

Из формулы (1) получим:

Динамика механической системы

Вычислим Динамика механической системыи Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Угловая скорость уменьшилась в три раза, поскольку в три раза увеличился момент инерции.

Ответ: Динамика механической системы

Задача №6

Молотильный барабан начинает вращаться из состояния покоя (Динамика механической системы) под действием постоянного момента Динамика механической системы

Определить, пренебрегая трением, частоту вращения барабана после того, как он начнет вращаться и сделает Динамика механической системы оборотов (рис.8.7), зная, что момент инерции барабана относительно оси вращения Динамика механической системы

Динамика механической системы

Решение. Для определения угловой скорости барабана воспользуемся формулой:

Динамика механической системы

где Динамика механической системы – начальная угловая скорость вращения,

Динамика механической системы – конечная угловая скорость вращения,

Динамика механической системы – угол, на который поворачивается барабан.

Из (1) вытекает:

Динамика механической системы где Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом, для определения угловой скорости необходимо знать угловое ускорение Динамика механической системы.

Для определения Динамика механической системы воспользуемся теоремой об изменении кинетического момента:

Динамика механической системы

где Динамика механической системы – сумма моментов всех внешних сил относительно оси вращения.

На барабан действуют следующие внешние нагрузки: Динамика механической системы – сила тяжести барабана; Динамика механической системы,
Динамика механической системы – реакции подшипников Динамика механической системы и Динамика механической системы; Динамика механической системы – вращательный момент.

С учетом действующих сил уравнение (2) будет иметь вид:

Динамика механической системы

При этом Динамика механической системы, поскольку силы Динамика механической системыДинамика механической системы и 
Динамика механической системы пересекают ось Динамика механической системы и моментов не образуют. Итак,

Динамика механической системы

Тогда,

Динамика механической системы

Ответ: Динамика механической системы

Задача №7

Груз весом Динамика механической системы подвешен на канате, который навитый на цилиндрический барабан, ось вращения которого горизонтальна (рис.8.8).

Динамика механической системы

Определить угловое ускорение барабана Динамика механической системы во время опускания груза Динамика механической системы, пренебрегая весом каната, сопротивлением воздуха, трением в подшипниках. Барабан считать однородным цилиндром весом Динамика механической системы и радиусом Динамика механической системы

Решение. Для определения углового ускорения Динамика механической системы барабана будем рассматривать движение системы, в которую включим следующие тела: барабан весом Динамика механической системы, груз весом Динамика механической системы и канат, натяжение которого заранее неизвестно.

Если применить теорему об изменении кинетического момента системы относительно оси, то натяжение каната, являющегося внутренней силой, в уравнение не войдет.

Относительно оси, которая проходит через точку Динамика механической системы, эта теорема имеет вид:

Динамика механической системы

На систему действуют следующие внешние силы: Динамика механической системы – вес груза, Динамика механической системы – вес барабана, Динамика механической системы – реакция опоры Динамика механической системы.

Силы Динамика механической системы и Динамика механической системы не создают моментов относительно оси Динамика механической системы, потому что они ее пересекают. Только сила Динамика механической системы создает момент относительно оси Динамика механической системы, который равен:

Динамика механической системы

Итак,

Динамика механической системы

Определим кинетический момент системы относительно оси вращения Динамика механической системы:

Динамика механической системы

где Динамика механической системы – кинетический момент барабана,

Динамика механической системы – кинетический момент груза.

Динамика механической системы

где Динамика механической системы – момент инерции барабана относительно оси вращения Динамика механической системы;

Динамика механической системы

поскольку Динамика механической системы

Тогда кинетический момент системы равен:

Динамика механической системы

Подставим полученные результаты в уравнение (1):

Динамика механической системы

Знак момента силы Динамика механической системы взят положительным, поскольку направление вращения барабана совпадает с направлением момента силы Динамика механической системы.

Решаем уравнение (2) и определяем угловое ускорение Динамика механической системы.

Выносим из под знака дифференциала в левой части уравнения (2) постоянные величины:

Динамика механической системы

или

Динамика механической системы

С учетом числовых значений угловое ускорение Динамика механической системы равно:

Динамика механической системы

Ответ: Динамика механической системы

Теорема об изменении кинетической энергии механической системы

Теорема о кинетической энергии системы — одна из общих теорем динамики, является следствием законов Ньютона. Связывает кинетическую энергию механической системы с работой сил, действующих на тела, составляющие систему.

Кинетическая энергия механической системы

Кинетической энергией Динамика механической системы материальной точки называется скалярная положительная величина, равная половине произведения массы точки на квадрат ее скорости:

Динамика механической системы

Кинетической энергией Динамика механической системы механической системы называется арифметическая сумма кинетических энергий всех точек механической системы:

Динамика механической системы

Кинетическая энергия системы не зависит от направлений скоростей точек.

Кинетическая энергия может равняться нулю, если скорости всех точек системы равны нулю.

Кинетическая энергия системы характеризует и поступательное, и вращательное движения системы. Поэтому теоремой об изменении кинетической энергии особенно часто пользуются при решении задач.

Единицей кинетической энергии в системе СИ является Джоуль (Дж).

Определение кинетической энергии твердого тела в различных случаях его движения

Поступательное движение твердого тела:

При поступательном движении твердого тела скорости всех его точек (в том числе скорость Динамика механической системы центра масс тела) в каждый момент времени равны между собой; то есть, для любой точки Динамика механической системы. Итак

Динамика механической системы

Кинетическая энергия твердого тела при поступательном движении равна половине произведения массы тела Динамика механической системы на квадрат скорости его центра масс.

Вращательное движение твердого тела:

Скорость любой точки твердого тела, которое вращается с угловой скоростью Динамика механической системы, равна

Динамика механической системы

где Динамика механической системы – расстояние от точки к оси вращения.

Тогда кинетическая энергия тела определяется согласно зависимости:

Динамика механической системы

Поскольку

Динамика механической системы

то

Динамика механической системы

Следовательно кинетическая энергия тела при вращательном движении равна половине произведения момента инерции тела относительно оси вращения на квадрат угловой скорости тела.

Плоскопараллельное движение твердого тела:

При плоскопараллельном движении скорости всех точек тела в каждый момент времени распределены так, будто тело вращается вокруг оси, которая перпендикулярна плоскости движения и которая проходит через мгновенный центр скоростей Динамика механической системы.

В этом случае кинетическую энергию тела можно определить по формуле:

Динамика механической системы

где Динамика механической системы – момент инерции тела относительно оси, которая проходит через мгновенный центр скоростей.

Поскольку (согласно теореме Штейнера-Гюйгенса)

Динамика механической системы

где Динамика механической системы – момент инерции относительно оси, которая проходит через центр масс тела и параллельна мгновенной оси вращения, то

Динамика механической системы

Поскольку Динамика механической системы, то окончательно

Динамика механической системы

Таким образом, 

в случае плоскопараллельного движения тела кинетическая энергия состоит из кинетических энергий поступательного движения вместе со скоростью центра масс и вращательного движения вокруг оси, которая проходит через центр масс перпендикулярно плоскости движения.

Теорема об изменении кинетической энергии механической системы:

Дифференциальная форма:

Дифференциал кинетической энергии механической системы равен сумме элементарных работ всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Производная по времени от кинетической энергии механической системы равна сумме мощностей всех внешних и внутренних сил, действующих на систему:

Динамика механической системы

Интегральная форма:

Изменение кинетической энергии механической системы при конечном перемещении ее из положения (1) в положение (2) равно сумме работ на этом перемещении всех внешних и внутренних сил, действующих на эту систему

Динамика механической системы

Если механическая система неизменна, то сумма работ внутренних сил равна нулю и теорема запишется так:

Динамика механической системы

Порядок решения задач на использование теоремы об изменении кинетической энергии механической системы

Решение задач с помощью теоремы об изменении кинетической энергии в интегральной форме рекомендуется проводить в следующей последовательности:

а) изобразить на рисунке все внешние силы системы;

б) высчитать сумму работ всех внешних сил на перемещении точек системы;

в) вычислить кинетическую энергию системы материальных точек в начальном и конечном ее состояниях;

г ) пользуясь результатами подсчетов по пунктам б) и в) записать теорему об изменении кинетической энергии механической системы и определить искомую величину.

Примеры решения задач на тему: Теорема об изменении кинетической энергии механической системы

Задача № 1

Механизм эллипсографа (рис.10.1) состоит из ползунов Динамика механической системы и Динамика механической системы весом Динамика механической системы каждый, кривошипа Динамика механической системы весом Динамика механической системы, и линейки Динамика механической системы весом Динамика механической системы. Кривошип Динамика механической системы вращается вокруг неподвижной оси Динамика механической системы, которая перпендикулярна плоскости чертежа с угловой скоростью Динамика механической системы.

Определить кинетическую энергию механизма эллипсографа, полагая, что линейка Динамика механической системы и кривошип Динамика механической системы – однородные тонкие стержни, а ползуны Динамика механической системы и Динамика механической системы – материальные точки, а также, что Динамика механической системы

Динамика механической системы

Решение. Заданная механическая система состоит из четырех тел: кривошипа 1 и линейки 2, ползунов 3 и 4.

Кинетическая энергия всей системы равна:

Динамика механической системы

где Динамика механической системы – кинетическая энергия кривошипа 1,

Динамика механической системы – кинетическая энергия линейки 2,

Динамика механической системы – кинетическая энергия ползунов 3 и 4.

Кривошип Динамика механической системы совершает вращательное движение вокруг неподвижной оси Динамика механической системы, которая перпендикулярна оси рисунка. В этом случае кинетическая энергия тела равна

Динамика механической системы

Тогда

Динамика механической системы

Линейка 2 движется плоскопараллельно. Ее кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость точки С, которая является центром масс линейки 2,

Динамика механической системы – угловая скорость линейки 2,

Динамика механической системы – момент инерции линейки относительно оси Динамика механической системы, которая проходит через центр масс линейки Динамика механической системы.

Для определения угловой скорости Динамика механической системы линейки 2 используем понятие мгновенного центра скоростей. Как известно, мгновенный центр скоростей находится на пересечении перпендикуляров к скоростям двух точек тела, движущихся плоскопараллельно. Тогда в нашем случае он будет расположен в точке Динамика механической системы, и скорость точки Динамика механической системы определится:

Динамика механической системы

С другой стороны, точка Динамика механической системы принадлежит звену 1, и ее скорость равна

Динамика механической системы

Тогда, учитывая, что Динамика механической системы получим:

Динамика механической системы

Момент инерции линейки относительно оси Динамика механической системы равен:

Динамика механической системы

С учетом полученных значений Динамика механической системы кинетическая энергия линейки 2 равна:

Динамика механической системы

Подсчитаем кинетическую энергию ползунов 3 и 4, которые двигаются поступательно:

Динамика механической системы.

Скорости точек Динамика механической системы можно определить, учитывая положение мгновенного центра скоростей линейки 2:

Динамика механической системы

Тогда

Динамика механической системы

Подставляя найденные выражения (2), (4), (5) в (1), получим:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 2

На рисунке 10.2 изображен подъемный механизм лебедки. Груз Динамика механической системы весом Динамика механической системы поднимается с помощью невесомого и нерастяжимого троса, который переброшен через блок Динамика механической системыи намотан на барабан Динамика механической системы радиусом Динамика механической системы и весом Динамика механической системы. К барабану приложен вращательный момент, который пропорционален квадрату угла поворота Динамика механической системы барабану: 

Динамика механической системы

где Динамика механической системы – постоянный коэффициент.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он поднимется на высоту Динамика механической системы. Массу барабана Динамика механической системы считать равномерно распределенной вдоль его обода. Блок Динамика механической системы – сплошной диск весом Динамика механической системы. В начальный момент система находилась в покое.

Решение. Изобразим на рисунке все внешние силы, действующие на барабан Динамика механической системы, блок Динамика механической системы и груз Динамика механической системы: силы тяжести Динамика механической системыДинамика механической системыДинамика механической системы; вращательный момент, а также реакции шарниров Динамика механической системы и Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

где Динамика механической системы – кинетическая энергия системы в конечном положении;

Динамика механической системы – кинетическая энергия системы в исходном положении;

Динамика механической системы – сумма работ всех внешних сил на перемещении Динамика механической системы;

Динамика механической системы – сумма работ всех внутренних сил на перемещении Динамика механической системы.

Поскольку в начальный момент времени система находилась в состоянии покоя, то

Динамика механической системы

В связи с тем, что трос не растягивается и при движении системы находится в натянутом состоянии, сумма работ внутренних сил системы равна нулю, следовательно

Динамика механической системы

При поднятии груза Динамика механической системы на высоту Динамика механической системы сумма работ равна:

Динамика механической системы

Поскольку точки приложения сил Динамика механической системы и Динамика механической системы – неподвижны, то

Динамика механической системы

Работа силы Динамика механической системы равна:

Динамика механической системы

Работа вращательного момента в случае, когда он не меняется

Динамика механической системы

где Динамика механической системы – угол поворота тела под действием момента.

Поскольку в нашем случае вращательный момент меняется, то его работа определится следующим образом:

Динамика механической системы

Определим угол Динамика механической системы, на который вернулся барабан Динамика механической системы при подъеме груза Динамика механической системы на высоту Динамика механической системы:

Динамика механической системы

Следовательно,

Динамика механической системы

Таким образом,

Динамика механической системы

Перейдем к подсчету кинетической энергии системы в конечном положении:

Динамика механической системы

где Динамика механической системы – кинетическая энергия груза Динамика механической системы;

Динамика механической системы – кинетическая энергия диска Динамика механической системы;

Динамика механической системы – кинетическая энергия барабана Динамика механической системы.

Груз Динамика механической системы движется поступательно и его кинетическая энергия равна:

Динамика механической системы

Диск Динамика механической системы совершает вращательное движение, его кинетическая энергия определяется из выражения:

где Динамика механической системы – момент инерции диска относительно оси вращения;

Динамика механической системы – угловая скорость диска.

Поскольку диск Динамика механической системы– сплошной, то Динамика механической системы равен:

Динамика механической системы

где Динамика механической системы – радиус диска.

Поскольку линейная скорость обода диска равна скорости груза, угловая скорость вращения Динамика механической системы:

Динамика механической системы

Итак,

Динамика механической системы

Кинетическая энергия барабана Динамика механической системы, поскольку он совершает вращательное движение, равна:

Динамика механической системы

Поскольку масса барабана Динамика механической системы распределена по ободу, то:

Динамика механической системы

Угловую скорость барабана высчитаем из условия равенства линейных скоростей на ободах диска и барабана:

Динамика механической системы

Откуда

Динамика механической системы

Таким образом

Динамика механической системы

Кинетическая энергия системы в конечном положении равна

Динамика механической системы

Итак, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Решая это уравнение относительно Динамика механической системы, находим скорость груза Динамика механической системы после того, как он пройдет путь Динамика механической системы:

Динамика механической системы

Ответ:  Динамика механической системы

Задача № 3

Груз Динамика механической системы (рис.10.3) весом Динамика механической системы, опускаясь вниз с помощью перекинутого через неподвижный блок Динамика механической системы невесомого и нерастяжимого троса, поднимает вверх груз Динамика механической системы весом Динамика механической системы, который закреплен к оси подвижного блока Динамика механической системы. Блоки Динамика механической системы и Динамика механической системы считать однородными сплошными дисками весом Динамика механической системы каждый.

Динамика механической системы

Определить скорость груза Динамика механической системы в момент, когда он опустится на высоту Динамика механической системы. Скольжением на ободах блоков и силами сопротивления пренебречь.

В начальный момент система находилась в состоянии покоя.

Решение. Изобразим внешние силы, которые действуют на систему: силы тяжести Динамика механической системы;  реакцию шарнира Динамика механической системы и реакцию в точке Динамика механической системы – Динамика механической системы. Внутренней силой является натяжение троса Динамика механической системы.

Запишем теорему об изменении кинетической энергии системы:

Динамика механической системы

В начальный момент времени система находилась в покое, следовательно, Динамика механической системы. Работа внутренней силы натяжения троса, равна нулю. Итак,

Динамика механической системы

Сумма работ внешних сил при перемещении системы в конечное положение составляет:

Динамика механической системы

Работа сил Динамика механической системы равна нулю, поскольку точки приложения сил 3 Динамика механической системы неподвижны.

Итак,

Динамика механической системы

Работа силы Динамика механической системы при опускании груза Динамика механической системы на высоту Динамика механической системы равна:

Динамика механической системы

Работу силы тяжести Динамика механической системы блока Динамика механической системы определим следующим образом. При опускании груза Динамика механической системы на высоту Динамика механической системы точка Динамика механической системы блока Динамика механической системы поднимается вверх на расстояние Динамика механической системы, которая равна Динамика механической системы, а центр блока Динамика механической системы на величину Динамика механической системы, так как точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы.

Таким образом,

Динамика механической системы

Груз Динамика механической системы поднимается вверх так же на величину Динамика механической системы. Тогда работа силы тяжести груза Динамика механической системы будет равна:

Динамика механической системы

Итак, 

Динамика механической системы

Вычислим кинетическую энергию системы в конечном положении:

Динамика механической системы

Груз Динамика механической системы перемещается поступательно и его кинетическая энергия равна

Динамика механической системы

где Динамика механической системы – скорость груза Динамика механической системы в конце перемещения.

Блок Динамика механической системы осуществляет плоскопараллельное движение. В этом случае:

Динамика механической системы

Кинетическая энергия поступательного движения блока Динамика механической системы равна:

Динамика механической системы

Поскольку точка Динамика механической системы – мгновенный центр скоростей блока Динамика механической системы, а скорость точки Динамика механической системы равна скорости груза Динамика механической системы, то скорость вращения блока Динамика механической системы:

Динамика механической системы

Тогда

Динамика механической системы

Таким образом,

Динамика механической системы

Кинетическая энергия вращательного движения блока Динамика механической системы определяется из равенства:

Динамика механической системы

где Динамика механической системы – момент инерции блока Динамика механической системы относительно оси, которая проходит через центр масс Динамика механической системы. Блок Динамика механической системы – сплошной однородный диск, поэтому

Динамика механической системы

Тогда

Динамика механической системы

Таким образом, кинетическая энергия блока Динамика механической системы равна:

Динамика механической системы

Блок Динамика механической системы совершает вращательное движение и его кинетическая энергия:

Динамика механической системы

то есть

Динамика механической системы

Груз Динамика механической системы совершает поступательное движение со скоростью точки Динамика механической системы то есть со скоростью Динамика механической системы. Поэтому 

Динамика механической системы

Следовательно, кинетическая энергия системы Динамика механической системы в конечном положении:

Динамика механической системы

Таким образом, теорема об изменении кинетической энергии системы имеет вид:

Динамика механической системы

Находим скорость груза Динамика механической системы, решая это уравнение относительно Динамика механической системы:

Динамика механической системы

Ответ: Динамика механической системы

Задача № 4

Прямоугольная пластинка Динамика механической системы (рис.10.4) со сторонами Динамика механической системы и Динамика механической системы, и весом Динамика механической системы вращается вокруг вертикальной оси Динамика механической системы с начальной угловой скоростью Динамика механической системы. Каждый элемент пластинки несет при этом сопротивление воздуха, направление которого перпендикулярно плоскости пластинки, а величина пропорциональна площади элемента и квадрату его скорости. Коэффициент пропорциональности равен Динамика механической системы.

Динамика механической системы

Определить, сколько оборотов сделает пластинка к тому мгновению, когда ее угловая скорость станет вдвое меньше начальной?

Решение. Поскольку силы сопротивления, приложенные к пластинке, не постоянные, а зависят от скорости, то для решения задачи воспользуемся теоремой об изменении кинетической энергии системы в дифференциальной форме:

Динамика механической системы

Высчитаем дифференциал кинетической энергии пластинки. Поскольку пластинка вращается вокруг неподвижной оси, то ее кинетическая энергия равна:

Динамика механической системы

откуда:

Динамика механической системы

где Динамика механической системы – момент инерции пластинки относительно оси Динамика механической системы.

Перейдем к определению суммы элементарных работ внешних сил, которые действуют на пластинку. Это такие силы (рис.10.4):

– сила тяжести пластинки Динамика механической системы;

– реакции в опорах Динамика механической системы и Динамика механической системы: Динамика механической системы и Динамика механической системы;

– сила сопротивления воздуха Динамика механической системы.

Итак,

Динамика механической системы

где Динамика механической системы – элементарная работа силы тяжести пластинки;

Динамика механической системы – элементарные работы реакций подшипников;

Динамика механической системы – элементарная работа силы сопротивления Динамика механической системы.

Работы реакций Динамика механической системы и Динамика механической системы равны нулю, ибо точки их приложения неподвижны. Работа силы тяжести Динамика механической системы тоже равна нулю в связи с тем, что высота центра тяжести пластинки не меняется.

Таким образом,

Динамика механической системы

Для вычета работы сил сопротивления воспользуемся формулой для работы сил, которые приложены к вращающемуся твердому телу:

Динамика механической системы

где Динамика механической системы – сумма моментов всех приложенных к телу сил относительно оси вращения;

Динамика механической системы – элементарный угол поворота.

Чтобы определить Динамика механической системы, разобьем пластинку на элементарные прямоугольники со сторонами Динамика механической системы и Динамика механической системы. Тогда сила сопротивления, приложенная к элементарному прямоугольнику, будет равняться:

Динамика механической системы

и

Динамика механической системы

Следовательно,

Динамика механической системы

или

Динамика механической системы

и

Динамика механической системы.

Таким образом, уравнение (1) принимает вид:

Динамика механической системы

Разделим переменные и проинтегрируем:

Динамика механической системы

Момент инерции пластинки составляет:

Динамика механической системы

Тогда

Динамика механической системы

Откуда находим:

Динамика механической системы

Число оборотов Динамика механической системы составляет:

Динамика механической системы

Ответ: Динамика механической системы

Услуги по теоретической механике:

  1. Заказать теоретическую механику
  2. Помощь по теоретической механике
  3. Заказать контрольную работу по теоретической механике

Учебные лекции:

  1. Статика
  2. Система сходящихся сил
  3. Момент силы
  4. Пара сил
  5. Произвольная система сил
  6. Плоская произвольная система сил
  7. Трение
  8. Расчет ферм
  9. Расчет усилий в стержнях фермы
  10. Пространственная система сил
  11. Произвольная пространственная система сил
  12. Плоская система сходящихся сил
  13. Пространственная система сходящихся сил
  14. Равновесие тела под действием пространственной системы сил
  15. Естественный способ задания движения точки
  16. Центр параллельных сил
  17. Параллельные силы
  18. Система произвольно расположенных сил
  19. Сосредоточенные силы и распределенные нагрузки
  20. Кинематика
  21. Кинематика твердого тела
  22. Движения твердого тела
  23. Динамика материальной точки
  24. Динамика плоского движения твердого тела
  25. Динамика относительного движения материальной точки
  26. Динамика твердого тела
  27. Кинематика простейших движений твердого тела
  28. Общее уравнение динамики
  29. Работа и мощность силы
  30. Обратная задача динамики
  31. Поступательное и вращательное движение твердого тела
  32. Плоскопараллельное (плоское) движение твёрдого тела
  33. Сферическое движение твёрдого тела
  34. Движение свободного твердого тела
  35. Сложное движение твердого тела
  36. Сложное движение точки
  37. Плоское движение тела
  38. Статика твердого тела
  39. Равновесие составной конструкции
  40. Равновесие с учетом сил трения
  41. Центр масс
  42. Колебания материальной точки
  43. Относительное движение материальной точки
  44. Статические инварианты
  45. Дифференциальные уравнения движения точки под действием центральной силы и их анализ
  46. Динамика системы материальных точек
  47. Общие теоремы динамики
  48. Теорема об изменении кинетической энергии
  49. Теорема о конечном перемещении плоской фигуры
  50. Потенциальное силовое поле
  51. Метод кинетостатики
  52. Вращения твердого тела вокруг неподвижной точки

Ускорение центра масс. Определение этого термина вытекает из двух определений — ускорение точки и центр масс. Ускорение точки — производная вектора скорости этой точки по времени или вторая производная радиус-вектора этой точки по времени.
Не помню, как по ГоСТу определяется центр масс, но что-то вроде
Центр масс — точка, к которой приложена равнодействующая сил тяжести в однородном поле.

Для тел однородных тел простой формы — центр масс находится в геометрическом центре. Для стержня — в середине стержня.

При равномерном вращательном движении тела ускорение центра масс направлено к оси вращения. При неравномерном вращении ускорение центра масс складывается из нормального (центростремительного) ускорения и тангенциального (касательного) ускорения. Центростремительное связано с поворотом вектора скорости, тангенциальное — с изменением абсолютной величины скорости.

В системе изображённой на рисунке вращение будет неравномерным, поскольку сила тяжести создаёт момент силы вокруг оси вращения. В этом случае задачу надо решать так.
Находим момент силы тяжести относительно оси вращения M=mg (L/2) cosφ
Находим момент инерции стержня относительно оси вращения I=m(L/2)^2 + mL^2 / 12 = mL^2 / 3
Находим угловое ускорение ε=M/I
Находим тангенциальное ускорение центра масс aτ=ε L/2
Находим нормальное ускорение центра масс an=ω² (L/2), мгновенная угловая скорость ω = v / L
Дальше находим арктангенс отношения тангенциального и нормального ускорения, это и будет угол между направлением ускорения центра масс и направлением из центра масс на ось вращения
Чтобы найти силу направление нормальной реакции нужно записать второй закон Ньютона в проекциях на нормальную и тангенциальную оси:
Nτ+mg cosφ = maτ ⇒ Nτ=maτ-mg cosφ
Nn-mg sinφ = man ⇒ Nn=man+mg sinφ
Чтобы задать направление, находим арктангенс отношения тангенциальной и нормальной составляющих

Черноуцан А. Задачи на центр масс // Квант. — 1996. — № 2. — С. 43-45.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

При решении механических задач неоценимую помощь может оказать использование понятия центра масс системы материальных точек. Одни задачи просто невозможно решить, не прибегая к этому понятию, решение других с его помощью может стать гораздо проще и нагляднее.

Перед тем как обсуждать конкретные задачи, напомним основные свойства центра масс и проиллюстрируем их примерами.

Центром масс (центром инерции) системы материальных точек назовем точку, характеризующую распределение масс в системе, координаты которой определяются формулами

Здесь mi — массы материальных точек, образующих систему, xi, yi, zi — координаты этих точек. Читатели, знакомые с понятием радиуса-вектора, предпочтут векторную запись:

                                     (1)

Пример 1. Найдем положение центра масс, простейшей системы, состоящей из двух точек, массы которых m1 и m2 и расстояние между ними l (рис. 1).

Рис. 1

Направив ось X от первой точки ко второй, получим, что расстояние от первой точки до центра масс (т.е. координата центра масс) равно   а расстояние от центра масс до второй точки равно   т.е. отношение расстояний обратно отношению масс. Значит, в этом случае положение центра масс совпадает с центром тяжести.

Обсудим некоторые свойства центра масс, что, как нам кажется, наполнит физическим содержанием приведенное выше несколько формальное определение этого понятия.

1) Положение центра масс не изменится, если какую-то часть системы заменить одной точкой с массой, равной массе этой подсистемы, и находящейся в ее центре масс.

Пример 2. Рассмотрим плоский однородный треугольник и найдем положение его центра масс. Разделим треугольник на тонкие полоски, параллельные одной из сторон, и заменим каждую полоску точкой, расположенной в ее середине. Так как все такие точки лежат на медиане треугольника, центр масс тоже должен лежать на медиане. Повторяя рассуждения для каждой из сторон, получаем, что центр масс находится на пересечении медиан.

2) Скорость центра масс можно найти, взяв производную по времени от обеих частей равенства (1):

                                   (2)

где   — импульс системы, m — полная масса системы. Видно, что скорость центра масс замкнутой системы постоянна. Значит, если связать с центром масс поступательно движущуюся систему отсчета, то она будет инерциальной.

Пример 3. Поставим однородный стержень длиной l вертикально на гладкую плоскость (рис. 2) и отпустим. В процессе падения как горизонтальная составляющая его импульса, так и горизонтальная составляющая скорости центра масс будут оставаться равными нулю. Поэтому в момент падения центр стержня окажется в том месте, где первоначально стоял стержень, а концы стержня сместятся по горизонтали на  .

Рис. 2

3) Ускорение центра масс равно производной от его скорости по времени:

                                (3)

где в правой части равенства стоят только внешние силы, так как все внутренние силы сокращаются по третьему закону Ньютона. Получаем, что центр масс, движется так, как двигалась бы воображаемая точка с массой, равной массе системы, под действием результирующей внешней силы. Наверное, это самое физическое свойство центра масс.

Пример 4. Если бросить палку, приведя ее при этом во вращение, то центр масс палки (ее середина) будет двигаться с постоянным ускорением   по параболе (рис. 3).

Рис. 3

4) Пусть система точек находится в однородном поле тяжести. Тогда суммарный момент сил тяжести относительно любой оси, проходящей через центр масс, равен нулю. Это значит, что равнодействующая сил тяжести проходит через центр масс, т.е. центр масс является также центром тяжести.

5) Потенциальная энергия системы точек в однородном поле тяжести вычисляется по формуле

где hцвысота центра масс системы.

Пример 5. При выкапывании в однородном фунте ямы глубиной h и разбрасывании грунта по поверхности его потенциальная энергия возрастает на  , где m — масса извлеченного грунта.

6) И еще одно полезное свойство центра масс. Кинетическая энергия системы точек может быть представлена в виде суммы двух слагаемых: кинетической энергии общего поступательного движения системы, равной  , и кинетической энергии Eотн движения относительно системы отсчета, связанной с центром масс:

Пример 6. Кинетическая энергия обруча, катящегося без проскальзывания по горизонтальной поверхности со скоростью υ, равна

так как относительное движение в этом случае представляет собой чистое вращение, для которого линейная скорость точек обруча равна υ (полная скорость нижней точки должна быть равна нулю).

Теперь приступим к разбору задач на использование центра масс.

Задача 1. Однородный стержень лежит на гладкой горизонтальной поверхности. К стержню прикладывают две одинаковые по величине, но противоположные по направлению горизонтальные силы: одна сила приложена к середине стержня, другая — к его концу (рис. 4). Относительно какой точки начнет поворачиваться стержень?

Рис. 4

На первый взгляд может показаться, что осью вращения будет точка, лежащая посередине между точками приложения сил. Однако уравнение (3) показывает, что поскольку сумма внешних сил равна нулю, то равно нулю и ускорение центра масс. Значит, центр стержня будет оставаться в покое, т.е. служить осью вращения.

Задача 2. Тонкий однородный стержень длиной l и массой m привели в движение вдоль гладкой горизонтальной поверхности так, что он движется поступательно и одновременно вращается с угловой скоростью ω. Найдите, натяжение стержня в зависимости от расстояния x до его центра.

Перейдем в инерциальную систему отсчета, связанную с центром стержня. Рассмотрим движение куска стержня, заключенного между рассматриваемой точкой стержня (расположенной на расстоянии x от центра) и его концом (рис. 5).

Рис. 5

Единственной внешней силой для этого куска является искомая сила натяжения Fн, масса равна  , а его центр масс движется по окружности радиусом   с ускорением  . Записывая уравнение движения центра масс выделенного куска, получим

Задача 3. Двойная звезда состоит из двух звезд-компонентов массами m1 и m2, расстояние между которыми не меняется и остается равным L. Найдите период вращения двойной звезды.

Рассмотрим движение звезд-компонентов в инерциальной системе отсчета, связанной с центром масс двойной звезды. В этой системе отсчета звезды движутся с одной и той же угловой скоростью по окружностям разных радиусов (рис. 6).

Рис. 6

Радиус вращения звезды массой m1 равен   (см. Пример 1), а ее центростремительное ускорение создается силой притяжения к другой звезде:

Видим, что период вращения двойной звезды равен

и определяется полной массой двойной звезды, независимо от того, как она распределена между звездами-компонентами.

Задача 4. Две точечные массы m и 2m связаны невесомой нитью длиной l и движутся по гладкой горизонтальной плоскости. В некоторый момент времени скорость массы 2m равна нулю, а скорость массы m равна υ и направлена перпендикулярно нити (рис. 7). Найдите натяжение нити и период вращения системы.

Рис. 7

Центр масс системы находится на расстоянии   от массы 2m и движется со скоростью  . В системе отсчета, связанной с центром масс, точка массой 2m движется по окружности радиусом   со скоростью  . Значит, период вращения равен   (проверьте, что такой же ответ получается, если рассмотреть точку массой m). Натяжение нити найдем из уравнения движения любой из двух точек:

Задача 5. На гладкой горизонтальной плоскости лежат два одинаковых бруска массой m каждый, связанных легкой пружиной жесткостью k (рис. 8). Первому бруску сообщают скорость υ0 в направлении от второго бруска. Опишите движение системы. Через какое время деформация пружины впервые достигнет максимального значения?

Рис. 8

Центр масс системы будет перемещаться с постоянной скоростью  . В системе отсчета центра масс начальная скорость каждого бруска равна  , а жесткость половинной пружины, которая соединяет его с неподвижным центром масс, составляет 2k (жесткость пружины обратно пропорциональна ее длине). Период таких колебаний равен

а амплитуда колебаний каждого бруска, которую можно найти из закона сохранения энергии, составляет

В первый раз деформация станет максимальной через четверть периода, т.е. через время  .

Задача 6. Шар массой m налетает со скоростью υ на покоящийся шар массой 2m. Найдите скорости обоих шаров после упругого центрального удара.

В системе отсчета, связанной с центром масс, полный импульс двух шаров равен нулю как до, так и после coyдарения. Легко догадаться, какой ответ для конечных скоростей удовлетворяет одновременно и этому условию, и закону сохранения энергии: скорости останутся такими же, как до удара, по величине, но изменят свои направления на противоположные. Скорость центра масс системы равна  . В системе центра масс первый шар движется со скоростью  , а второй шар движется навстречу первому со скоростью  . После удара шары будут разлетаться с такими же скоростями. Осталось вернуться в первоначальную систему отсчета. Применяя закон сложения скоростей, находим, что конечная скорость шара массой m равна   и направлена назад, а скорость покоившегося раньше шара массой 2m равна   и направлена вперед.

Отметим, что в системе центра масс очевидным является утверждение, что при ударе относительная скорость шаров не меняется по величине, но меняется по направлению. А так как разность скоростей при переходе в другую инерциальную систему отсчета не изменяется, можно считать, что мы вывели это важное соотношение и для первоначальной системы отсчета:

υ1 – υ2 = u1 – u2,

где буква υ используется для обозначения начальных скоростей, а u — для конечных. Это уравнение можно решать совместно с законом сохранения импульса вместо закона сохранения энергии (куда скорости входят во второй степени).

Задача 7. Известно, что при упругом нецентральном ударе двух одинаковых шаров, один из которых до удара покоился, угол разлета равен 90°. Докажите это утверждение.

В системе центра масс нецентральный удар можно описать следующим образом. До удара шары сближаются с одинаковыми импульсами, после удара они разлетаются с такими же по величине, но противоположно направленными импульсами, а прямая разлета поворачивается на некоторый угол относительно прямой сближения. Чтобы перейти обратно в начальную систему отсчета, надо каждую конечную скорость сложить (векторно!) со скоростью центра масс. В случае одинаковых шаров скорость центра масс равна  , где υ — скорость налетающего шара, и в системе отсчета центра масс шары сближаются и разлетаются с одинаковыми скоростями  . В том, что после сложения каждой конечной скорости со скоростью центра масс получаются взаимно перпендикулярные векторы, можно убедиться из рисунка 9. А можно и просто проверить, что скалярное произведение векторов   и   обращается в ноль в силу того, что модули векторов   равны друг другу.

Рис. 9

Упражнения

1. Стержень массой m и длиной l шарнирно закреплен за один из концов. Стержень отклонили на некоторый угол от вертикального положения и отпустили. В момент прохождения вертикального положения скорость нижней точки равна υ. Найдите натяжение в средней точке стержня в этот момент времени.

2. Стержень массой m и длиной l вращают в горизонтальной плоскости с угловой скоростью ω вокруг одного из его концов. Найдите зависимость натяжения стержня от расстояния x до оси вращения, если на другом конце закреплен маленький грузик массой М.

3. Найдите период колебаний для системы, описанной в задаче 5 статьи, но для брусков различных масс m1 и m2.

4. Выведите известные общие формулы для упругого центрального удара двух шаров, используя переход в систему отсчета центра масс.

5. Шар массой m1 налетает на покоящийся шар меньшей массы m2. Найдите максимально возможный угол отклонения налетающего шара при упругом нецентральном ударе.

Ответы

1.

2.

3.

5.

Добавить комментарий