Как найти ускорение движения тела по окружности

Движение по окружности – простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆φ (угол поворота относительно центра окружности), измеряемое в радианах. 

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело. 

∆l=R∆φ

Если угол поворота мал, то ∆l≈∆s.

Проиллюстрируем сказанное:

Движение по окружности

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω, то есть скорости изменения угла поворота. 

Определение. Угловая скорость

Угловая скорость в данной точке траектории – предел отношения углового перемещения ∆φ к промежутку времени ∆t, за которое оно произошло. ∆t→0.

ω=∆φ∆t, ∆t→0.

Единица измерения угловой скорости – радиан в секунду (радс).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

ω=vR

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру. 

an=∆v→∆t, ∆t→0

Модуль центростремительного ускорения можно вычислить по формуле:

an=v2R=ω2R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v→ за малый промежуток времени ∆t. ∆v→=vB→-vA→.

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a→=∆v→∆t, ∆t→0

Взглянем на рисунок:

Нормальное ускорение

Треугольники OAB и BCD подобны. Из этого следует, что OAAB=BCCD.

Если значение угла ∆φ мало, расстояние AB=∆s≈v·∆t. Принимая во внимание, что OA=R и CD=∆v для рассмотренных выше подобных треугольников получим:

Rv∆t=v∆v или ∆v∆t=v2R

При ∆φ→0, направление вектора ∆v→=vB→-vA→ приближается к направлению на центр окружности. Принимая, что ∆t→0, получаем:

a→=an→=∆v→∆t; ∆t→0; an→=v2R.

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности. 

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

an→=-ω2R→.

Здесь R→ – радиус вектор точки на окружности с началом в ее центре.

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов – нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

aτ=∆vτ∆t; ∆t→0

Здесь ∆vτ=v2-v1  – изменение модуля скорости за промежуток ∆t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Тангенциальное ускорение

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие vx и vy.

Если движение равномерное, величины vx и vy а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T=2πRv=2πω

Тангенциальное ускорение

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T – это время, за которое тело совершает один оборот.

Частота вращение – это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено – это есть период T. Путь, который преодолевает точка – это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.


Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Связь со вторым законом Ньютона

Как вывести формулу центростремительного ускорения

Движение по циклоиде*

Равномерное движение тела по окружности

1. Движением тела по окружности называют движение, траекторией которого является окружность. По окружности движутся, например, конец стрелки часов, точки лопасти вращающейся турбины, вращающегося вала двигателя и др.

При движении по окружности направление скорости непрерывно изменяется. При этом модуль скорости тела может изменяться, а может оставаться неизменным. Движение, при котором изменяется только направление скорости, а её модуль сохраняется постоянным, называется равномерным движением тела по окружности. Под телом в данном случае имеют в виду материальную точку.

2. Движение тела по окружности характеризуется определёнными величинами. К ним относятся, прежде всего, период и частота обращения. Период обращения тела по окружности( T )​ — время, в течение которого тело совершает один полный оборот. Единица периода — ​( [,T,] )​ = 1 с.

Частота обращения( (n) )​ — число полных оборотов тела за одну секунду: ​( n=N/t )​. Единица частоты обращения — ( [,n,] ) = 1 с-1 = 1 Гц (герц). Один герц — это такая частота, при которой тело совершает один оборот за одну секунду.

Связь между частотой и периодом обращения выражается формулой: ​( n=1/T )​.

Пусть некоторое тело, движущееся по окружности, за время ​( t )​ переместилось из точки А в точку В. Радиус, соединяющий центр окружности с точкой А, называют радиусом-вектором. При перемещении тела из точки А в точку В радиус-вектор повернётся на угол ​( varphi )​.

Быстроту обращения тела характеризуют угловая и линейная скорости.

Угловая скорость ​( omega )​ — физическая величина, равная отношению угла поворота ( varphi ) радиуса-вектора к промежутку времени, за которое этот поворот произошел: ​( omega=varphi/t )​. Единица угловой скорости — радиан в секунду, т.е. ​( [,omega,] )​ = 1 рад/с. За время, равное периоду обращения, угол поворота радиуса-вектора равен ​( 2pi )​. Поэтому ​( omega=2pi/T )​.

Линейная скорость тела( v )​ — скорость, с которой тело движется вдоль траектории. Линейная скорость при равномерном движении по окружности постоянна по модулю, меняется по направлению и направлена по касательной к траектории.

Линейная скорость равна отношению пути, пройденному телом вдоль траектории, ко времени, за которое этот путь пройден: ​( vec{v}=l/t )​. За один оборот точка проходит путь, равный длине окружности. Поэтому ​( vec{v}=2pi!R/T )​. Связь между линейной и угловой скоростью выражается формулой: ​( v=omega R )​.

Из этого равенства следует, что чем дальше от центра окружности расположена точка вращающегося тела, тем больше её линейная скорость.

4. Ускорение тела равно отношению изменения его скорости ко времени, за которое оно произошло. При движении тела по окружности изменяется направление скорости, следовательно, разность скоростей не равна нулю, т.е. тело движется с ускорением. Оно определяется по формуле: ​( vec{a}=frac{Deltavec{v}}{t} )​ и направлено так же, как вектор изменения скорости. Это ускорение называется центростремительным ускорением.

Центростремительное ускорение при равномерном движении тела по окружности — физическая величина, равная отношению квадрата линейной скорости к радиусу окружности: ​( a=frac{v^2}{R} )​. Так как ​( v=omega R )​, то ​( a=omega^2R )​.

При движении тела по окружности его центростремительное ускорение постоянно по модулю и направлено к центру окружности.

Содержание

  • ПРИМЕРЫ ЗАДАНИЙ
    • Часть 1
    • Часть 2
  • Ответы

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. При равномерном движении тела по окружности

1) изменяется только модуль его скорости
2) изменяется только направление его скорости
3) изменяются и модуль, и направление его скорости
4) не изменяется ни модуль, ни направление его скорости

2. Линейная скорость точки 1, находящейся на расстоянии ​( R_1 )​ от центра вращающегося колеса, равна ​( v_1 )​. Чему равна скорость ​( v_2 )​ точки 2, находящейся от центра на расстоянии ​( R_2=4R_1 )​?

1) ​( v_2=v_1 )
2) ​( v_2=2v_1 )
3) ​( v_2=0,25v_1 )
4) ​( v_2=4v_1 )

3. Период обращения точки по окружности можно вычислить по формуле:

1) ​( T=2pi!Rv )
2) ( T=2pi!R/v )
3) ( T=2pi v )
4) ( T=2pi/v )

4. Угловая скорость вращения колеса автомобиля вычисляется по формуле:

1) ​( omega=a^2R )
2) ( omega=vR^2 )
3) ( omega=vR )
4) ( omega=v/R )

5. Угловая скорость вращения колеса велосипеда увеличилась в 2 раза. Как изменилась линейная скорость точек обода колеса?

1) увеличилась в 2 раза
2) уменьшилась в 2 раза
3) увеличилась в 4 раза
4) не изменилась

6. Линейная скорость точек лопасти винта вертолёта уменьшилась в 4 раза. Как изменилось их центростремительное ускорение?

1) не изменилось
2) уменьшилось в 16 раз
3) уменьшилось в 4 раза
4) уменьшилось в 2 раза

7. Радиус движения тела по окружности увеличили в 3 раза, не меняя его линейную скорость. Как изменилось центростремительное ускорение тела?

1) увеличилось в 9 раз
2) уменьшилось в 9 раз
3) уменьшилось в 3 раза
4) увеличилось в 3 раза

8. Чему равен период обращения коленчатого вала двигателя, если за 3 мин он совершил 600 000 оборотов?

1) 200 000 с
2) 3300 с
3) 3·10-4 с
4) 5·10-6 с

9. Чему равна частота вращения точки обода колеса, если период обращения составляет 0,05 с?

1) 0,05 Гц
2) 2 Гц
3) 20 Гц
4) 200 Гц

10. Линейная скорость точки обода велосипедного колеса радиусом 35 см равна 5 м/с. Чему равен период обращения колеса?

1) 14 с
2) 7 с
3) 0,07 с
4) 0,44 с

11. Установите соответствие между физическими величинами в левом столбце и формулами для их вычисления в правом столбце. В таблице под номером физической
величины левого столбца запишите соответствующий номер выбранной вами формулы из правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
А) линейная скорость
Б) угловая скорость
В) частота обращения

ФОРМУЛА
1) ​( 1/T )
2) ​( v^2/R )
3) ​( v/R )
4) ​( omega R )
5) ​( 1/n )

12. Период обращения колеса увеличился. Как изменились угловая и линейная скорости точки обода колеса и её центростремительное ускорение. Установите соответствие между физическими величинами в левом столбце и характером их изменения в правом столбце.
В таблице под номером физической величины левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) угловая скорость
Б) линейная скорость
B) центростремительное ускорение

ХАРАКТЕР ИЗМЕНЕНИЯ ВЕЛИЧИНЫ
1) увеличилась
2) уменьшилась
3) не изменилась

Часть 2

13. Какой путь пройдёт точка обода колеса за 10 с, если частота обращения колеса составляет 8 Гц, а радиус колеса 5 м?

Ответы

Равномерное движение тела по окружности

3.2 (64.17%) 48 votes

Физика, 10 класс

Урок 04.Равномерное движение точки по окружности

Перечень вопросов, рассматриваемых на уроке:

  1. Равномерное движение точки по окружности и его характеристики.
  2. Центростремительное ускорение.

Глоссарий по теме

Криволинейное движение – это движение по дугам окружностей разных радиусов.

Ускорение – это векторная величина, равная отношению изменения скорости к промежутку времени, в течение которого это изменение произошло, при ∆t → 0

Равномерное движение точки по окружности – движение точки с постоянной по модулю скоростью (ν = const) по траектории, представляющей собой окружность.

Ключевые слова

Криволинейное движение; движение по окружности; скорость; радиус кривизны; изменение скорости; центростремительное ускорение.

Основная и дополнительная литература по теме урока:

Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2016. С.55-56

Марон Е.А., Марон А.Е. Сборник качественных задач по физике. М., Просвещение, 2006

Рымкевич А.П. Сборник задач по физике. 10-11 класс.-М.:Дрофа,2009.-С.20-22

Открытые электронные ресурсы:

http://kvant.mccme.ru/1986/11/kinematika_vrashchatelnogo_dvi.htm

Теоретический материал для самостоятельного изучения

1. Мы уже знакомы с равноускоренным движением. Как же меняются скорость и ускорение при криволинейном движении? Сегодня рассмотрим равномерное движение по окружности, узнаем, что такое центростремительное ускорение.

Если траектория движения тела прямая линия, то движение прямолинейное; если траектория кривая линия – криволинейное движение. Напомним, что траектория – это линия, вдоль которой двигалось тело.

При изучении равноускоренного движения мы заметили, что в некоторых случаях тело движется по прямой, например свободное падение тел, а в некоторых по кривой – тело, брошенное под углом к горизонту.

Рассмотрим движение тела, брошенного под углом к горизонту. Траекторией является парабола.

Возьмем разные точки на линии и нарисуем векторы скорости . Вектор скорости направлен по касательной, а ускорение свободного падения направлен вниз.

Векторы и не лежат на одной прямой, угол между ними не равен нулю.

Это естественно, так как, если ускорение образует угол со скоростью, то изменение скорости направлено не так, как скорость. Это приводит к изменению направления скорости. Изменение скорости направлено как ускорение. Скорость через некоторый промежуток времени образует некоторый угол с Итак, сформулируем первый вывод: если угол между векторами скорости и ускорения не равен нулю, то движение будет криволинейным.

2.Может ли быть движение одновременно равномерным и криволинейным? Да, например, движение по окружности.

Равномерное движение точки по окружности – это движение точки с постоянной по модулю скоростью (v = const) по траектории, представляющей собой окружность. Но, скорость – это векторная величина, а для векторной величины одинаково важны и модуль, и направление. Т.к. при движении по окружности скорость всегда направлена по касательной к траектории движения, то по направлению она изменяется. Если есть изменение скорости (точнее её направления), значит, есть ускорение

Сформулируем второй важный вывод: любое криволинейное движение является движением с ускорением, потому что меняется направление вектора скорости.

Решим задачу: найдем ускорение тела, равномерно движущегося по окружности.

Рассмотрим равномерное движение тела по окружности с центром в точке О. В какой-то момент времени, скорость тела в точке А была.

Модули скоростей равны:

но вектора скоростей не равны.

Поэтому построим вектор для тела, движущегося по окружности. Перенесем вектор в начало вектораи найдем разность векторов.

направлен в сторону.

Вспомним, что векторнаправлен по касательной, а касательная перпендикулярна радиусу окружности. Проведем радиусы к обеим точкам и обозначим угол между ними через ?.

Что можно сказать об угле между векторами ? Он равен малому углу, как углы с взаимно перпендикулярными сторонами.

Рассмотрим равнобедренный треугольник со сторонами , . Углы у основания равны.

Если угол φ стремится к нулю, то углы у основания совпадут и станут равными 900

Вектор будет перпендикулярен вектору в пределе, а значит вектор ускорения тоже перпендикулярен т.е направлен по радиусу к центру окружности. Поэтому часто его называют центростремительным ускорением

Теперь следующая задача: как найти модуль вектора ускорения. Давайте рассмотрим два треугольника: треугольник, образованный векторами и треугольник, образованный радиусами и хордой. У этих треугольников углы при вершинах равны, они равнобедренные. Треугольники подобны и, следовательно, выполняются соотношения подобия.

Промежуток времени мал, поэтому очень мал и угол при вершине, в пределе он стремится к нулю. Тогда можно сказать, что длина хорды s равна длине дуги АВ при

Длина дуги АВ это путь, пройденный точкой от А до В,

тогда запишем:

Умножим наи получим:

В левой части мы получили отношение изменения скорости за некоторый промежуток времени к этому промежутку времени т.е. ускорение:

Равномерное движение точки по окружности является движением с переменным ускорением и переменной скоростью. Модули скорости и ускорения остаются постоянными

  1. Криволинейное движение – это движение по дугам окружностей разных радиусов.

А если меняется радиус, то меняется и центростремительное ускорение. Чем меньше радиус, тем больше ускорение при одинаковой скорости.

Всегда при равномерном криволинейном движении вектор ускорения перпендикулярен вектору скорости, поэтому центростремительное ускорение иногда называют нормальным ускорением, от слова нормаль, т.е. перпендикуляр.

Основные выводы:

– движение криволинейное, так как траекторией является окружность;

– движение равномерное, так как модуль скорости не меняется;

– вектор скорости направлен по касательной к окружности;

-вектор ускорения направлен к центру окружности;

– модуль центростремительного ускорения равен:

Примеры и разбор решения заданий

1. Велосипедист движется по закруглению дороги радиусом 50 м со скоростью 36 км/ч. С каким ускорением он проходит закругление?

При движении по окружности линейная скорость и центростремительное ускорение связаны соотношением

где R = 50 м; υ= км/ч = 10 м/с.

Тогда ac = (10 м/с)2 / 50 м = 2 м/с2.

Ответ: 2 м/с2

2. Две материальные точки движутся по окружностям радиусами R1 = 10 см и R2 = 30 см с одинаковыми скоростями 0,20 м/с. Во сколько раз отличаются их центростремительные ускорения?

Дано:

R1 =10см = 0,10 м

R2 = 30см = 0,30 м

Найти –

Задано два объекта:

1) материальная точка, которая движется по окружности R1;

2) материальная точка, которая движется по окружности R2.

При движении по окружности центростремительное ускорение и линейная скорость связаны соотношением

Для тела 1 уравнение (1) примет вид:

для тела 2:

Тогда

Центростремительное ускорение тела (2) меньше ускорения тела (1) в 3 раза.

Равномерное движение по окружности.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: движение по окружности с постоянной по модулю скоростью, центростремительное ускорение.

Равномерное движение по окружности – это достаточно простой пример движения с вектором ускорения, зависящим от времени.

Пусть точка вращается по окружности радиуса r. Скорость точки постоянна по модулю и равна v. Скорость v называется линейной скоростью точки.

Период обращения – это время одного полного оборота. Для периода T имеем очевидную формулу:

T=frac{displaystyle 2pi r}{displaystyle v}. (1)

Частота обращения – это величина, обратная периоду:

nu =frac{displaystyle 1}{displaystyle T}.

Частота показывает, сколько полных оборотов точка совершает за секунду. Измеряется частота в об/с (обороты в секунду).

Пусть, например, T=0,1 c. Это означает, что за время 0,1 c точка совершает один полный
оборот. Частота при этом получается равна: nu = 1/0,1 = 10 об/с; за секунду точка совершает 10 полных оборотов.

Угловая скорость.

Рассмотрим равномерное вращение точки в декартовой системе координат. Поместим начало координат в центре окружности (рис. 1).

Рис. 1. Равномерное движение по окружности

Пусть M_{0} – начальное положение точки; иными словами, при t = 0 точка имела координаты (r, 0). Пусть за время t точка повернулась на угол varphi и заняла положение M.

Отношение угла поворота ко времени называется угловой скоростью вращения точки:

omega =frac{displaystyle varphi }{displaystyle t}. (2)

Угол varphi, как правило, измеряется в радианах, поэтому угловая скорость измеряется в рад/с. За время, равное периоду вращения, точка поворачивается на угол 2pi . Поэтому

omega =frac{displaystyle 2pi }{displaystyle t}. (3)

Сопоставляя формулы (1) и (3), получаем связь линейной и угловой скоростей:

v= omega r. (4)

Закон движения.

Найдём теперь зависимость координат вращающейся точки от времени. Видим из рис. 1, что

x=r cos varphi, y=r sin varphi.

Но из формулы (2) имеем: varphi= omega t. Следовательно,

x=r cos omega t, y=r sin omega t. (5)

Формулы (5) являются решением основной задачи механики для равномерного движения точки по окружности.

Центростремительное ускорение.

Теперь нас интересует ускорение вращающейся точки. Его можно найти, дважды продифференцировав соотношения (5):

v_{displaystyle x}=dot{x}=-omega r sin omega t, v_{displaystyle y}=dot{y}=omega r cosomega t,

a_{x}=dot{v_{x}}=-omega ^{2}rcosomega t, a_{y}=dot{v}y=-omega ^{2}rsinomega t.

С учётом формул (5) имеем:

a_{x}=-omega^{2}x, a_{y}=-omega^{2}y. (6)

Полученные формулы (6) можно записать в виде одного векторного равенства:

vec{a}=-omega^{2}vec{r}, (7)

где vec{r} – радиус-вектор вращающейся точки.

Мы видим, что вектор ускорения направлен противоположно радиус-вектору, т. е. к центру окружности (см. рис. 1). Поэтому ускорение точки, равномерно движущейся по окружности, называется центростремительным.

Кроме того, из формулы (7) мы получаем выражение для модуля центростремительного ускорения:

a=omega^{2}r. (8)

Выразим угловую скорость из (4)

omega =frac{displaystyle v}{displaystyle r}

и подставим в (8). Получим ещё одну формулу для центростремительного ускорения:

a=frac{displaystyle v^{2}}{displaystyle r}.

Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Равномерное движение по окружности.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Добавить комментарий