Как найти ускорение груза в системе блоков

Начнем вот с такой вот задачки, которая встречается в интернетах... Какая же масса слева сможет уравносить блок 150 кг снизу? Подумайте пока над этим вопросом. Время у вас будет.
Начнем вот с такой вот задачки, которая встречается в интернетах… Какая же масса слева сможет уравносить блок 150 кг снизу? Подумайте пока над этим вопросом. Время у вас будет.

У многих учащихся возникают трудности с решением задач, связанных со вращательным движением тел. Также вызывают стопор задачи с блоками. В основном я это понял во время занятий физикой со своими школьниками и студентами. Поэтому я решил написать статью, в которой рассматриваю 7 случаев с небольшими задачами по динамике блоков. Это те основные кирпичики, из которых складываются все типы задач с блоками. В том числе и олимпиадные. Все примеры представлены от простого к сложному. Приятного чтения 🙂

А пока попрошу подписаться на канал в telegram IT mentor . Автор пишет краткие заметки и наблюдения по физике, математике, программированию, железу и технике 💡

Случай 1

Рассмотрим самый простой случай. Идеальная веревка перекидывается через неподвижный идеальный блок. Мы пытаемся удержать груз, прикрепленный на одном конце веревки, с помощью прикладывания силы F на другом конце веревки. Сначала рассмотрим статическое равновесие. Будем определять силу F, которую нам необходимо прикладывать.

Как решать задачи по физике с блоками из раздела «Механика»

Пожалуй, что из задач с блоками этот пример является самым простым. Допущения, принятые здесь, вполне согласуются с реальной жизнью. Но всё таки это сильно упрощенная модель.
1. Выигрыша в силе мы не имеем;
2. На какое расстояние сдвинули веревку, на такое же расстояние поднимется груз;
3. Удобство поднятия груза заключается в выборе направления тяги.

Случай 2

Немного усложним нашу ситуацию, добавив в систему ускорение. Какую силу нужно приложить, чтобы поднять груз с ускорением? Здесь также будем учитывать, что веревка идеальная:
нерастяжимая — поэтому все ускорения равны
невесомая — поэтому для правого конца выполняется условие F = T (для нулевой массы веревки).

Как решать задачи по физике с блоками из раздела «Механика»

Случай 3

Будем продолжать усложнение конфигурации из грузов и блоков. Что если в систему добавить второй блок, который будет висеть на веревке, один конец которой будет подвешен к потолку, а другой конец протянут через неподвижный блок и в итоге удержан нашей силой F. Рассмотрим статической равновесие системы и попробуем найти силу F. Теперь в задаче появляются две веревки:
Первая короткая нить удерживает груз (на рисунке изображена желтым цветом). Вторая длинная нить протянута через блоки, один конец закреплен в потолке, а другой конец удерживается силой F (на рисунке нить обозначена оранжевым цветом).

Как решать задачи по физике с блоками из раздела «Механика»

Мы получили выигрыш в силе в два раза. Простыми словами объяснить это можно так: 50 кг мы сможем удержать, тянув за свободный конец оранжевой веревки так, как будто мы бы удерживали 25 кг в ситуации с одним неподвижным блоком (Случай 1).

Как-то раз, занимаясь в тренажерном зале, я обратил внимание на разговор двух своих друзей. Они рассуждали, что поднимали на бицепс 70 кг в тренажере (так было написано на плитках, когда вставляешь штырек в определенный вес). Мне было интересно и я спросил: «Если в тренажере вы поднимаете 70 кг на бицепс, то почему же не можете поднять штангу в 70 кг также на бицепс?». Вопрос вызвал замешательство… Действительно, они не обращали на это внимание раньше. Вы, мои дорогие читатели, уже наверняка догадались в чем подвох. Конечно же в тренажере был подвижный ролик, тот самый блок, который катался вверх-вниз, удерживываемый тросиком, и давал выигрыш в силе в 2 раза. То есть по факту человек поднимает в этом тренажере 35 кг, а не 70 кг, как написано на плитках. Многие об этом не задумываются 🙂

Подвижный блок можно считать воистину крутым изобретением человечества. Ведь он дает возможность поднять груз, который мы бы никогда не подняли своими силами без этого хитрого приспособления.

Но во всём ли мы выигрываем? Нет, не во всём. Как и любой рычаг, подвижный блок помогает выиграть в силе, но проиграть в расстоянии. Это можно понять, если считать, что работа, выполняемая нами по мерещению груза (изменению его потенциальной энергии в случае подъема) является величиной постоянной ( *здесь мы пока не учитываем трение, которое есть в любых блоках, подшипниках и других механизмах ).

Как решать задачи по физике с блоками из раздела «Механика»

Как видите по рисункам, выиграть можно и в 4 раза, используя только два блока. Такая конструкция часто применяется в подъемных кранах. Однако, чем тяжелее груз, тем медленнее его будут поднимать. Такой же принцип наблюдается в коробке передач автомобиля, такой же принцип работает в переключении скоростей велосипеда. Чем быстрее, тем труднее. Или наоборот, чем легче, тем медленее.

Случай 4

Что если мы усложним наш пример, включив в него ускорение? Здесь важно не забыть учесть тот момент, который мы уже обсуждали в предыдущем пункте. Ускорение центра масс подвижного блока будет в два раза меньше, чем ускорение свободного конца длинной нити, протянутой через два блока. Почему? Попытаюсь это продемонстрировать на рисунке ниже.

Как решать задачи по физике с блоками из раздела «Механика»

Определить соотношение сил и перемещений можно с помощью метода виртуальных перещений. Однажды во время строительства одного из соборов в Швейцарии его архитектору понадобились блоки, позволяющие поднимать на большую высоту особо тяжелые грузы. Он сконструировал сложный полиспаст ( это грузоподъемное устройство, которое натягивается несколькими тросами. подробнее ), но запутался в многочисленных силах натяжения тросов и не смог рассчитать, сколько рабочих будет нужно нанимать для обслуживания грузоподъемного устройства. Архитектор обратился за помощью к известному ученому того времени Иоганну Бернулли (1667 – 1748). Едва взглянув на чертеж, Бернулли сразу же дал ответ. Разумеется, архитектор был очень удивлен и попросил объяснить ему суть решения…

Часто в задаче нужно учесть условия равновесия системы. Для этого определяются силы реакций механических связей. Связи — это ограничения, наложенные на положение отдельных частей системы или их возможные перемещения. Связями могут быть нити, шарниры, блоки. Чем больше связей, тем сложнее проследить за возникающими в них реакциями.

В большинстве случаев мехнические связи обладают интересным свойством, которое Бернулли положил в основу своего простого и изящного способа нахождения условий равновесия механической системы. Напишем это свойство:

Полная работа всех сил реакции, возникающих в связях системы при любых достаточно малых возможных отклонениях системы от положения равновесия, равна нулю.

Замечание: любые возможные отклонения не должны противоречить механическим связям: нити не должны рваться, шарниры не должны ломаться, блоки не должны деформироваться. Это и есть возможные или виртуальные перемещения.

Бернулли сформулировал этот принцип в 1717 году. Получается, что для исследования равновесия системы, достаточно выбрать удобные виртуальные перемещения (мы рисовали это выше), вычислить соответствующую им работу только внешних сил, а затем приравнять её к нулю.

Хотите простейший пример на применение данного метода? Давайте представим, что некоторый груз массой m подвешивают на пружину, и он её растягивает с силой тяжести m•g. При этом в самой пружине возникает сила упругости T. Допустим, груз сместился вниз на маленькую величину Δx. Тогда работа силы тяжести будет равна ΔA₁ = m•g•Δx, а работа силы упругости пружины будет ΔA₂ = − T•Δx. Знак минус здесь стоит потому что сила упругости всегда направлена против перемещения (вспоминайте закон Гука). Тогда, согласно принципу возможных перемещений, сумма работ обеих сил должна быть равна нулю:

ΔA₁ + ΔA₂ = m•g•Δx − T•Δx = 0 откуда получаем T = m•g

Замечание: Конечно же эту задачу можно решить обычным способом. Более того, оба метода будут примерно одинаковы по степени сложности. НО, существуют случаи, когда применение метода возможных перемещений дает более быстрое и простое решение. Иногда позволяет решать задачи, которые не разрешаются на основе обычнх уловий равновесия. Этот метод можно применяться не только для задач механики, но и для задач электростатики или молекулярной физики.

Итак, ускорение повлияет на силы, но не сильно. Мы же помним, что в нашем случае блоки по-прежнему идеальные, то есть их массу мы принимает за ноль (соответственно, момент инерции тоже).

Как решать задачи по физике с блоками из раздела «Механика»

Вот на этом моменте уже хочется обозначить несколько общих принципов решения таких задач.

Алгоритм, общие принципы, замечания

1. При решении нужно выяснить, какие силы действуют на тело, движение которого мы рассматриваем в конкретный момент времени. Все известные силы надо изобразить, сделать рисунок. Понимать со стороны каких тел действуют рассматриваемые силы. Действие одного тело на другое является взаимным (третий закон Ньютона). Бывает такое, что направление силы заранее неизвестно. Здесь не стоит переживать. Выберите то направление, которое вам кажется верным. При проецировании второгой закона Ньютона вы сможете получить численные значения для проекций. И если они будут положительные, то вы угадали с направлением. А если будут отрицательные, то вы не угадали, значит рисунок нужно подкорректировать, инвертировал стрелку, обозначающую силу. Если в задаче рассматривается несколько тел, то разумеется нужно расставить силы, действующие на все тела.

2. Далее осуществляется выбор системы отсчета. Оси (базис XOY) нужно выбирать так, что проекции был как можно более простыми, то есть чтобы как можно большее количество сил были параллельны или перпендикулярны выбранным осям.

3. Для каждого тела в системе записывается второй закон Ньютона. Затем этот закон проецируется на оси выбранного базиса (см 2 пункт). По началу вы можете сразу подставлять в полученную систему уравнений известные вам силы, углы, массы и проекции сил. Однако хорошим тоном является доведения решения до конца в буквенном виде. Если вы сейчас учитесь в школе, то обязательно научитесь оперировать буквами без подстановки чисел.

4. Для решения задач о движении системы тел одних уравнений движения (проекций второго закона Ньютона) может быть недостаточно. Нужна записать ещё все кинематические условия. Эти условия определяют соотношения между ускорениями различных объектов системы, обусловленные связями между ними.
Пример для неподвижных блоков: тела, связанные нерастяжимой нитью (идеальная нить), имеют вдоль этой нити одинаковые по модулю ускорения. И не важно через сколько неподвижных блоков перекинута нить.
Пример для подвижных блоков: При наличии подвижных блоков, ускорение тела (или свободного конца нити), перекинутой через неподвижный блок в два раза больше ускорения тела, прикрепленного к подвижному блоку. Так как за одинаковое время пройденные пути отличаются в два раза (мы это разбирали выше в статье).

5. Во множестве простых задач теоретической механики массой нитей, связывающих тела, пренебрегают. Только тогда натяжение таких нитей одинаково, какое бы мы не взяли сечение на всей длине.

6. Массой блоков также пренебрегают во множестве задач. В этих случаях натяжение нити, перекинутой через такой идеальный блок, можно считать одинаковым по обе стороны блока. В противном случае, если учитывать массу, то натяжения будут разными, угловая скорость будет меняться, то есть у нас появится вращающий момент сил, угловое ускорение и момент инерции реального блока.

7. Очень полезно попытаться понять как будут изменяться искомые величины при изменениях заданных величин. Если вы построите графики таких зависимостей, то сможете лучше разобраться в задаче.

Случай 5

Давайте рассмотрим задачу, в которой мы имеем два разных груза и два разных блока (подвижный и неподвижный.

Задача

Найдите силы натяжения T₁ и T₂ нитей abcd и ce в устройстве с подвижным блоком, изображенном на рисунке. Массы тел соответственно равны m₁ = 2 кг и m₂ = 3 кг.

Решение:

Как решать задачи по физике с блоками из раздела «Механика»

Обратите внимание, что сила натяжения оранжевой длинной веревки abcd меньше, чем сила натяжения короткой желтой веревки ce, хотя на короткой веревке груз висит более легкий, чем на длинной веревке. Получается, что сила натяжения уменьшается при постоянном движении троса.

Случай 6

В задачах на блоки грузы необязательно могут быть подвешены. Бывает так, что грузы скользят по плоскостям, потому как блок опускается под действием силы тяжести груза, прикрепленного к нему. Рассмотрим такой случай.

Задача

На рисунке изображена система движущихся тел, имеющих массы m₁ = m, m₂ = 4m, m₃ = m. Наклонная плоскость составляет с горизонтом угол α = 30°. Трение отсутствует. Определите силы натяжения нитей.

Как решать задачи по физике с блоками из раздела «Механика»

Решение:

Как решать задачи по физике с блоками из раздела «Механика»

Случай 7

Встречаются и более редкие задачи, которые вводят учащихся в замешательство. Это задачи связанные с реальными блоками. Основное отличие заключается в том, что мы учитываем массу блока, а следовательно учитываем его момент инерции. Для раскрутки блока с массой (реального блока) нужен ненулевой момент сил (в сторону вращения). Значит такие задачи отличаются тем, что силы натяжения одной и той же нити на таком блоке будут разные по обе стороны от перегиба нити на блоке. Звучит сложно? Понимаю… Сейчас мы разберемся как это работает на практике.

При описании движения по окружности (другими словами при описании вращения тела) удобно использовать величины угла поворота φ, угловой скорости ω, углового ускорения ε и момента сил M.

Роль массы при вращении тела (или движении по окружности) играет величина J = m·R². Будем называть эту величину моментом инерции. Тогда уравнение вращательного движения по окружности для точки можно записать в виде: J·ε = M. По своей сути последнее уравнение является удобной записью второго закона Ньютона в проекциях на тангенциальное (касатальное) направление при движении по окружности.

Момент инерции является мерой инертности тела. К примеру, камень на длинной верёвке будет раскрутить сложнее, чем на короткой.

Вопрос читателям канала: Почему велосипедной колесо до одной и той же угловой скорости легче раскрутить пацльцем, если прикладывать силу к ободу колеса, чем если прикладывать силу к спицам возле втулки?

Блоки из наших задач выше не являются материальными точками. Поэтому момент инерции для них выводится с помощью суммирования моментов инерции всех частичек (материальных точек), из которых состоит блок.

Наш блок мы будем представлять в виде сплошного диска, сделанного из однородного материала. Момент инерции такого блока J = 1/2·m·R². Возможно, вам непонятно откуда взялась 1/2 ? Тогда выведем формулу…

Вывод формулы для момента инерции кольца и диска (блока) при вращении вокруг оси, проходящей через центр симметрии диска (блока):

Как решать задачи по физике с блоками из раздела «Механика»

Задача с реальным блоком

Через блок, представляющий собой сплошной диск радиусом R, перекинута нить. На нити подвешены грузы массами m₁ и m₂ ( m₂ > m₁). Масса блока m. Определите разность сил натяжения нитей с обеих сторон блока и ускорение грузов. Считать, что нить нерастяжима и не может скользить по блоку.

Решение:

Как решать задачи по физике с блоками из раздела «Механика»

Как видно из решения, больше натягивается та часть нити, в сторону которой происходит вращение блока, то есть та часть, которая разматывает блок. Именно она и может порваться, ведь натяжение в ней больше. Обратим внимание, что разница натяжений в частях нити пропорциальна ускорение грузов и массе блока.

В этой статье разобрано 7 основных случаев, из которых состоят задачи на блоки. И я очень надеюсь, что вам было интересно почитать эту статью. Ибо время на неё было потрачено очень много.

💾 Метод виртуальных перемещений (скачать полезные задачи в pdf)

Ладно, пора заканчивать эту бесконечную статью… А то, боюсь, что до этого момента уже никто не дочитает. Тяжело читать статьи, в которых много математики. Есть и более приятный контент для расслабления.

📚 На Дзен недавно появился интересный канал «Читающий Лингвист». Автор канала пишет замечательные рецензии на зарубежную литературу, рассказывает о прочитанном и делает заметки на околокнижные лингвистические наблюдения.

Советую подписаться на этот авторский канал «Читающего Лингвиста»

Понравилась статья? Поставьте лайк, подпишитесь на канал! Вам не сложно, а мне очень приятно 🙂

Если Вам нужен репетитор по физике, математике или информатике/программированию, Вы можете написать мне или в мою группу Репетитор IT mentor в VK
Библиотека с книгами для физиков, математиков и программистов
Репетитор IT mentor в telegram

Блоки, нити, грузы и перегрузки

Задача 1.  К телу массой Блоки, нити, грузы и перегрузки кг подвешено на веревке тело массой Блоки, нити, грузы и перегрузки кг. Масса веревки Блоки, нити, грузы и перегрузки кг. Вся система движется ускоренно вверх под действием силы Блоки, нити, грузы и перегрузки Н, приложенной к верхнему телу (рис.1). Найти натяжение веревки в ее центре Блоки, нити, грузы и перегрузки и в точках крепления тел Блоки, нити, грузы и перегрузки и Блоки, нити, грузы и перегрузки.

блоки_перегрузки1

Рисунок 1

Представим всю систему единым телом массой Блоки, нити, грузы и перегрузки. Будем действовать на эту систему с силой Блоки, нити, грузы и перегрузки. Тогда по второму закону Ньютона

Блоки, нити, грузы и перегрузки

Откуда найдем ускорение системы:

Блоки, нити, грузы и перегрузки

Теперь вернемся к первому рисунку и запишем уравнения по второму закону Ньютона для верхнего  и нижнего грузов:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Откуда

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Очевидно, что посередине веревки сила ее натяжения Блоки, нити, грузы и перегрузки будет средним арифметическим найденных двух сил:

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки Н, Блоки, нити, грузы и перегрузки Н, Блоки, нити, грузы и перегрузки Н.

Задача 2. Маляр массой Блоки, нити, грузы и перегрузки кг работает в подвесном кресле. Ему понадобилось срочно подняться вверх. Он начинает тянуть веревку с такой силой, что сила давления на кресло уменьшается до Блоки, нити, грузы и перегрузки Н. Масса кресла Блоки, нити, грузы и перегрузки кг. Чему равно ускорение маляра? Чему равна нагрузка на блок?

блоки_перегрузки9

Рисунок 2

Расставим силы. Отметим все силы, действующие не маляра, и силы, действующие на люльку:

Теперь можно написать уравнения:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Вычитаем уравнения:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки м/сБлоки, нити, грузы и перегрузки.

Задача 3.

Через легкий неподвижный блок перекинута невесомая нерастяжимая нить с двумя грузами на концах, массы которых Блоки, нити, грузы и перегрузки и Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки. Система приходит в движение, причем нить не проскальзывает относительно блока. Определить ускорение грузов, силу натяжения нити и силу давления на ось блока.

блоки_перегрузки2

Рисунок 3

Понятно, что больший груз перетянет и начнет двигаться вниз, а меньший – подниматься. Запишем для них уравнение по второму закону:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Сложим уравнения:

Блоки, нити, грузы и перегрузки

Откуда

Блоки, нити, грузы и перегрузки

Теперь можно найти и силу натяжения нити:

Блоки, нити, грузы и перегрузки

Сила давления на блок равна Блоки, нити, грузы и перегрузки:

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки,
Блоки, нити, грузы и перегрузки.

Задача 4.

Через блок перекинута нить, на концах которой висят два груза с одинаковыми массами Блоки, нити, грузы и перегрузки . Одновременно на каждый из грузов кладут по перегрузку: справа  массой Блоки, нити, грузы и перегрузки, слева Блоки, нити, грузы и перегрузки (рис. 2). Определить ускорение системы, силу натяжения нити и силу давления перегрузков на основные грузы.

блоки_перегрузки3

Рисунок 4

Запишем уравнение по второму закону Ньютона для обоих грузов с учетом массы перегрузков:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Сложение уравнений даст нам

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Сила натяжения нити найдется подстановкой найденного ускорения в любое уравнение системы:

Блоки, нити, грузы и перегрузки

Определим силу давления меньшего перегрузка массой Блоки, нити, грузы и перегрузки на груз Блоки, нити, грузы и перегрузки:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Для большего перегрузка

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки.

Задача 5.

Через неподвижный блок перекинута нить, к которой подвешены три одинаковых груза массой Блоки, нити, грузы и перегрузки кг каждый (рис. 3). Найти ускорение системы и силу натяжения нити между грузами 1 и 2. Какой путь Блоки, нити, грузы и перегрузки пройдут грузы за первые Блоки, нити, грузы и перегрузки с движения? Трением пренебречь.

блоки_перегрузки4

Рисунок 5

Сначала мысленно объединим два груза слева в один и запишем уравнение по второму закону:

Блоки, нити, грузы и перегрузки

Для правого грузика

Блоки, нити, грузы и перегрузки

Складываем уравнения:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Определим силу натяжения нити между грузиками. Обозначим ее Блоки, нити, грузы и перегрузки. Тогда для самого нижнего грузика слева:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Определяем путь грузиков за 4 с:

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки м/сБлоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки Н, Блоки, нити, грузы и перегрузки м.

Задача 6.

Определить ускорение грузов и силы натяжения всех нитей в системе, изображенной на рисунке. Масса каждого груза Блоки, нити, грузы и перегрузки, массой блока пренебречь.

блоки_перегрузки5

Рисунок 6

Сначала определяем ускорение. Для этого записываем уравнение по второму закону для грузиков справа и слева, пока не вспоминая о том, что их там несколько. Для нас сейчас это  груз массой Блоки, нити, грузы и перегрузки  справа и Блоки, нити, грузы и перегрузки слева. Силу натяжения основной нити обозначим Блоки, нити, грузы и перегрузки:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Складываем уравнения:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Тогда

Блоки, нити, грузы и перегрузки

Рассмотрим теперь грузы, висящие справа. Обозначим натяжение нити между ними Блоки, нити, грузы и перегрузки. Для нижнего груза справа

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Осталось определить Блоки, нити, грузы и перегрузки и Блоки, нити, грузы и перегрузки. Для верхнего грузика слева

Блоки, нити, грузы и перегрузки

Откуда

Блоки, нити, грузы и перегрузки

А для нижнего грузика слева

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки, Блоки, нити, грузы и перегрузки.

Задача 7.

Два груза массами Блоки, нити, грузы и перегрузки г и Блоки, нити, грузы и перегрузки г соединены нерастяжимой нитью, перекинутой через невесомый блок (рис.). Грузы прижимаются друг к другу с постоянными силами Блоки, нити, грузы и перегрузки Н. Коэффициент трения между ними Блоки, нити, грузы и перегрузки. Найти ускорение, с которым движутся грузы.

блоки_перегрузки6

Рисунок 7

Записываем уравнение по второму закону:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Тогда

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Ответ: Блоки, нити, грузы и перегрузки.

Задача 8.

Невесомая нить, перекинутая через неподвижный блок, пропущена через щель (рис.). При движении нити на нее действует постоянная сила трения Блоки, нити, грузы и перегрузки. На концах нити подвешены грузы, массы которых Блоки, нити, грузы и перегрузки и Блоки, нити, грузы и перегрузки. Определить ускорение грузов.

блоки_перегрузки7

Рисунок 8

Давайте предположим, что Блоки, нити, грузы и перегрузки. Тогда левый груз начинает движение вверх, правый – вниз. Записываем для них уравнение  по второму закону с учетом наличия силы трения:

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Складывая уравнения, имеем:

Блоки, нити, грузы и перегрузки

Откуда

Блоки, нити, грузы и перегрузки

Но, если бы Блоки, нити, грузы и перегрузки, тогда

Блоки, нити, грузы и перегрузки

Тогда, чтобы учесть обе возможности, запишем ответ так:

Ответ: Блоки, нити, грузы и перегрузки.

Задача 9.

Через невесомый блок перекинута легкая нерастяжимая нить, к одному концу которой привязан груз массой Блоки, нити, грузы и перегрузки г, а по другому
скользит кольцо массой Блоки, нити, грузы и перегрузки г (рис.). С каким ускорением движется кольцо, если груз Блоки, нити, грузы и перегрузки  неподвижен?

блоки_перегрузки8

Рисунок 9

Сила трения кольца в данном случае и порождает силу натяжения нити, то есть это одна и та же сила. Поэтому для неподвижного груза

Блоки, нити, грузы и перегрузки

А для кольца

Блоки, нити, грузы и перегрузки

Блоки, нити, грузы и перегрузки

Ответ: 6 м/сБлоки, нити, грузы и перегрузки.

Черноуцан А.И. Кинематические связи в задачах динамики // Квант. — 1988. — № 2. — С. 57-62.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В задачах по механике часто встречается ситуация, когда движение тел не является свободным. Ограничения могут создавать твердые поверхности, нерастяжимые нити, жесткие стержни и т. п.

В простейших случаях мы учитываем подобные ограничения автоматически, часто даже не оговаривая их существования. Например, ускорение тела на плоскости мы направляем вдоль плоскости (учитывая наличие твердой поверхности), скорости буксира и баржи считаем одинаковыми (принимая во внимание присутствие нерастяжимого троса) и т. д. Однако иногда возникает необходимость выразить эти ограничения в виде специального уравнения, которое мы будем называть «кинематической связью». Начнем с такой задачи.

Задача 1. Найдите ускорения призмы массой m1 и куба массой m2, изображенных на рисунке 1, а. Трением пренебречь.

image1.jpg

а

 image2.jpg

б

Рис. 1.

Запишем второй закон Ньютона для каждого тела (в проекции на направление, совпадающее с соответствующим ускорением):

m1·g – sin α = m1·a1,                                       (1)

N·cos α = m2·a2.                                                 (2)

Мы учли, что по третьему закону Ньютона   т. е. N12 = N21 = N. Написанные два уравнения содержат три неизвестных. Третье уравнение — кинематическая связь между а1 и a2 — должно отразить тот факт, что куб и призма остаются все время в контакте друг с другом. Это можно сделать несколькими способами.

1) Рассмотрим два близких положения системы, разделенные промежутком времени Δt (рис. 1, б). В треугольнике ABC сторона АВ равна перемещению призмы Δx1, а сторона ВС — перемещению куба Δx2. Имеем

Δx2 = Δx1·tg α.

Разделив обе части равенства на Δt, получаем

υ2 = υ1·tg α.

Так как это соотношение справедливо для произвольного момента времени, из него следует искомое соотношение

a2 = a1·tg α.                                                        (3)

Такой подход к получению кинематической связи будем называть прямым методом.

2) Другой способ получения необходимой связи основан на переходе в такую систему отсчета, где условие контакта становится тривиальным. В системе отсчета, связанной с призмой (см. рис. 1, б), скорость куба   направлена вдоль ее поверхности, т. е. под углом α к вертикали. Записывая закон сложения скоростей

из соответствующего векторного треугольника получаем

υ2 = υ1·tg α и a2 = a1·tg α.

Решаем совместно уравнения (1)-(3) и находим

В этой задаче второй метод выглядит несколько искусственно. Однако в некоторых случаях именно правильный выбор системы отсчета позволяет существенно упростить проблему кинематических связей. Вот пример.

Задача 2. Клин высотой h с углом наклона α стоит на гладкой горизонтальной плоскости (рис. 2). Масса клина m1. С вершины клина начинает соскальзывать без трения брусок массой m2. Найдите ускорение клина и время соскальзывания бруска.

image3.jpg

Рис. 2.

Начнем со второго закона Ньютона. Запишем его для клина в проекции на горизонтальное направление, а для бруска пока что в векторной форме:

sin α = m1·a1,                                                  (4)

                                            (5)

Как и раньше,   т. е. N12 = N21 = N. Выбор направления осей для бруска связан с решением вопроса о кинематической связи.

Кинематическая связь между ускорениями должна отразить тот факт, что в процессе движения брусок все время остается на поверхности клина. Записать это в виде прямого уравнения оказывается непросто. Вместо этого перейдем в систему отсчета, связанную с клином. В этой системе скорость бруска   и его ускорение   направлены вдоль клина. Тогда из закона сложения скоростей   получаем закон сложения ускорений (см. рис. 2)

                                              (6)

Отсюда видно, что от неизвестных a1 и a2 удобнее перейти к неизвестным a1 и aотн, решив тем самым проблему кинематической связи. Подставляя равенство (6) в уравнение (5) и проектируя это уравнение на направления вдоль поверхности клина и перпендикулярно к ней, получаем

m2·sin α = m2·(aотнa1·cos α),                                  (5׳)

N m2·g·cos α = –m2·a1·sin α.                                              (5״)

Из уравнений (4), (5′) и (5″) находим

Для ответа на второй вопрос задачи нам не надо искать a1, так как время соскальзывания выражается как раз через aотн:

Отсюда находим

Как уже говорилось, ограничение на движение может определяться не только прямым контактом рассматриваемых тел, но и наличием в системе соединительных элементов — стержней, нитей и т. п. В большинстве случаев, даже если в условии это не оговорено, соединительные элементы считаются идеальными, т. е. нити — невесомыми и нерастяжимыми, стержни — невесомыми и абсолютно жесткими, для блоков кроме невесомости предполагается также отсутствие трения на оси. (На самом деле слово «невесомый» означает, что масса данного элемента пренебрежимо мала по сравнению с массами других тел системы, слово «нерастяжимый» — что удлинение элемента мало по сравнению с перемещениями тел системы и т. д.) Перед тем, как разбирать конкретные примеры, выясним, что следует из идеальности соединительных элементов. Рассмотрим три частных случая.

1. Невесомость нити. Напишем второй закон Ньютона для участка нити массой Δmн (рис. 3, а):

TT´ = Δmн·a.

Так как Δmн = 0, то TT´, т. е. сила натяжения не меняется вдоль нити.

2. Невесомость подвижного блока и отсутствие трения на его оси. Для раскручивания невесомого блока, в котором нет трения, не нужен вращательный момент. Из этого следует, что натяжение одной и той же нити по обе стороны блока одинаково (рис. 3, б), кроме того

T´ – 2T = 0, т. е. T´ = 2T.

3. Невесомость стержня. Это условие означает, что сумма сил и сумма моментов сил, действующих на стержень, равны нулю. Например, если к стержню приложены две силы, то они равны по модулю, противоположны по направлению и действуют вдоль стержня (рис. 3, в). (В отличие от нити, стержень может быть не только в растянутом, но и в сжатом состоянии.)

image9.jpg

а

б

в

Рис. 3.

Нерастяжимость и жесткость нитей и стержней приводит к появлению кинематических связей, которые мы разберем отдельно в следующих задачах.

Задача 3. Найдите ускорения грузов массой m1 и m2 после перерезания верхней нити (рис. 4). Нити и блок считать идеальными.

Рис. 4.

Выберем положительное направление оси вертикально вниз и запишем второй закон Ньютона для обоих тел:

T + m1·g = m1·a1,                                                (7)

m2·g – 2T = m2·a2                                               (8)

(мы учли свойства блока и нити, описанные выше).

Для нахождения кинематической связи между a1 и а2 применим, как мы его назвали, прямой метод. Запишем длину нити в виде

l = x2 + π·R + (x2x1),

где х1 — координата груза массой m1, x2 — координата центра блока, R — его радиус, и учтем, что длина нити при движении грузов не изменяется. Тогда для перемещений грузов получим соотношение

x2 – Δx1 = 0,

откуда

2 – υ1 = 0,

2a2a1 = 0.                                                        (9)

Решая уравнения (7)-(9) совместно, находим

(Обратите внимание на то, что a1 > g. Подумайте, почему получился такой ответ.)

Задача 4. Невесомый стержень с одинаковыми грузами массой m на концах шарнирно закреплен на оси, которая делит его длину в отношении 2:1 (рис. 5). Стержень удерживают в горизонтальном положении и в некоторый момент освобождают. Найдите ускорения грузов сразу после этого, а также давление стержня на ось в этот момент.

image4.jpg

Рис. 5.

Запишем второй закон Ньютона для грузов, выбрав положительные направления осей в сторону соответствующих ускорений:

m·gN1 = m·a1,                                        (10)

N2m·g = m·a2,                                        (11)

где N1 и N2 — силы, действующие на грузы со стороны стержня. Так как сумма моментов сил, действующих на невесомый стержень, равна нулю, то

где l — длина стержня. Отсюда

N2 = 2N1.                                          (12)

Осталось записать кинематическую связь между a1 и а2. Для этого изобразим на рисунке 5 положение стержня через малый промежуток времени Δt после начала движения. Из подобия получаем

x1 = 2x2,

откуда

υ1 = 2υ2,

a1 = 2a2.                                           (13)

Решая совместно уравнения (10)-(13), находим

Так как сумма сил, действующих на невесомый стержень, равна нулю, то сила реакции оси (равная по модулю силе давления на ось) равна

***

Во многих задачах, рассчитанных на применение закона сохранения энергии, требуется найти скорости тел к определенному моменту времени. В этом случае надо установить кинематические связи не между ускорениями, а между скоростями тел. При решении таких задач полезно использовать тот факт, что полная работа, совершаемая любым идеальным соединительным элементом, равна нулю. Физическая причина этого состоит в том, что в таком элементе не может запасаться никакая энергия — ни кинетическая (его масса равна нулю), ни потенциальная (элемент не деформируется).

Последнее утверждение требует пояснения. Может показаться, что даже при малой деформации очень жесткого стержня (или другого элемента) потенциальная анергия его деформации   может быть велика — ведь она пропорциональна жесткости стержня k. Но если учесть, что сила F = k·x, возникающая при деформации, остается конечной при   (она определяется движением тел, закрепленных на стержне), то потенциальная энергия   при больших k оказывается очень малой.

Эта и следующая задачи по своему уровню несколько выходят за пределы задач, предлагаемых обычно на вступительных экзаменах в вузы. Однако знакомство с ними для абитуриентов окажется небесполезным.

Задача 5. Груз массой М сначала удерживают на уровне блоков, а затем освобождают (рис. 6). Считая нити и блоки идеальными, размеры блоков малыми по сравнению с расстоянием 2l между ними, а массу m грузиков, висящих на концах нитей, известной, найдите скорость груза в тот момент, когда нити составляют угол α с вертикалью. Полученный ответ исследуйте.

image5.jpg

Рис. 6.

К рассматриваемому моменту груз массой М опустился на H = l·ctg α, а грузики массой m поднялись на   каждый. Согласно закону сохранения энергии,

                  (14)

Для того чтобы найти связь между υ и V, можно, например, применить прямой метод. Из рисунка 6

l2 + H2 = L2.

Дифференцируя по времени (и учитывая, что l´ = 0), находим

2H·H´ = 2L·.

Так как L´ = υ, H´ = V, a H/L = cos α, то получаем искомую связь

υ = cos α.                                                       (15)

Однако проще получить это соотношение из следующих соображений. Раз расстояние L от груза массой М до блока в рассматриваемый момент увеличивается со скоростью υ (с такой скоростью вытягивается нить), то проекция скорости   этого груза на направление нити должна быть равна υ. Учитывая, что скорость   направлена вертикально, получаем уравнение (15).

Из уравнений (14) и (15) находим

Выясним, будет ли центральный груз все время опускаться (мы считаем нити очень длинными) или при каком-то α он остановится и начнет подниматься. Уравнение V = 0 (условие остановки) преобразуется к виду

т. е. остановка и обратное движение грузов происходят только при М < 2m. Если М > 2m, то центральный груз будет все время перевешивать и его скорость будет неограниченно возрастать (  при   — проверьте это сами). Если же М = 2m, то при опускании центрального груза система все ближе подходит к равновесию, ускорения грузов стремятся к нулю, а их скорости — к предельному значению   (убедитесь в этом самостоятельно).

Хотелось бы обратить внимание на то, что при использовании закона сохранения энергии сила натяжения нити вообще не вошла в расчеты.

Последний пример иллюстрирует методы получения кинематических связей при движении твердых стержней (или других твердых связей). Напомним, что при движении твердого тела расстояние между любыми двумя его точками не изменяется.

Задача 6. Невесомый стержень длиной l с грузами массой m на концах соскальзывает по сторонам прямого двугранного угла (рис. 7, а). Найдите скорости грузов в тот момент, когда стержень составляет с горизонтом угол α. Трения нет. В начальный момент стержень находился в вертикальном положении.

image6.jpg  

а

image7.jpg

б

Рис. 7.

Из закона сохранения энергии получаем

                                       (16)

где y = sin α — координата второго груза в рассматриваемый момент. Для получения кинематической связи можно применить прямой метод, как это было сделано в предыдущей задаче (проделайте это сами). Быстрее же и нагляднее кинематическая связь получается из таких соображений. Раз расстояние между грузами остается неизменным, то в каждый момент скорость, с которой первый груз «удаляется» от второго, равна скорости, с которой второй груз «приближается» к первому. Иначе говоря, проекции скоростей грузов на стержень в любой момент времени одинаковы (см. рис. 7, a):

υ1·cos α = υ2·sin α.                                             (17)

Подставляя (17) в (16), находим

В кинематике твердого тела часто используется «разложение» сложного движения на поступательное и вращательное. Чтобы продемонстрировать этот метод, применим его для получения кинематической связи (17). В системе отсчета, связанной с первым грузом, стержень совершает чисто вращательное движение. Значит, в этой системе скорость второго груза   направлена перпендикулярно стержню. Применяя закон сложения скоростей   (см. рис. 7, б), получаем соотношение (17).

Может показаться, что найденные выражения для скоростей дают полное решение задачи. Однако в этой задаче содержится поучительный подвох, разбором которого мы и закончим статью.

Решение было бы полным, если бы второй груз не мог оторваться от вертикальной стены. (Для этого можно было бы, например, посадить грузы на гладкие штанги, а стержень присоединить к ним шарнирно). Однако в нашем варианте задачи (см. рис. 7, а) при некотором угле произойдет отрыв второго груза от вертикальной стены, после чего найденный ответ будет неприменим. Дело в том, что горизонтальный импульс системы определяется только движением первого груза, скорость которого, в соответствии с выражением для υ1, до некоторого угла возрастает, а потом начинает убывать. Это означает, что в какой-то момент должна изменить направление внешняя горизонтальная сила, действующая на систему. Но есть только одна горизонтальная сила — сила реакции вертикальной стенки, которая не может изменить свое направление. Таким образом, в тот момент, когда реакция стенки обращается в нуль, происходит отрыв второго груза от стенки. Дифференцируя выражение для υ1 по времени, находим, что υ1 максимальна при sin α = 2/3. При угле   и происходит отрыв стержня от вертикальной стенки.

Упражнения

1. Найдите ускорения стержня и клина, изображенных на рисунке 8. Трения нет.

Рис. 8.

2. Найдите натяжение нити в системе, изображенной на рисунке 9.

Рис. 9.

3. (для любителей каверз и ловушек). Чему равны ускорения грузов в системе, изображенной на рисунке 10?

image8.jpg

Рис. 10.

4. Найдите ускорение клина на рисунке 11. Трения нет. Указание. Примените метод, использованный при решении задачи 2 в статье.

Рис. 11.

Ответы

1.

2.

3. a1 = a2 = g.

4.

Кинематические связи

Кинематические связи – уравнения, связывающие между собой кинематические характеристики (координата, скорость, ускорение) тел системы.

Зачастую связи между кинематическими характеристиками различных тел системы возникают благодаря замене реальных тел на физические модели. Физическая модель – это упрощенная версия некоторого явления или тела, которая сохраняет свойства этого явления или тела, исследуемые в данной задаче.

Разберем наиболее распространенные физические модели и кинематические связи, появляющиеся при их использовании.

1. Модель абсолютно твердого тела (АТТ).

Абсолютно твердым телом называется тело, расстояние между любыми двумя точками которого постоянно. Надо понимать, что указанное свойство присуще абсолютно твердому телу всегда, независимо от взаимодействия его с другими телами и от способа движения этого тела. Поэтому если мы рассмотрим две произвольные точки АТТ (A) и (B) , то в любой момент времени проекции скоростей этих точек (V_) и (V_) на ось (x) , соединяющую (A) и (B) (см. рисунок 1), должны быть равны друг другу, иначе точка (B) будет «убегать» от точки (A) , или наоборот, точка (A) будет «догонять» точку (B) , что невозможно, так как расстояние между ними остается постоянным. Таким образом, в данном случае уравнение кинематической связи связывает проекции скоростей:

Если рассмотреть две оси, – (y) и (z) – перпендикулярные скоростям (V_A) и (V_B) точек (A) и (B) соответственно и проходящие через эти точки, и точку пересечения этих осей обозначить как (O) (см. рисунок 2), то, записывая аналогичные (1) уравнения кинематической связи для точек (O) и (A) на оси (y) и (O) и (B) на оси (z) , получим:

Отсюда следует, что скорость точки (O) равна нулю: (V_O=0) . Такой показатель скорости, а также то обстоятельство, что вокруг точки (O) в данный момент происходит вращение, позволяют назвать точку (O) мгновенным центром вращения (МЦВ) изучаемого нами тела. Стоит понимать, что с течением времени положение МЦВ в пространстве способно изменяться, и к тому же он не обязан быть одной из точек тела и может лежать вне его (например, МЦВ колеса автомобиля при торможении).

В силу того, что тело вращается вокруг точки (O) , для описания его вращения можно использовать понятия угла поворота (φ) , угловой скорости (ω) и углового ускорения (ε) . Учитывая тот факт, что расстояние между любыми двумя точками тела постоянно, для любых двух точек (A) и (B) , находящихся на одинаковом расстоянии от МЦВ, мы вправе записать:

а для любых двух точек (B) и (C) , лежащих на одной прямой с точкой (O) на расстояниях (OB=r) и (OC=R) , следующее:

Выражения (2) и (3), как и предыдущие, являются уравнениями кинематической связи. Геометрическая интерпретация уравнения (3) представлена на рисунке 2: скорости и расстояния являются катетами подобных прямоугольных треугольников.

2. Нерастяжимая нить.

Нерастяжимая нить – это частный случай, разновидность абсолютно твердого тела, в которой расстояние между точками сохраняется вдоль единственного направления – контура нити. Для этой модели равными будут проекции скоростей любых двух точек (A) и (B) на направление нити в данных точках, что является следствием уравнения (1):

Разберем пример задачи с использованием кинематических связей.

Задача 1 («3800 задач по физике для школьников и поступающих в вузы», 1.90º). Тяжелый ящик перемещают с помощью двух тракторов, движущихся со скоростями (overrightarrow ) и (overrightarrow ) , образующими угол (α) . Как направлена и чему равна скорость ящика в тот момент, когда канаты натянуты и параллельны векторам (overrightarrow ) и (overrightarrow ) ?

Решение задачи 1.

Точка (O) (см. рисунок 4) является точкой ящика, движущегося поступательно, поэтому для определения скорости ящика достаточно найти скорость этой точки. В то же время (O) – это точка обоих канатов, поэтому ее скорость (v) удовлетворяет двум уравнениям кинематической связи, для каждого из канатов. Введя угол (β) между скоростями (v) и (v_1) , можно записать эти уравнения в виде:

(begin v_2=vcos(α-β)=v(cosα cosβ+sinα sinβ), \ v_1=vcosβ\ end) (4)

Разделив первое уравнение системы (4) на второе, получим:

Особенно важными являются задачи, в которых фигурируют системы блоков. Написание уравнения кинематической связи при их решении является нетривиальной проблемой. Рассмотрим два основных способа получения уравнения кинематической связи на примере простейшей задачи с блоками.

Задача 2 («Задачи по физике» под ред. О.Я. Савченко, 1.5.1.).

Скорость груза (A) (см. рисунок 5) равна (v_A) . Чему равна скорость груза (B) ?

Решение задачи 2.

Способ 1. Уравнение длины нити.

Введем ось (x) , направленную, как на рисунке 6. Введем обозначения: (x_1) – координата подвижного блока, (x_2) – координата неподвижного блока, (x_B) – координата груза (B) . Тогда, приняв длину зеленой нити за (L) , рассмотрим два близких момента времени (t) и (t’) ( (t’-t=∆t→0) ) и запишем:

(begin L = x_1 + (x_1 – x_2) + (x_B – x_2) + πR_1 + πR_2, \ L = > + (> – x_2) + (> – x_2) + πR_1 + πR_2 \ end) , (5)

где (R_1) и (R_2) – радиусы блоков. Вычитаем из первого уравнения системы (5) второе и делим результат на (∆t) . Получаем:

Таким образом, мы вывели уравнение кинематической связи (6) для грузов (A) и (B) , где (v_A) и (v_B) – проекции скоростей грузов на ось (x) (то есть уравнение (6) связывает также направления скоростей грузов). Аналогичную связь можно записать и для ускорений грузов, если рассмотреть изменение скорости за некоторый период времени точно так же, как мы рассматривали изменение координаты.

Способ 2. Метод малых (виртуальных) перемещений.

Представим мысленно, что за некоторый малый промежуток времени (∆t) груз (A) сместился вниз на расстояние (∆x) (см. рисунок 7). Для того чтобы такое смещение произошло, вертикальные участки зеленой нити должны увеличиться на (∆x) справа и слева от подвижного блока. В нашей системе длина нити в левой части системы увеличилась на (2∆x) . Из-за этого в силу нерастяжимости нити длина нити в правой части системы должна уменьшиться на (2∆x) , а это означает, что груз (B) за интервал времени (∆t) сместится вверх на расстояние (2∆x) . Таким образом:

Разделив обе части уравнения (7) на (∆t) , получим:

Мы получили уравнение кинематической связи, аналогичное уравнению (6), но в этот раз не учитывающее направление скоростей. Направление скоростей мы учли при выводе этого уравнения.

Список использованной литературы:

  1. «3800 задач по физике для школьников и поступающих в вузы».
  2. «Задачи по физике» под редакцией О.Я. Савченко.

Задачи для самостоятельного решения:

1) «Задачи по физике» под редакцией О.Я. Савченко.

1.5.4, 1.5.5*, 1.5.9*, 1.5.14*, 1.5.16

2) «Задачи Московских городских олимпиад по физике. 1986-2005» Варламов С.Д. и др.

3) «1001 задача по физике с решениями» Гельфгат И.М. и др.

Вопросы по содержанию статьи:

1) Выберите верное уравнение кинематической связи для двух точек АТТ, изображенного на рисунке.

2) Где находится МЦВ колеса, движущегося горизонтально без проскальзывания?

II. (B) .

3) Зависит ли положение МЦВ тела в пространстве от системы отсчета, в которой мы рассматриваем движение данного тела?

Черноуцан А.И. Кинематические связи в задачах динамики // Квант

Черноуцан А.И. Кинематические связи в задачах динамики // Квант. — 1988. — № 2. — С. 57-62.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

В задачах по механике часто встречается ситуация, когда движение тел не является свободным. Ограничения могут создавать твердые поверхности, нерастяжимые нити, жесткие стержни и т. п.

В простейших случаях мы учитываем подобные ограничения автоматически, часто даже не оговаривая их существования. Например, ускорение тела на плоскости мы направляем вдоль плоскости (учитывая наличие твердой поверхности), скорости буксира и баржи считаем одинаковыми (принимая во внимание присутствие нерастяжимого троса) и т. д. Однако иногда возникает необходимость выразить эти ограничения в виде специального уравнения, которое мы будем называть «кинематической связью». Начнем с такой задачи.

Задача 1. Найдите ускорения призмы массой m1 и куба массой m2, изображенных на рисунке 1, а. Трением пренебречь.

Запишем второй закон Ньютона для каждого тела (в проекции на направление, совпадающее с соответствующим ускорением):

Мы учли, что по третьему закону Ньютона т. е. N12 = N21 = N. Написанные два уравнения содержат три неизвестных. Третье уравнение — кинематическая связь между а1 и a2 — должно отразить тот факт, что куб и призма остаются все время в контакте друг с другом. Это можно сделать несколькими способами.

1) Рассмотрим два близких положения системы, разделенные промежутком времени Δt (рис. 1, б). В треугольнике ABC сторона АВ равна перемещению призмы Δx1, а сторона ВС — перемещению куба Δx2. Имеем

Разделив обе части равенства на Δt, получаем

Так как это соотношение справедливо для произвольного момента времени, из него следует искомое соотношение

Такой подход к получению кинематической связи будем называть прямым методом.

2) Другой способ получения необходимой связи основан на переходе в такую систему отсчета, где условие контакта становится тривиальным. В системе отсчета, связанной с призмой (см. рис. 1, б), скорость куба направлена вдоль ее поверхности, т. е. под углом α к вертикали. Записывая закон сложения скоростей

из соответствующего векторного треугольника получаем

Решаем совместно уравнения (1)-(3) и находим

В этой задаче второй метод выглядит несколько искусственно. Однако в некоторых случаях именно правильный выбор системы отсчета позволяет существенно упростить проблему кинематических связей. Вот пример.

Задача 2. Клин высотой h с углом наклона α стоит на гладкой горизонтальной плоскости (рис. 2). Масса клина m1. С вершины клина начинает соскальзывать без трения брусок массой m2. Найдите ускорение клина и время соскальзывания бруска.

Начнем со второго закона Ньютона. Запишем его для клина в проекции на горизонтальное направление, а для бруска пока что в векторной форме:

(5)

Как и раньше, т. е. N12 = N21 = N. Выбор направления осей для бруска связан с решением вопроса о кинематической связи.

Кинематическая связь между ускорениями должна отразить тот факт, что в процессе движения брусок все время остается на поверхности клина. Записать это в виде прямого уравнения оказывается непросто. Вместо этого перейдем в систему отсчета, связанную с клином. В этой системе скорость бруска и его ускорение направлены вдоль клина. Тогда из закона сложения скоростей получаем закон сложения ускорений (см. рис. 2)

(6)

Отсюда видно, что от неизвестных a1 и a2 удобнее перейти к неизвестным a1 и aотн, решив тем самым проблему кинематической связи. Подставляя равенство (6) в уравнение (5) и проектируя это уравнение на направления вдоль поверхности клина и перпендикулярно к ней, получаем

Из уравнений (4), (5′) и (5″) находим

Для ответа на второй вопрос задачи нам не надо искать a1, так как время соскальзывания выражается как раз через aотн:

Как уже говорилось, ограничение на движение может определяться не только прямым контактом рассматриваемых тел, но и наличием в системе соединительных элементов — стержней, нитей и т. п. В большинстве случаев, даже если в условии это не оговорено, соединительные элементы считаются идеальными, т. е. нити — невесомыми и нерастяжимыми, стержни — невесомыми и абсолютно жесткими, для блоков кроме невесомости предполагается также отсутствие трения на оси. (На самом деле слово «невесомый» означает, что масса данного элемента пренебрежимо мала по сравнению с массами других тел системы, слово «нерастяжимый» — что удлинение элемента мало по сравнению с перемещениями тел системы и т. д.) Перед тем, как разбирать конкретные примеры, выясним, что следует из идеальности соединительных элементов. Рассмотрим три частных случая.

1. Невесомость нити. Напишем второй закон Ньютона для участка нити массой Δmн (рис. 3, а):

Так как Δmн = 0, то TT´, т. е. сила натяжения не меняется вдоль нити.

2. Невесомость подвижного блока и отсутствие трения на его оси. Для раскручивания невесомого блока, в котором нет трения, не нужен вращательный момент. Из этого следует, что натяжение одной и той же нити по обе стороны блока одинаково (рис. 3, б), кроме того

3. Невесомость стержня. Это условие означает, что сумма сил и сумма моментов сил, действующих на стержень, равны нулю. Например, если к стержню приложены две силы, то они равны по модулю, противоположны по направлению и действуют вдоль стержня (рис. 3, в). (В отличие от нити, стержень может быть не только в растянутом, но и в сжатом состоянии.)

Нерастяжимость и жесткость нитей и стержней приводит к появлению кинематических связей, которые мы разберем отдельно в следующих задачах.

Задача 3. Найдите ускорения грузов массой m1 и m2 после перерезания верхней нити (рис. 4). Нити и блок считать идеальными.

Выберем положительное направление оси вертикально вниз и запишем второй закон Ньютона для обоих тел:

(мы учли свойства блока и нити, описанные выше).

Для нахождения кинематической связи между a1 и а2 применим, как мы его назвали, прямой метод. Запишем длину нити в виде

где х1 — координата груза массой m1, x2 — координата центра блока, R — его радиус, и учтем, что длина нити при движении грузов не изменяется. Тогда для перемещений грузов получим соотношение

Решая уравнения (7)-(9) совместно, находим

(Обратите внимание на то, что a1 > g. Подумайте, почему получился такой ответ.)

Задача 4. Невесомый стержень с одинаковыми грузами массой m на концах шарнирно закреплен на оси, которая делит его длину в отношении 2:1 (рис. 5). Стержень удерживают в горизонтальном положении и в некоторый момент освобождают. Найдите ускорения грузов сразу после этого, а также давление стержня на ось в этот момент.

Запишем второй закон Ньютона для грузов, выбрав положительные направления осей в сторону соответствующих ускорений:

где N1 и N2 — силы, действующие на грузы со стороны стержня. Так как сумма моментов сил, действующих на невесомый стержень, равна нулю, то

где l — длина стержня. Отсюда

Осталось записать кинематическую связь между a1 и а2. Для этого изобразим на рисунке 5 положение стержня через малый промежуток времени Δt после начала движения. Из подобия получаем

Решая совместно уравнения (10)-(13), находим

Так как сумма сил, действующих на невесомый стержень, равна нулю, то сила реакции оси (равная по модулю силе давления на ось) равна

Во многих задачах, рассчитанных на применение закона сохранения энергии, требуется найти скорости тел к определенному моменту времени. В этом случае надо установить кинематические связи не между ускорениями, а между скоростями тел. При решении таких задач полезно использовать тот факт, что полная работа, совершаемая любым идеальным соединительным элементом, равна нулю. Физическая причина этого состоит в том, что в таком элементе не может запасаться никакая энергия — ни кинетическая (его масса равна нулю), ни потенциальная (элемент не деформируется).

Последнее утверждение требует пояснения. Может показаться, что даже при малой деформации очень жесткого стержня (или другого элемента) потенциальная анергия его деформации может быть велика — ведь она пропорциональна жесткости стержня k. Но если учесть, что сила F = k·x, возникающая при деформации, остается конечной при (она определяется движением тел, закрепленных на стержне), то потенциальная энергия при больших k оказывается очень малой.

Эта и следующая задачи по своему уровню несколько выходят за пределы задач, предлагаемых обычно на вступительных экзаменах в вузы. Однако знакомство с ними для абитуриентов окажется небесполезным.

Задача 5. Груз массой М сначала удерживают на уровне блоков, а затем освобождают (рис. 6). Считая нити и блоки идеальными, размеры блоков малыми по сравнению с расстоянием 2l между ними, а массу m грузиков, висящих на концах нитей, известной, найдите скорость груза в тот момент, когда нити составляют угол α с вертикалью. Полученный ответ исследуйте.

К рассматриваемому моменту груз массой М опустился на H = l·ctg α, а грузики массой m поднялись на каждый. Согласно закону сохранения энергии,

(14)

Для того чтобы найти связь между υ и V, можно, например, применить прямой метод. Из рисунка 6

Дифференцируя по времени (и учитывая, что l´ = 0), находим

Так как L´ = υ, H´ = V, a H/L = cos α, то получаем искомую связь

Однако проще получить это соотношение из следующих соображений. Раз расстояние L от груза массой М до блока в рассматриваемый момент увеличивается со скоростью υ (с такой скоростью вытягивается нить), то проекция скорости этого груза на направление нити должна быть равна υ. Учитывая, что скорость направлена вертикально, получаем уравнение (15).

Из уравнений (14) и (15) находим

Выясним, будет ли центральный груз все время опускаться (мы считаем нити очень длинными) или при каком-то α он остановится и начнет подниматься. Уравнение V = 0 (условие остановки) преобразуется к виду

т. е. остановка и обратное движение грузов происходят только при М 2m, то центральный груз будет все время перевешивать и его скорость будет неограниченно возрастать ( при — проверьте это сами). Если же М = 2m, то при опускании центрального груза система все ближе подходит к равновесию, ускорения грузов стремятся к нулю, а их скорости — к предельному значению (убедитесь в этом самостоятельно).

Хотелось бы обратить внимание на то, что при использовании закона сохранения энергии сила натяжения нити вообще не вошла в расчеты.

Последний пример иллюстрирует методы получения кинематических связей при движении твердых стержней (или других твердых связей). Напомним, что при движении твердого тела расстояние между любыми двумя его точками не изменяется.

Задача 6. Невесомый стержень длиной l с грузами массой m на концах соскальзывает по сторонам прямого двугранного угла (рис. 7, а). Найдите скорости грузов в тот момент, когда стержень составляет с горизонтом угол α. Трения нет. В начальный момент стержень находился в вертикальном положении.

Из закона сохранения энергии получаем

(16)

где y = sin α — координата второго груза в рассматриваемый момент. Для получения кинематической связи можно применить прямой метод, как это было сделано в предыдущей задаче (проделайте это сами). Быстрее же и нагляднее кинематическая связь получается из таких соображений. Раз расстояние между грузами остается неизменным, то в каждый момент скорость, с которой первый груз «удаляется» от второго, равна скорости, с которой второй груз «приближается» к первому. Иначе говоря, проекции скоростей грузов на стержень в любой момент времени одинаковы (см. рис. 7, a):

Подставляя (17) в (16), находим

В кинематике твердого тела часто используется «разложение» сложного движения на поступательное и вращательное. Чтобы продемонстрировать этот метод, применим его для получения кинематической связи (17). В системе отсчета, связанной с первым грузом, стержень совершает чисто вращательное движение. Значит, в этой системе скорость второго груза направлена перпендикулярно стержню. Применяя закон сложения скоростей (см. рис. 7, б), получаем соотношение (17).

Может показаться, что найденные выражения для скоростей дают полное решение задачи. Однако в этой задаче содержится поучительный подвох, разбором которого мы и закончим статью.

Решение было бы полным, если бы второй груз не мог оторваться от вертикальной стены. (Для этого можно было бы, например, посадить грузы на гладкие штанги, а стержень присоединить к ним шарнирно). Однако в нашем варианте задачи (см. рис. 7, а) при некотором угле произойдет отрыв второго груза от вертикальной стены, после чего найденный ответ будет неприменим. Дело в том, что горизонтальный импульс системы определяется только движением первого груза, скорость которого, в соответствии с выражением для υ1, до некоторого угла возрастает, а потом начинает убывать. Это означает, что в какой-то момент должна изменить направление внешняя горизонтальная сила, действующая на систему. Но есть только одна горизонтальная сила — сила реакции вертикальной стенки, которая не может изменить свое направление. Таким образом, в тот момент, когда реакция стенки обращается в нуль, происходит отрыв второго груза от стенки. Дифференцируя выражение для υ1 по времени, находим, что υ1 максимальна при sin α = 2/3. При угле и происходит отрыв стержня от вертикальной стенки.

1. Найдите ускорения стержня и клина, изображенных на рисунке 8. Трения нет.

2. Найдите натяжение нити в системе, изображенной на рисунке 9.

3. (для любителей каверз и ловушек). Чему равны ускорения грузов в системе, изображенной на рисунке 10?

4. Найдите ускорение клина на рисунке 11. Трения нет. Указание. Примените метод, использованный при решении задачи 2 в статье.

1.

2.

4.

Уравнение кинематической связи в системе блоков

Найдите модуль ускорения A груза массой М в системе, изображённой на рисунке. Трения нет, блоки невесомы, нити лёгкие и нерастяжимые, их участки, не лежащие на блоках, вертикальны, масса второго груза m, ускорение свободного падения равно g.

Введём координатную ось Х, направленную вниз, и отметим на ней координаты грузов М и m: xM и xm (см. рис.). Пронумеруем блоки цифрами 1, 2, 3 и укажем на рисунке силы натяжения нитей и силы тяжести, действующие на грузы. Согласно условию, в силу невесомости нитей и блоков, а также отсутствия сил трения, первая нить, охватывающая блоки 1 и 2, натянута с силой T, а вторая — с силой 2T, так что на груз m действует направленная вверх сила 4T. Если сместить груз М вдоль оси Х вниз на расстояние ΔxM, то в силу нерастяжимости нитей блок 2 сместится вверх, как следует из рисунка, на −ΔxM/2, а блок 3 и груз m — вверх на Δxm = −ΔxM/4. Таким образом, ΔxM + 4Δxm = 0.

Отсюда получаем уравнение кинематической связи: A + 4a = 0, где A и a — проекции ускорений грузов М и m на ось Х. Уравнения движения грузов (второй закон Ньютона) в проекциях на ось Х имеют вид: МA = МgT, ma = mg – 4T. Решая полученную систему из трех уравнений, находим, что модуль ускорения груза М равен:

Ответ:

Критерии оценивания выполнения задания Баллы
Приведено полное решение, включающее следующие элементы:

I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом (в данном случае: второй закон Ньютона) для тел системы в проекциях на вертикальную ось координат, а также уравнение кинематической связи для ускорений тел);

II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений величин, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);

III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

IV) представлен правильный ответ с указанием единиц измерения искомой величины.

3
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков. Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т. п.).

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

Отсутствует пункт IV, или в нём допущена ошибка (в том числе в записи единиц измерения величины).

2
Представлены записи, соответствующие одному из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

В решении отсутствует одна из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

В одной из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

1
Все случаи решения, которые не соответствуют вышеуказанным критериям выставления оценок в 1, 2, 3 балла 0
Максимальный балл 3

Здравствуйте, в решении ускорение m направлено вниз: ma=mg-4T. И ускорение M вниз: MA=Mg-T. Но такого, кажется, быть не может.

Ось направлена вниз, а и — проекции ускорений на эту ось. Если, подставив конкретные и , окажется, что, допустим, то это значит, что ускорение направлено вверх, а если то вниз.

В этой задаче ускорения грузов направлены в разные стороны.

[spoiler title=”источники:”]

http://alsak.ru/item/222-7.html

http://phys-ege.sdamgia.ru/problem?id=7805

[/spoiler]

Определить ускорение грузов в системе блоков с грузами, изображенной на рисунке. Массой блоков и нитей пренебречь. Нити считать нерастяжимыми. В какую сторону будут вращаться блоки при движении грузов?
Решение: {предлагаю такой подход}
I.
Начальные высоты грузов: h1 и h2.
Высота Н центра масс рассчитывается из соотношения: Н*(m1+m2) = m1*(H–h1) + m2*(H–h2). (*) Она постоянна.
Дифференцируем (*) по времени (dhi/dt = Vi):
0 = – m1*V1 – m2*V2. Отсюда:
V2 = – (m1/m2)*V1. (**)
Поскольку система замкнутая, то движущей силой а ней является f = (m1 – m2)g, движущейся массой (m1 + m2), и ускорение движения масс: а = (m1 – m2)g/(m1 + m2). {При (m1 – m2) > для m1 оно направлено вниз}.
В начальный момент считаем: V1 = V2 = 0.
Тогда: V1 = at = (m1 – m2)gt/(m1 + m2).
И из (**): V2 = – (m1/m2)*V1 = (m1/m2)*((m1 – m2)gt/(m1 + m2)).

II.Направления вращений блоков будет зависеть от разности (m1 – m2).
При (m1 – m2) = 0 движения нет.
При (m1 – m2) > 0 грузы вначале сближаются (по высоте).
При (m1 – m2) < 0 сразу начинают расходиться.

Владимир АлександровичВысший разум (102851)

3 года назад

Вспомни. Ведь если ты подпрыгнешь в движущемся вагоне вертикально вверх, то приземляешься в той же точке, хотя вагон за это время успел проехать какое-то расстояние. Дело в том, что ты тоже движешься вместе с вагоном.

Добавить комментарий