Как найти ускорение с которым тело падает

Определение

Свободное падение — это движение тела только под действием силы тяжести.

В действительности при падении на тело действует не только сила тяжести, но и сила сопротивления воздуха. Но в ряде задач сопротивлением воздуха можно пренебречь. Воздух не оказывает значимого сопротивления падающему мячу или тяжелому грузу. Но падение пера или листа бумаги можно рассматривать только с учетом двух сил: небольшая масса тела в сочетании с большой площадью его поверхности препятствует свободному падению вниз.

Внимание!

В вакууме все тела падают с одинаковым ускорением, так как в нем отсутствует среда, которая могла бы дать сопротивление. Так, брошенные в условиях вакуума с одинаковой высоты перо и молоток приземлятся в одно и то же время!

Ускорение свободного падения

Ускорение свободного падения — векторная физическая величина. Вектор ускорения свободного падения всегда направлен вниз к центру Земли. Обозначается как g.

Единица измерения ускорения свободного падения — 1 м/с2.

Модуль ускорения свободного падения — скалярная величина. Обозначается как g. Численно равна 9,8 м/с2. При решении задач это значение округляется до целых: g = 10 м/с2.

Свободное падение

Свободное падение — частный случай равноускоренного прямолинейного движения. Если тело отпустить с некоторой высоты, оно будет падать с ускорением свободного падения без начальной скорости. Тогда его кинематические величины можно определить по следующим формулам:

Скорость

v = gt

v — скорость, g — ускорение свободного падения, t — время, в течение которого падало тело

Пример №1. Тело упало без начальной скорости с некоторой высоты. Найти его скорость в конечный момент времени t, равный 3 с.

Подставляем данные в формулу и вычисляем:

v = gt = 10∙3 = 30 (м/с).

Перемещение при свободном падении тела равно высоте, с которой оно начало падать. Высота обозначается буквой h.

Внимание! Перемещение равно высоте, с которой падало тело, только в том случае, если t — полное время падения.

Высота падения

Если известна скорость падения тела в момент времени t, перемещение (высота) определяется по следующей формуле.

Если скорость тела в момент времени t неизвестна, но для нахождения перемещения (высоты) используется формула:

Если неизвестно время, в течение которого падало тело, но известна его конечная скорость, перемещение (высота) вычисляется по формуле:

Пример №2. Тело упало с высоты 5 м. Найти его скорость в конечный момент времени.

Так как нам известна только высота, и найти нужно скорость, используем для вычислений последнюю формулу. Выразим из нее скорость:

Формула определения перемещения тела в n-ную секунду свободного падения:

s(n) — перемещение за секунду n.

Пример №3. Определить перемещение свободно падающего тела за 3-ую секунду движения.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх, описывается в два этапа

Два этапа движения тела, брошенного вертикально вверхЭтап №1 — равнозамедленное движение. Тело поднимается вверх на некоторую высоту h за время t с начальной скоростью v0 и на мгновение останавливается в верхней точке, достигнув скорости v = 0 м/с. На этом участке пути векторы скорости и ускорения свободного падения направлены во взаимно противоположных направлениях (v↑↓g).

Этап №2 — равноускоренное движение. Когда тело достигает верхней точки, и его скорость равна 0, начинается свободное падение с начальной скоростью до тех пор, пока тело не упадет или не будет поймано на некоторой высоте. На этом участке пути векторы скорости и ускорения свободного падения направлены в одну сторону (v↑↑g).
Формулы для расчета параметров движения тела, брошенного вертикально вверхПеремещение тела, брошенного вертикально вверх, определяется по формуле:

Если известна скорость в момент времени t, для определения перемещения используется следующая формула:

Если время движения неизвестно, для определения перемещения используется следующая формула:

Формула определения скорости:

Какой знак выбрать — «+» или «–» — вам помогут правила:

  • Если движение равнозамедленное (тело поднимается вверх), перед ускорением свободного падения в формуле нужно ставить знак «–», так как векторы скорости и ускорения противоположно направлены.
  • Если движение равноускоренное (тело падает вниз), перед ускорением свободного падения в формуле нужно ставить знак «+», так как векторы скорости и ускорения сонаправлены.

Обычно тело бросают вертикально вверх с некоторой высоты. Поэтому если тело упадет на землю, высота падения будет больше высоты подъема (h2 > h1). По этой же причине время второго этапов движения тоже будет больше (t2 > t1). Если бы тело приземлилось на той же высоте, то начальная скорость движения на 1 этапе была бы равно конечной скорости движения на втором этапе. Но так как точка приземления лежит ниже высоты броска, модуль конечной скорости 2 этапа будет выше модуля начальной скорости, с которой тело было брошено вверх (v2 > v01).

Пример №4. Тело подкинули вверх на некотором расстоянии 2 м от земли, придав начальную скорость 10 м/с. Найти высоту тела относительно земли в момент, когда оно достигнет верхней точки движения.

Конечная скорость в верхней точке равна 0 м/с. Но неизвестно время. Поэтому для вычисления перемещения тела с точки броска до верхней точки найдем по этой формуле:

Согласно условию задачи, тело бросили на высоте 2 м от земли. Чтобы найти высоту, на которую поднялось тело относительно земли, нужно сложить эту высоту и найденное перемещение: 5 + 2 = 7 (м).

Уравнение координаты и скорости при свободном падении

Уравнение координаты при свободном падении позволяет вычислять кинематические параметры движения даже в случае, если оно меняет свое направление. Так как при вертикальном движении тело меняет свое положение лишь относительно оси ОУ, уравнение координаты при свободном падении принимает вид:

Уравнение скорости при свободном падении:

vy = v0y + gyt

Полезные факты

  • В момент падения тела на землю y = 0.
  • В момент броска тела от земли y0 = 0.
  • Когда тело падает без начальной скорости (свободно) v0 = 0.
  • Когда тело достигает наибольшей высоты v = 0.

Построение чертежа

Решать задачи на нахождение кинематических параметров движения тела, брошенного вертикально вверх, проще, если выполнить чертеж. Строится он в 3 шага.

План построения чертежа

  • Чертится ось ОУ. Начало координат должно совпадать с уровнем земли или с самой нижней точки траектории.
  • Отмечаются начальная и конечная координаты тела (y и y0).
  • Указываются направления векторов. Нужно указать направление ускорения свободного падения, начальной и конечной скоростей.

Свободное падение на землю с некоторой высоты

Чертеж:

Уравнение скорости:

–v = v0 – gtпад

Уравнение координаты:

Тело подбросили от земли и поймали на некоторой высоте

Чертеж:

Уравнение скорости:

–v = v0 – gt

Уравнение координаты:

Тело подбросили от земли, на одной и той же высоте оно побывало дважды

Чертеж:

Интервал времени между моментами прохождения высоты h:

∆t = t2 – t1

Уравнение координаты для первого прохождения h:

Уравнение координаты для второго прохождения h:

Важно! Для определения знаков проекций скорости и ускорения нужно сравнивать направления их векторов с направлением оси ОУ.

Пример №5. Тело падает из состояния покоя с высоты 50 м. На какой высоте окажется тело через 3 с падения?

Из условия задачи начальная скорость равна 0, а начальная координата — 50.

Поэтому:

Через 3 с после падения тело окажется на высоте 5 м.

Задание EF17519

С аэростата, зависшего над Землёй, упал груз. Через 10 с он достиг поверхности Земли. На какой высоте находился аэростат? Сопротивление воздуха пренебрежимо мало.


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения искомой величины в векторном виде.
  4. Записать формулу для определения искомой величины в векторном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 0 м/с.
  • Время падения t = 10 c.

Делаем чертеж:

Перемещение (высота) свободно падающего тела, определяется по формуле:

В скалярном виде эта формула примет вид:

Учтем, что начальная скорость равна нулю, а ускорение свободного падения противоположно направлено оси ОУ:

Относительно оси ОУ груз совершил отрицательное перемещение. Но высота — величина положительная. Поэтому она будет равна модулю перемещения:

Вычисляем высоту, подставив известные данные:

Ответ: 500

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17483

Тело брошено вертикально вверх с начальной скоростью 10 м/с. Если сопротивление воздуха пренебрежимо мало, то через одну секунду после броска скорость тела будет равна…


Алгоритм решения

  1. Записать исходные данные.
  2. Сделать чертеж, иллюстрирующий ситуацию.
  3. Записать формулу для определения скорости тела в векторном виде.
  4. Записать формулу для определения скорости тела в скалярном виде.
  5. Подставить известные данные и вычислить скорость.

Решение

Записываем исходные данные:

  • Начальная скорость v0 = 10 м/с.
  • Время движения t = 1 c.

Делаем чертеж:

Записываем формулу для определения скорости тела в векторном виде:

v = v0 + gt

Теперь запишем эту формулу в скалярном виде. Учтем, что согласно чертежу, вектор скорости сонаправлен с осью ОУ, а вектор ускорения свободного падения направлен в противоположную сторону:

v = v0 – gt

Подставим известные данные и вычислим скорость:

v = 10 –10∙1 = 0 (м/с)

Ответ: 0

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 20.7k

Как рассчитать ускорение падения



Знаток

(486),
закрыт



12 лет назад

Дополнен 12 лет назад

большая просьба, меньше формул больше сути.) ) Если приводите формулу то подробно распишите значение каждой составляющей. Объясните это как человеку крайне далекому от физики.

Antony

Просветленный

(42066)


12 лет назад

A с математикой как? Система 2-х уравнений
V= V0+ gt
S = V0t+gt^2/2
где V-скорость через T секунд после начала ускоренного движения, VO-начальная скорость тела (в твоем случае 0), g-ускорение свободного падения (всегда 9,8м/сек2) T-время падения, S – путь пройденный за время T
Из второго через S вырази Т и подставь в первое

Полиглотта Орловская

Мастер

(1346)


12 лет назад

Дима! ты падать собрался???))))))))))))))))) )
метры в секунду – это скорость начального падения, а вторая секунда – это время падения
то есть ускорение нарастает от времени – чем дольше падаешь – тем больше скорость!
если что – пиши в почту!

Лариса Крушельницкая

Гений

(53922)


12 лет назад

Когда тело из состояния покоя пролетит h метров, то его потенциальная энергия уменьшится на mgh (m – масса, g – ускорение свободного падения) и ровно настолько же увеличится кинетическая mv²/2 (v – скорость) . Значит

mgh = mv²/2

v = √(2gh)

Все вы в своей жизни наблюдали за тем, что тела, не имеющие опоры или подвеса, падают вниз. В чем причина такого падения? Конечно же в том, что на все тела у поверхности Земли действует сила тяжести. 

Свободным падением тела называется движение тела только под действием силы тяжести.

Проведем мысленный эксперимент. Представьте, что одновременно начинают падение мяч, камень, лист дерева и перо птицы. В какой очередности упадут эти тела?

Первым упадут камень и мяч, затем перо и лист.

Почему? На перо и лист оказывает заметное влияние сила сопротивления воздуха, направленная против силы тяжести.

Падение тела не может считаться свободным, если сила сопротивления воздуха сравнима с силой тяжести.

Еще в конце XVI века знаменитый итальянский ученый Г. Галилей предположил, что все тела падают с одинаковым ускорением и опытным путем доказал, что это предположение верно.

Галилео Галилей

Согласно биографии Галилео Галилея, написанной его учеником Винченцо Вивиани, в 1589 году Галилей провёл эксперимент, сбросив два шара различной массы (ядро и мушкетную пулю) со знаменитой падающей башни в Пизе, чтобы продемонстрировать, что время падения не зависит от массы шара. С помощью этого эксперимента Галилей якобы обнаружил, что тела упали практически одновременно, тем самым доказав, что в отсутствии сопротивления воздуха все тела падают на Землю равноускоренно и что в данной точке Земли ускорение всех тел при падении одно и то же.

   Опыт Галилео Галилея с Пизанской башней

Исаак Ньютон доказал справедливость выводов Галилео простым опытом.

Исаак Ньютон

В стеклянную трубку он поместил дробинку, пробку и перышко. Если резко перевернуть расположенную вертикально трубку, то быстрее всего упадет дробинка, за ней кусочек пробки и потом плавно опустится перышко. Если же из трубки откачать воздух и опять резко перевернуть её,то все три тела опустятся на дно одновременно.

Трубка Ньютона (эксперимент)

 Какие выводы можно сделать из опыта Ньютона?

1. Тела падают с одинаковым ускорением.

2. Существует сила сопротивления воздуха

Ускорение, с которым тела падают на Землю, называется ускорением свободного падения.

Ускорение свободного падения ускорение, сообщаемое телу, поднятому над Землей, силой тяжести.

Вектор ускорения свободного падения обозначается символом g.

g=9,8 м/с2≈10м/с2

Из закона всемирного тяготения: ускорение свободного падения

Ускорение свободного падения:

1) Всегда направлено по вертикали вниз

2) Не зависит от массы падающего тела

3) Зависит от географической широты. Так как Земля не шар, а эллипсоид вращения, т.е. радиус Земли на полюсе меньше, чем радиус Земли на экваторе.

Радиус Земли

Поэтому сила тяжести и вызвемое ей ускорение больше на полюсе, чем на экваторе. g изменяется примерно от 9,83 м/с2 на полюсах до 9,78 м/с2 на экваторе. На широте Москвы g = 9,81523 м/с2. Обычно, если в расчетах не требуется высокая точность, то числовое значение g у поверхности Земли принимают равным 9,8 м/с2 или даже 10 м/с2.

4) Зависит от высоты над уровнем моря 

Зависимость ускорения свободного падения от высоты

Рассмотрим несколько примеров движения тел под действием силы тяжести. При решении подобных задач очень важно правильно выполнить чертеж, на котором указать направление осей и всех векторных величин.

Простым примером свободного падения является падение тела с некоторой высоты h без начальной скорости.

Анализируем рисунок.

Свободное падение тела с высоты h без начальной скорости

Свободное падение является прямолинейным движением с постоянным ускорением a=g, значит, к нему применимы все формулы для равноускоренного движения.

Так как тело движется вертикально, то будем рассматривать его движение вдоль оси y, которую направим вертикально вверх.

Тогда проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, с которой тело падало s=h, а проекция перемещения на ось y отрицательна: sy=-h

Начальная скорость движения равна нулю v0=0

Проекция конечной скорости на ось y отрицательна vу =-v

Начальная координата тела y0=h

Теперь работаем с формулами.

Проекция скорости на ось y при равноускоренном движении находится по формуле 

vу=v0у+ayt

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  vу=-v, получаем     -v=0-gt

Упростив выражение, получим формулу для нахождения скорости свободно падающено тела в любой момент времени:

v=gt

Проекция перемещения на ось y при равноускоренном движении находится по формуле 

sу=v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  sу=-h, получаем     -h=0-gt2/2

Упростив выражение, получим формулу для нахождения перемещения тела при свободном падении в любой момент времени:

h=gt2/2

Уравнение координаты при равноускоренном движении находится по формуле 

y=y0+v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0=0 и  y0=h, получаем     y=h-gt2/2

То есть, формула для нахождения координаты тела при свободном падении в любой момент времени:

y=h-gt2/2

2. Тело брошено вертикально вверх.

Как будет двигаться тело, брошенное вертикально вверх?

Движение тела, брошенного вертикально вверх

Если бросить тело вертикально вверх, то некоторое время оно будет двигаться вверх. Действующая на него сила тяжести направлена вниз и сообщает ему ускорение g, тоже направленное вниз. Поэтому скорость тела будет уменьшаться со временем и в некоторый момент она станет равной нулю, после чего тело начнет падать вниз с увеличивающейся скоростью.

Анализируем рисунок.

Движение тела, брошенного вертикально вверх

Движение тела, брошенного вертикально вверх тоже является прямолинейным движением с постоянным ускорением a=g, значит, к нему применимы все формулы для равноускоренного движения.

Так как тело движется вертикально, то будем рассматривать его движение вдоль оси y, которую направим вертикально вверх.

Тогда проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, на которую тело поднимется s=h, а проекция перемещения на ось y полжительна: sy=h

Проекция начальной скорости движения на ось y положительна v0y=v0

Конечная скорость в верхней точке равна нулю v =0

Начальная координата тела равна нулю y0=0, а конечная координата равна высоте, на которую тело поднимется y=h

Теперь работаем с формулами.

Проекция скорости на ось y при равноускоренном движении находится по формуле 

vу=v0у+ayt

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 и  vу=v, получаем, что скорость тела, брошенного вертикально в любой момент времени:

v=v0-gt

Если учесть, что в верхней точке v =0, получим    0=v0-gt 

Упростив выражение, получим формулу для нахождения начальной скорости тела, брошенного вертикально:

v0=gt

Проекция перемещения на ось y при равноускоренном движении находится по формуле 

sу=v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 и  sу=h, получим формулу для нахождения перемещения тела, брошенного вертикально, в любой момент времени:

h=v0t-gt2/2

Уравнение координаты при равноускоренном движении находится по формуле 

y=y0+v0уt+ayt2/2

учитывая, что тело движется с ускорением свободного падения и gy=-g, а также то, что v0y=v0 ,  y0=0 и y=h, получаем формулу для нахождения координаты тела, брошенного вертикально, в любой момент времени:

y=v0t-gt2/2

3. Тело брошено горизонтально.

Как будет двигаться тело, брошенное горизонтально?

Если тело бросить горизонтально, оно будет двигаться криволинейно — по параболе, хотя на тело все время действует сила тяжести, направленная вертикально вниз.

Движение тела, брошенного горизонтально

Такое движение тела рассматривают как два движения: по горизонтали – вдоль оси х, и по вертикали –  вдоль оси y.

Анализируем рисунок.

Движение тела, брошенного горизонтально

Ось y направим вертикально вверх. Проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, с которой тело бросили s=h, а проекция перемещения на ось y отрицательна: sy=-h

Начальные координаты тела х0=0 y0=h

Проекция начальной скорости на ось х равна v=v0

Проекция начальной скорости на ось y равна v0y=0

Перемещение тела вдоль оси х это дальность полета sх=l=х-х0

Теперь работаем с формулами.

По горизонтали, т.е. вдоль оси х тело движется равномерно (т.к. нет ускорения) с постоянной скоростью, равной проекции начальной скорости на ось х. Поэтому при рассмотрении движения вдоль оси х нужно пользоваться формулами, полученными для равномерного движения.

Уравнение скоростиv0x=v0=const 

Уравнение перемещения (дальность полета): l=v·t= v0·t

Уравнение координаты: x= x0 + v0·t

По вертикали, т.е. вдоль оси y тело свободно падает с высоты h. Поэтому при рассмотрении движения вдоль оси y применимы формулы для свободного падения.

Уравнение скоростиv=g·t 

Уравнение перемещения: h=g·t2/2

Уравнение координаты: y= y0-g·t2/2

4. Тело брошено под углом к горизонту.

Как будет двигаться тело, брошенное под углом к горизонту?

Движение тела, брошенного под углом к горизонту

Если тело бросить под углом к горизонту, оно будет двигаться криволинейно — по параболе, хотя на тело все время действует сила тяжести, направленная вертикально вниз.

Такое движение тела рассматривают как два движения: по горизонтали – вдоль оси х, и по вертикали –  вдоль оси y.

Анализируем рисунок.

Движение тела, брошенного под углом к горизонту

Ось y направим вертикально вверх. Проекция ускорения на ось y отрицательна gy=-g

Перемещение тела равно по модулю высоте, на которую тело поднимется s=h, а проекция перемещения на ось y полжительна: sy=h

Начальные координаты тела равны нулю х0=0 y0=0

Проекция начальной скорости на ось х равна v=v0·cosa

Проекция начальной скорости на ось y равна v0y=v0·sina

h – максимальная высота, на которую тело поднимется. На этой высоте проекция скорости на ось y равна 0.

Перемещение тела вдоль оси х это дальность полета sх=l=х-х0

Теперь работаем с формулами.

По горизонтали, т.е. вдоль оси х тело движется равномерно (т.к. нет ускорения) с постоянной скоростью, равной проекции начальной скорости на ось х. Поэтому при рассмотрении движения вдоль оси ОХ нужно пользоваться формулами, полученными для равномерного движения.

Уравнение скоростиv0x=v0·cosa=const 

Уравнение перемещения (дальность полета): l=vxt= v0·cosa·t

Уравнение координаты: x= x0 + v0·cosa·t

По вертикали, т.е. вдоль оси y тело движется сначало равнозамедленно, подобно телу, брошенному вертикально вверх со скоростью, равной проекции начальной скорости на ось y, а затем равноускоренно (свободно падая).

Проекция ускорения на ось y gy= -g , проекция начальной скорости на ось y  v=v0·sina, начальная координата y0=0

Таким образом, применимы формулы, которые мы использовали ранее для равноускоренного движения по вертикали.

Уравнение скоростиvy=v0·sina-g·t 

Уравнение перемещения (максимальная высота полета): h=v0·sina·t-g·t2/2

Уравнение координаты: y= v0·sina·t-g·t2/2

Время полета в 2 раза больше времени подъема тела на максимальную высоту

t= 2·tmax = 2·v0·sina/g

Скорость тела находится по теореме Пифагора: Скорость тела

Дальность полета тела, брошенного под углом к горизонту.

l = x max= v02·sin2a /g

Дальность полета максимальна, когда максимален sin2a.
Максимальное значение синуса равно единице при угле 2a=900, откуда a = 450
Для углов, дополняющих друг друга до 900 дальность полета одинакова.

Расширения для Joomla

Ускорение свободного падения на поверхности[1] некоторых небесных тел, м/с² и g

Земля 9,81 м/с² 1,00 g Солнце 273,1 м/с² 27,85 g
Луна 1,62 м/с² 0,165 g Меркурий 3,70 м/с² 0,378 g
Венера 8,88 м/с² 0,906 g Марс 3,86 м/с² 0,394 g
Юпитер 24,79 м/с² 2,528 g Сатурн 10,44 м/с² 1,065 g
Уран 8,86 м/с² 0,903 g Нептун 11,09 м/с² 1,131 g
Эрида 0,82 ± 0,02 м/с² 0,084 ± 0,002 g Плутон 0,617 м/с² 0,063 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести (или, иными словами, ускорение тела при свободном падении), при исключении из рассмотрения других сил.

В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле: оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно округляют до 9,81, 9,8 или даже до 10 м/с².

Физическая сущность[править | править код]

Две компоненты ускорения свободного падения на Земле

g: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна

GM/r2 и центробежная, равная

ω2a, где

a — расстояние до земной оси,

ω — угловая скорость вращения Земли.

Для определённости будем считать, что речь идёт о свободном падении на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центробежного ускорения, связанного с вращением Земли.

Центробежное ускорение[править | править код]

Центробежное ускорение является следствием вращения Земли вокруг своей оси. Именно центробежное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, оно равно ω2a, где ω — угловая скорость вращения Земли, определяемая как ω = 2π/T, а Т — время одного оборота вокруг своей оси, для Земли равное 86164 секундам (звёздные сутки). Центробежное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с², причём на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение[править | править код]

Гравитационное ускорение на различной высоте h над уровнем моря

h, км g, м/с² h, км g, м/с²
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связана с его массой M следующим соотношением:

g=G{frac {M}{r^{2}}},

где G — гравитационная постоянная (6,67430[15]·10−11 м3·с−2·кг−1)[6], а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрична. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо, наоборот, по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

g(h)={frac {GM}{(r+h)^{2}}},
где M — масса планеты.

Ускорение свободного падения на Земле[править | править код]

Ускорение свободного падения у поверхности Земли зависит от широты. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:

{displaystyle g=9{,}780318(1+0{,}005302sin ^{2}varphi -0{,}000006sin ^{2}2varphi )-0{,}000003086h,}
где varphi  — широта рассматриваемого места,
h — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли[en][9], дополнив её поправками, связанными с вращением Земли, приливными воздействиями.
На ускорение свободного падения влияют и другие факторы, например, атмосферное давление, которое меняется в течение суток: от атмосферного давления зависит плотность воздуха в большом объёме, а следовательно и результирующая сила тяжести, изменение которой могут зафиксировать высокочувствительные гравиметры[10].

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счёт центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от теоретических показателей по этой модели. Так, самое низкое значение g (9,7639 м/с²) зафиксировано на горе Уаскаран в Перу в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от Северного полюса[11].

Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с²
Алма-Ата 76,85 в.д. 43,22 с.ш. 786 9.78125
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80188
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Измерение[править | править код]

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.

Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

См. также[править | править код]

  • Свободное падение
  • Гравиметрия
  • Гравиразведка
  • Перегрузка (летательные аппараты)

Примечания[править | править код]

  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105 Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3. Свободное падение тел. Ускорение свободного падения. Архивировано из оригинала 20101219 года.
  4. Декларация III Генеральной конференции по мерам и весам (1901) (англ.). Международное бюро мер и весов. Дата обращения: 9 апреля 2013. Архивировано 8 июля 2018 года.
  5. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М.: Изд-во стандартов, 1990. — С. 237.
  6. CODATA Value: Newtonian constant of gravitation. physics.nist.gov. Дата обращения: 7 марта 2020. Архивировано 23 сентября 2020 года.
  7. Грушинский Н. П. Гравиметрия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  8. Ускорение свободного падения // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  9. ICCEM – table of models (англ.). Дата обращения: 10 ноября 2021. Архивировано из оригинала 24 августа 2013 года.
  10. GRAVITY MONITORING AT OIL AND GAS FIELDS: DATA INVERSION AND ERRORS // Геология и геофизика. — 2015. — Т. 56, вып. 5. — doi:10.15372/GiG20150507. Архивировано 2 июня 2018 года.
  11. Перуанцам живется легче, чем полярникам? Дата обращения: 21 июля 2016. Архивировано 16 сентября 2016 года.

Литература[править | править код]

  • Енохович А. С. Краткий справочник по физике. — М.: Высшая школа, 1976. — 288 с.

Формула скорости свободного падения в физике

Формула скорости свободного падения

Ускорение и скорость при свободном падении

Движение тела около поверхности Земли под воздействием силы тяжести называют свободным падением. При исследовании свободного падения тела, обычно силы сопротивления воздуха не учитывают.

Напомним, что величина ускорения свободного падения около поверхности Земли вычисляется как:

[g=gamma frac{M}{({R+h)}^2}left(1right),]

где $gamma =6,67cdot {10}^{-11}frac{Нcdot м^2}{{кг}^2}$- гравитационная постоянная; $M$ – масса Земли; $R$ – радиус Земли.

Если расстояние, с которого падает тело много меньше, чем радиус Земли ($ hll R$), то ускорение свободного падения считают постоянной величиной, равной:

[g=gamma frac{M}{R^2}approx 9,8 (frac{м}{с^2})left(2right).]

Кинематическое уравнение скорости при свободном падении

Свободное падение происходит с постоянным ускорением, что было установлено еще Галилеем, поэтому скорость в кинематике определяет уравнение для равнопеременного движения:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(3right).]

Уравнение (3) показывает изменение вектора скорости $overline{v}left(tright),$ где ${overline{v}}_0$ – начальная скорость движения тела.

Используя это уравнение, и зная начальные условия движения тела можно найти скорость тела относительно избранной системы отсчета для любого момента времени.

Скорость тела, брошенного под углом к горизонту

Допустим, что тело бросили под углом $alpha $ к горизонту. Ось X системы координат направим горизонтально, ось Y перпендикулярно горизонту вверх, тогда начальные условия движения для скорости данного тела запишем как:

[left{ begin{array}{c}
v_xleft(t=0 right)=v_0{cos alpha , } \
v_yleft(t=0 right)=v_0{sin alpha } end{array}
right.left(4right).]

Это означает, что тело бросили под углом $alpha $ к горизонту с начальной скоростью ${overline{v}}_0$. При этом проекции уравнения (3) дадут нам систему уравнений:

[left{ begin{array}{c}
v_xleft(tright)=v_0{cos alpha , } \
v_yleft(tright)=v_0{sin alpha -gt } end{array}
right.left(5right).]

Формула скорости при свободном падении тела из состояния покоя

Формула скорости свободного падения, рисунок 1

Начальные условия для скорости движения для тела, которое падает из состояния покоя, запишем так:

[left{ begin{array}{c}
v_xleft(t=0 right)=0, \
v_yleft(t=0 right)=0 end{array}
right.left(6right).]

В таком случае выражение (3) в проекции на ось Y, которую выберем вдоль направления движения (рис.1), тела будет выглядеть как:

[left{ begin{array}{c}
v_y=-gt end{array}
right.left(7right).]

В момент падения скорость тела при свободном его падении с высоты $h$ равна:

[v_{pad}=-sqrt{2gh}left(8right).]

Знак минус в формуле (8) означает, что скорость падения направлена против нашей оси Y.

Отметим, что тело, брошенное вертикально вверх движется до максимальной высоты подъема столько же времени, сколько оно потом падает с этой высоты до точки бросания.

Примеры задач с решением

Пример 1

Задание. Тело бросили вертикально вверх. Оно вернулось в точку бросания через $t’$ секунд. Какова начальная скорость тела?textit{}

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 1

Запишем уравнение для скорости движения тела в векторном виде:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(1.1right).]

Найдем проекцию этого уравнения на ось Y:

[v=v_0-gt left(1.2right).]

В точке максимального подъема скорость тела равна нулю, следовательно:

[0=v_0-g{t }_{pod}to v_0=g{t }_{pod}left(1.3right).]

Принимая во внимание, что время подъема равно времени спуска при отсутствии сил трения, имеем:

[{t }_{pod}=frac{t’}{2}left(1.4right).]

Подставим (1.4) в (1.3), имеем:

[v_0=gfrac{t’}{2}.]

Ответ. $v_0=gfrac{t’}{2}$

Пример 2

Задание. Одно тело бросили вертикально вверх с начальной скоростью равной $v_0.$ В этот же момент времени вертикально вниз с начальной скоростью $v_0$ бросили второе тело. Высота, с которой бросили это тело равно высоте максимального подъема первого тела. Какова скорость первого и второго тел в момент встречи этих двух тел? Тела считайте материальными точками, сопротивление воздуха не учитывать.

Решение. Сделаем рисунок.

Формула скорости свободного падения, пример 2

За основу решения задачи примем уравнение для скорости движения тела в поле тяжести Земли:

[overline{v}left(tright)={overline{v}}_0+overline{g}t left(2.1right).]

Для первого тела уравнение (2.1) в проекции на ось Y будет иметь вид:

[v_1=v_0-gt left(2.2right).]

Уравнение скорости второго тела при его падении выглядит как:

[{-v}_2=-v_0-gt left(2.3right).]

Для решения задачи будем использовать кинематическое уравнение для перемещения тела с постоянным ускорением:

[overline{s}left(tright)={overline{s}}_0+{overline{v}}_0t+frac{overline{g}t^2}{2}left(2.4right).]

В проекции на ось Y это уравнение для первого тела, поднимающегося вверх, даст выражение:

[y_1=v_0t-frac{gt^2}{2}left(2.5right).]

Для второго тела при его падении в проекции на ось Y (2.4) запишется как:

[y_2=h-v_0t-frac{gt^2}{2}left(2.6right).]

Найдем время встречи тел ($t’$) из системы уравнений (2.5) и (2.6), учитывая, что при встрече тел $y_1=y_2$:

[v_0t’-frac{g{t’}^2}{2}=h-v_0t’-frac{g{t’}^2}{2}to 0=h-2v_0t’to t’=frac{h}{2v_0}left(2.7right).]

Подставим время $t’$ в уравнение (2.2) получим скорость первого тела в момент встречи:

[v_1=v_0-gfrac{h}{2v_0}left(2.8right).]

Найдем высоту $h$, на которую способно подняться первое тело. Для этого найдем время подъема тела, зная, что в точке максимального подъема скорость тела равна нулю:

[v_1=v_0-gt=0to t_{pod}=frac{v_0}{g}left(2.9right).]

Высота подъема, она же высота с которой бросили второе тело найдётся из уравнения (2.5), если в него подставить $t_{pod}$:

[y_1=h=v_0t-frac{g{t_{pod}}^2}{2}=v_0frac{v_0}{g}-frac{g}{2}frac{v^2_0}{g^2}=frac{v^2_0}{2g}left(2.10right).]

Подставляя вместо $h$ правую часть уравнения (2.10) в формулу (2.8) получим скорость движения первого тела в его момент встречи со вторым телом:

[v_1=v_0-gfrac{v^2_0}{2g}frac{1}{2v_0}=frac{3}{4}v_0.]

Используя уравнение (2.3), подставляя в нее время встречи тел ($t’$) из (2.7), учитывая (2.10) получим скорость движения второго тела в момент встречи:

[v_2=v_0+gt=v_0+gfrac{1}{2v_0}frac{v^2_0}{2g}=v_0+frac{v_0}{4}=frac{5}{4}v_0.]

Ответ. $v_1=frac{3}{4}v_0,$ $v_2=frac{5}{4}v_0$

Читать дальше: формула ускорения свободного падения.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Добавить комментарий