Как рассчитать ускорение с помощью силы и массы – это известный вопрос, на который нужно ответить. Мы знаем ускорение, которое действует на тело, где сила и масса существенно влияют на него.
Ускорение измеряет, насколько скорость изменяется в данный момент времени. Скорость – это фактическая скорость, с которой объект изменяется в соответствии с системой отсчета. Скорость зависит от того, какая сила перемещает объект вперед или назад.
Ускорение, действующее на тело, в основном зависит от силы и массы, и как рассчитать ускорение с помощью силы и массы – это то, что мы обсудим далее. Когда неуравновешенная сила не равна нулю, действие на тело будет иметь большее ускорение, когда чистая сила не равна нулю.
Когда равнодействующая сила действующее на тело больше, ускорение, действующее на тело, также будет больше. Еще один момент, который следует помнить, это то, что масса также влияет на ускорение. Чем меньше масса, тем больше ускорение.
Как мы все знаем, законы Ньютона были применены к нескольким открытиям, а для ускорения мы используем Второй закон Ньютона. Это удобно, когда мы используем его для расчета ускорения любого движущегося тела.
Согласно второму закону Ньютона сила, действующая на тело, пропорциональна массе, постоянной во всем и изменяющейся скорости. Формула имеет вид F = ма. Мы получаем ускорение как а = Ф / м.
В этом контексте мы рассматриваем заставить быть сетью сила. Потому что на тело действует несколько сил, поддерживающих его движение, например, нормальная сила, сила трения и так далее. Следовательно, мы считаем, что полная сила, действующая на тело, является равнодействующей силой.
Как найти ускорение по чистой силе и массе
Во-первых, нам нужно понять, как сила и масса влияют на ускорение движущегося тела. Масса – это вес движущегося тела, а сила – это не что иное, как чистая сила, действующая на тело, которая запускает его движение.
Все это возможно только благодаря одной формуле, которая подчиняется Второму закону Ньютона и выводится из него. Формула выглядит так: а = Ф / м.
Здесь сила имеет разные случаи; сила может быть нормальной, силой трения, силой натяжения, силой тяжести, Равнодействующая сила, и чистая сила. Здесь, в этом случае, мы рассматриваем силу как результирующую силу. И эта конкретная сила случается с неуравновешенной силой.
При воздействии на тело эта неуравновешенная сила заставляет тело менять свое положение покоя, из которого оно начинает двигаться. Тогда у тела не будет другого выбора, кроме как совершить движение.
Простые примеры, иллюстрирующие, как найти ускорение с помощью силы и массы
Когда прикладываемая масса меньше, ускорение больше и наоборот. Возьмем небольшой пример мяча массой 10 кг, катящегося под гору с силой 40 Н. Поэтому мы также должны учитывать направление, в котором движется мяч. Пусть она будет перпендикулярна зоне, по которой движется.
Согласно уравнению Второго закона Ньютона, f = mxa
Итак, a = F / m
а = 40/10
a = 4 мс-2
Давайте также проиллюстрируем другой пример для лучшего понимания. В деревне был холм, на котором мало кто пользовался, потому что на нем было слишком много камней и мелких камней, которые могли скатиться и поранить пешеходов.
Однажды из-за проливных дождей скала и камни больше не оставались неподвижными и начали быстро катиться с холма. Теперь давайте посчитаем ускорение большого камня массой 500 кг, который скатывается с силой 1500 Н.
По формуле a = F / m
а = 15000/500
a = 30 мс-2
Помимо ускорения с силой и массой, есть еще один решающий фактор: сила тяжести. Кроме того, в этом разделе мы подробно рассмотрим реальный пример того, как вычислить ускорение с помощью силы и массы.
Группа мальчиков приехала в деревню на летние каникулы. Один из мальчишек из деревни очаровал своего друга рекой, имеющей прыгающий конец. Следовательно, все мальчики захотели попробовать. Один за другим прыгали в реку с прыжковой точки.
Теперь посчитайте ускорение мальчика весом 30 кг, который прыгает в реку с силой 120 Н. Мы знаем формулу, а = Ф / м. Следовательно, a = 120/30, a = 3 мс-2.
Ускорение с силой и массой в повседневной жизни
Всегда есть любопытство по поводу того, как все работает и воплощается в реальность. Точно так же мы обычно видим движение транспортного средства, но задумывались ли мы, как физики, о физике, лежащей в основе этой причины?
Каждый день то, что мы видим, воспринимаем физику, но не осознаем ее. Как было сказано ранее, мы видим машину, движущуюся или даже едущую в ней; мы никогда не замечаем науки, стоящей за этим процессом. Поэтому главное, что нужно делать, – это замечать и признавать их в нашей повседневной жизни.
Ускорение движения тела и выводы – это то, что мы рассмотрим в этом разделе. Итак, с этого момента, где бы и когда бы мы ни увидели движущийся автомобиль или автобус, мы немедленно должны знать, что ускорение способствует такому процессу.
Во-первых, нам нужно увидеть, какое отношение масса имеет к ускорению. Масса – это вес того конкретного тела, который связан с ускорением. Когда масса мала, ускорение больше. Следовательно, вот как рассчитать ускорение с силой и массой.
Это просто здравый смысл; когда предмет тяжелый, его сложно переместить с одного места на другое. Когда масса легкая, ее можно быстро мобилизовать. Следовательно, масса имеет прямую связь с ускорением.
Задачи о том, как рассчитать ускорение с помощью силы и массы
1 задачи:
Кафе находится на углу города. Каждое утро несколько велосипедистов проезжают по городу и пересекают кафе. Скамейки кафе вынесены на улицу, поэтому вид улучшается, так как это пляжное кафе.
Однажды один из велосипедистов ехал слишком быстро, двинулся и слегка задел гигантскую статую, расположенную рядом. Эта статуя из-за своего тяжелого веса медленно упала на землю. Теперь посчитайте, с каким ускорением статуя весом 800 кг обладает силой тяжести 1100 Н.
Решение:
а = Ф / м
а = 1100/800
a = 1.375 мс-2
2 задачи:
В данный момент объект неподвижен. Когда чистая сила 175 Н действует на этот объект весом 50 кг, какое ускорение он будет использовать, чтобы выйти из своего исходного положения?
Решение:
а = Ф / м
а = 175/50
a = 3.5 мс-2
Часто задаваемый вопрос
Какие несколько примеров ускорения в повседневной деятельности?
Ускорение – это скорость, с которой объект движется в данный момент времени. Это зависит от изменения скорости с заданным временем.
- Когда объект движется на юг на 10N м / с с постоянной скоростью, он остается в том же темпе до тех пор, пока не будет приложена сила. Таким образом, при приложении силы он будет двигаться со скоростью 2 мс-15. Теперь объект называется ускоряющимся.
- Девушка идет на север со скоростью 10 мс-2. Говорят, что у девушки постоянная скорость, а значит, и ускорение равно нулю.
- Когда мяч катится с холма, он ускоряется при приложении силы. Если мяч весит меньше, ускорение больше, а если мяч весит больше, ускорение со временем становится меньше.
- Когда мальчик прыгает со скалы с приложенной к нему силой, он будет ускоряться еще больше, а затем, наконец, остановится под действием силы тяжести. Но величина необходимого ускорения будет зависеть от прилагаемой силы: если сила увеличивается, то ускорение увеличивается; если сила уменьшается, ускорение уменьшается.
- Мальчик движется на север с ускорением 9 мс.-2. Постепенно на мальчика действует другая сила, и теперь размер меняется на 15 мс.-2. Теперь говорят, что мальчика ускоряют за счет действующей на него чистой силы.
Download Article
Download Article
If you’ve ever watched a bright red Ferrari fly ahead of your Honda Civic after a stoplight, you’ve experienced differing rates of acceleration firsthand. Acceleration is the rate of change in the velocity of an object as it moves. You can calculate this rate of acceleration, measured in meters per second, based on the time it takes you to go from one velocity to another, or based on the mass of an object.[1]
-
1
Define Newton’s Second Law of Motion. Newton’s second law of motion states that when the forces acting on an object are unbalanced, the object will accelerate. This acceleration is dependent upon the net forces that act upon the object and the object’s mass.[2]
Using this law, acceleration can be calculated when a known force is acting on an object of known mass.- Newton’s law can be represented by the equation Fnet = m x a, where Fnet is the total force acting on the object, m is the object’s mass, and a is the acceleration of the object.
- When using this equation, keep your units in the metric system. Use kilograms (kg) for mass, newtons (N) for force, and meters per second squared (m/s2) for acceleration.
-
2
Find the mass of your object. To find the mass of an object, simply place it on a balance or scale and find its mass in grams. If you have a very large object, you may need to find a reference that can provide you with the mass.[3]
Larger objects will likely have a mass with the unit of kilograms (kg).- For this equation, you will want to convert the mass into kilograms. If the mass you have is in grams simply divide that mass by 1000 to convert to kilograms.
Advertisement
-
3
Calculate the net force acting on your object. A net force is an unbalanced force. If you have two forces opposing each other and one is larger than the other, you will have a net force in the direction of the larger force.[4]
Acceleration happens when an unbalanced force acts on an object, causing it to change speeds towards the direction the force is pushing or pulling it.- For example: Let’s say you and your big brother are playing tug-of-war. You pull the rope to the left with a force of 5 newtons while your brother pulls the rope in the opposite direction with a force of 7 newtons. The net force on the rope is 2 newtons to the right, in the direction of your brother.
- In order to properly understand the units, know that 1 newton (N) is equal to 1 kilogram X meter/second squared (kg X m/s2).[5]
-
4
Rearrange the equation F = ma to solve for acceleration. You can change this formula around to solve for acceleration by dividing both sides by the mass, so: a = F/m.[6]
To find the acceleration, simply divide the force by the mass of the object being accelerated.- Force is directly proportional to the acceleration, meaning that a greater force will lead to a greater acceleration.
- Mass is inversely proportional to acceleration, meaning that with a greater mass, the acceleration will decrease.
-
5
Use the formula to solve for acceleration. Acceleration is equal to the net force acting on an object divided by the mass of the object. Once you’ve established the values for your variables, do the simple division to find the acceleration of the object.
- For example: A 10 Newton force acts uniformly on a mass of 2 kilograms. What is the object’s acceleration?
- a = F/m = 10/2 = 5 m/s2
Advertisement
-
1
Define the equation for average acceleration. You can calculate the average acceleration of an object over a period of time based on its velocity (its speed traveling in a specific direction), before and after that time. To do this you need to know equation for acceleration: a = Δv / Δt where a is acceleration, Δv is the change in velocity, and Δt is the amount of time it took for that change to occur.[7]
- The unit for acceleration is meters per second per second or m/s2.[8]
- Acceleration is a vector quantity, meaning it has both a magnitude and a direction.[9]
The magnitude is the total amount of acceleration whereas the direction is the way in which the object is moving. If it is slowing down the acceleration will be negative.
- The unit for acceleration is meters per second per second or m/s2.[8]
-
2
Understand the variables. You can further define Δv and Δt: Δv = vf – vi and Δt = tf – ti where vf is the final velocity, vi is the initial velocity, tf is the ending time, and ti is the starting time.[10]
- Because acceleration has a direction, it is important to always subtract the initial velocity from the final velocity. If you reverse them, the direction of your acceleration will be incorrect.
- Unless otherwise stated in the problem, the starting time is usually 0 seconds.
-
3
Use the formula to find acceleration. First write down your equation and all of the given variables. The equation is a = Δv / Δt = (vf – vi)/(tf – ti). Subtract the initial velocity from the final velocity, then divide the result by the time interval. The final result is your average acceleration over that time.
- If the final velocity is less than the initial velocity, acceleration will turn out to be a negative quantity or the rate at which an object slows down.
- Example 1: A race car accelerates uniformly from 18.5 m/s to 46.1 m/s in 2.47 seconds. What is its average acceleration?
- Write the equation: a = Δv / Δt = (vf – vi)/(tf – ti)
- Define the variables: vf = 46.1 m/s, vi = 18.5 m/s, tf = 2.47 s, ti = 0 s.
- Solve: a = (46.1 – 18.5)/2.47 = 11.17 meters/second2.
- Example 2: A biker traveling at 22.4 m/s comes to halt in 2.55 s after applying brakes. Find his deceleration.
- Write the equation: a = Δv / Δt = (vf – vi)/(tf – ti)
- Define the variables: vf = 0 m/s, vi = 22.4 m/s, tf = 2.55 s, ti = 0 s.
- Solve: a = (0 – 22.4)/2.55 = -8.78 meters/second2.
Advertisement
-
1
Understand the Direction of Acceleration. The physics concept of acceleration doesn’t always match how we would use the term in everyday life. Every acceleration has a direction, usually represented as positive if it’s UP or RIGHT, and negative if DOWN or LEFT. See if your answer makes sense based on this breakdown:
Behavior of a Car How is Velocity Changing? Direction of Acceleration Driver moving right (+) hits gas pedal + → ++ (more positive)
positive
Driver moving right (+) hits brakes ++ → + (less positive)
negative
Driver moving left (-) hits gas pedal – → — (more negative)
negative
Driver moving left (-) hits brakes — → – (less negative)
positive
Driver moves at constant velocity remains the same
acceleration is zero
-
2
Understand the Direction of Force. Remember, a force only causes acceleration in the direction of the force. Some problems may try to trick you with irrelevant values.
- Example Problem: A toy boat with mass 10kg is accelerating north at 2 m/s2. A wind blowing due west exerts a force of 100 Newtons on the boat. What is the boat’s new northward acceleration?
- Solution: Because the force is perpendicular to the direction of motion, it does not have an effect on motion in that direction. The boat continues to accelerate north at 2 m/s2.
-
3
Understand Net Force. If more than one force acts on an object, combine them into a net force before you calculate acceleration. For a problem in two dimensions, this looks something like this:
- Example Problem: April is pulling a 400 kg container right with a force of 150 newtons. Bob stand on the left of the container and pushes with a force of 200 newtons. A wind blowing left exerts a force of 10 newtons. What is the acceleration of the container?
- Solution: This problem uses tricky language to try and catch you. Draw a diagram and you’ll see the forces are 150 newtons right, 200 newtons right, and 10 newtons left. If “right” is the positive direction, the net force is 150 + 200 – 10 = 340 newtons. Acceleration = F / m = 340 newtons / 400 kg = 0.85 m/s2.
Advertisement
Calculator, Practice Problems, and Answers
Add New Question
-
Question
How do you solve acceleration word problems?
Sean Alexander is an Academic Tutor specializing in teaching mathematics and physics. Sean is the Owner of Alexander Tutoring, an academic tutoring business that provides personalized studying sessions focused on mathematics and physics. With over 15 years of experience, Sean has worked as a physics and math instructor and tutor for Stanford University, San Francisco State University, and Stanbridge Academy. He holds a BS in Physics from the University of California, Santa Barbara and an MS in Theoretical Physics from San Francisco State University.
Academic Tutor
Expert Answer
-
Question
What is the SI unit for acceleration?
This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
wikiHow Staff Editor
Staff Answer
SI units are standardized units that are used internationally in scientific writing. When describing acceleration, use the SI units meters per seconds squared (m/s^2).
-
Question
How do you calculate acceleration without time?
This answer was written by one of our trained team of researchers who validated it for accuracy and comprehensiveness.
wikiHow Staff Editor
Staff Answer
If you know that acceleration is constant, you can solve for it without time if you have the initial and final velocity of the object as well as the amount of displacement. Use the formula v^2=u^2+2as where v is the final velocity, u is the initial velocity, a is acceleration, and s is displacement. Solve for a to find acceleration.
See more answers
Ask a Question
200 characters left
Include your email address to get a message when this question is answered.
Submit
Advertisement
References
About This Article
Article SummaryX
To calculate acceleration, use the equation a = Δv / Δt, where Δv is the change in velocity, and Δt is how long it took for that change to occur. To calculate Δv, use the equation Δv = vf – vi, where vf is final velocity and vi is initial velocity. To caltulate Δt, use the equation Δt = tf – ti, where tf is the ending time and ti is the starting time. Once you’ve calculated Δv and Δt, plug them into the equation a = Δv / Δt to get the acceleration. To learn how to calculate acceleration from a force, read the article!
Did this summary help you?
Thanks to all authors for creating a page that has been read 1,762,496 times.
Reader Success Stories
-
DrDave Alpenschnee
Mar 5, 2018
“I am an Alpine ski instructor, and was interested in how unbalanced forces cause one ski to accelerate more than…” more
Did this article help you?
Загрузить PDF
Загрузить PDF
Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.
-
1
Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]
- Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
- Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
-
2
Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк – vн и Δt = tк – tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]
- Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
- Если в задаче начальное время не дано, то подразумевается, что tн = 0.
-
3
Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк – vн)/(tк – tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.
- Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
- Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
- Напишите формулу: a = Δv / Δt = (vк – vн)/(tк – tн)
- Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
- Вычисление: a = (46,1 – 18,5)/2,47 = 11,17 м/с2.
- Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
- Напишите формулу: a = Δv / Δt = (vк – vн)/(tк – tн)
- Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
- Вычисление: а = (0 – 22,4)/2,55 = -8,78 м/с2.
Реклама
-
1
Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.- Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
- Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
-
2
Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.
- Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
-
3
Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.- Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
- Помните, что 1 Н = 1 кг∙м/с2.[8]
-
4
Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.
- Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
- Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
-
5
Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.
- Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
- a = F/m = 10/2 = 5 м/с2
Реклама
-
1
Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:
Движение автомобиля Изменение скорости Значение и направление ускорения Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное Движется влево (-) и ускоряется – → — (более отрицательное) Отрицательное Движется влево (-) и замедляется — → – (менее отрицательное) Положительное Движется с постоянной скоростью Не меняется Равно 0 -
2
Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.
- Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
- Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
-
3
Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):
Реклама
- Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
- Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 – 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.
Об этой статье
Эту страницу просматривали 190 271 раз.
Была ли эта статья полезной?
Классическая механика |
---|
История… |
Фундаментальные понятия
|
Формулировки
|
Разделы
|
Учёные
|
См. также: Портал:Физика |
Второ́й зако́н Нью́то́на — дифференциальный закон механического движения, описывающий зависимость ускорения тела от равнодействующей всех приложенных к телу сил и массы тела. Один из трёх законов Ньютона. Основной закон динамики[1][2][3].
Объектом, о котором идёт речь во втором законе Ньютона, является материальная точка, обладающая неотъемлемым свойством — инерцией[4], величина которой характеризуется массой. В классической (ньютоновской) механике масса материальной точки полагается постоянной во времени и не зависящей от каких-либо особенностей её движения и взаимодействия с другими телами[5][6][7][8].
Второй закон Ньютона в его наиболее распространённой формулировке, справедливой для скоростей, много меньших скорости света, утверждает: в инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, не зависит от её природы[9], совпадает с ней по направлению и обратно пропорционально массе материальной точки[10].
Второй закон Ньютона в классической механике[править | править код]
Возможные формулировки[править | править код]
- В своём труде «Математические начала натуральной философии» Исаак Ньютон приводит следующую формулировку[11] своего закона:
Изменение количества движения пропорционально приложенной движущей силе и происходит по направлению той прямой, по которой эта сила действует.
- Современная формулировка:
В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.
- Обычно этот закон записывается в виде формулы
- где — ускорение тела, — сила, приложенная к телу, а — масса тела.
- Или в ином виде:
- Формулировка второго закона Ньютона с использованием понятия импульса:
В инерциальных системах отсчёта производная импульса материальной точки по времени равна действующей на неё силе[12]:
- где — импульс (количество движения) точки, — её скорость, а — время.
Область применения закона[править | править код]
Второй закон Ньютона в классической механике сформулирован применительно к движению материальной точки. Предполагается, что масса материальной точки неизменна во времени[13][14][15]. Уравнения, соответствующие данному закону, называются уравнениями движения материальной точки или основными уравнениями динамики материальной точки.
Иногда в рамках классической механики предпринимались попытки распространить сферу применения уравнения и на случай тел переменной массы. Однако вместе с таким расширительным толкованием уравнения приходилось существенным образом модифицировать принятые ранее определения и изменять смысл таких фундаментальных понятий, как материальная точка, импульс и сила[16][17].
В случае, когда на материальную точку действует несколько сил, каждая из них сообщает точке ускорение, определяемое вторым законом Ньютона так, как если бы других сил не было (принцип суперпозиции сил). Поэтому результирующее ускорение материальной точки можно определить по второму закону Ньютона, подставив в него равнодействующую силу[18].
Уравнение второго закона Ньютона предполагает скалярную аддитивность масс[19].
Помимо материальной точки, уравнение второго закона Ньютона применимо также для описания механического движения центра масс механической системы. Центр масс движется, как материальная точка, имеющая массу, равную массе всей системы, и находящаяся под действием всех внешних сил, приложенных к точкам системы (теорема о движении центра масс системы).
Уравнение второго закона Ньютона может быть записано в виде для распределённой силы, где — элемент массы ( — плотность вещества, — элементарный объём), а — бесконечно малая действующая на него сила ( — плотность силы). Отталкиваясь от такой записи, получают[20] гидродинамический вариант закона — уравнение Эйлера.
Второй закон Ньютона выполняется только в инерциальных системах отсчёта[21][22]. Тем не менее, добавляя к силам, действующим со стороны других тел, силы инерции, для описания движения в неинерциальных системах отсчёта можно пользоваться уравнением второго закона Ньютона[23]. В таком случае для неинерциальной системы отсчёта уравнение движения записывается в той же форме, что и для инерциальной системы: масса тела, умноженная на его ускорение относительно неинерциальной системы отсчёта, равна по величине и направлению равнодействующей всех сил, включая и силы инерции, приложенные к телу[24][25].
Логическая роль второго закона Ньютона[править | править код]
В ньютоновском изложении классической механики законы Ньютона ниоткуда не «выводятся», они имеют статус аксиом, базирующихся на совокупности экспериментальных фактов. Как и аксиомы математики, аксиомы ньютоновской динамики можно сформулировать немного по-разному.
При одном подходе второй закон Ньютона позиционируется как экспериментально проверяемое утверждение о пропорциональности ускорения вызывающей его силе и, одновременно, определение инертной массы тела через отношение величин силы и ускорения[26][27]. Тогда основная идея второго закона состоит в декларации линейности соотношения «сила—ускорение», то есть что именно эти величины (а не, скажем, сила и скорость) и именно таким образом (а не квадратично и т. п.) связаны между собой.
При другом подходе можно ввести инертную массу независимо от второго закона Ньютона, через массу определённого тела, принимаемого за эталон. Тогда второй закон содержит два независимо экспериментально проверяемых утверждения: о пропорциональности ускорения силе и обратной пропорциональности массе[28].
Во многих практических и учебных задачах второй закон Ньютона позволяет вычислять силу. Но данный закон не является дефиницией силы[29] (высказывание типа «по определению, сила есть произведение массы на ускорение» неуместно), иначе он превратился бы в тавтологию.
В случае отсутствия воздействия на тело со стороны других тел (), из второго закона Ньютона следует, что ускорение тела равно нулю. Отсюда может показаться, что первый закон Ньютона входит во второй как его частный случай. Однако, это не так, поскольку именно первым законом постулируется существование инерциальных систем отсчёта, что является самостоятельным содержательным утверждением. Соответственно, первый закон Ньютона формулируется независимо от второго[30].
Второй закон Ньютона устанавливает связь между динамическими и кинематическими величинами[31]. Кроме того, уравнение закона может рассматриваться как уравнение связи между физическими величинами при определении единиц силы в системах СИ, СГС и других[32]. Единица силы определяется как такая сила, которая материальной точке с массой, равной единице массы, принимаемой в качестве основной, сообщает ускорение, равное единице ускорения, определённой ранее в качестве производной единицы[33]. (При независимом выборе единиц массы, силы и ускорения выражение второго закона нужно писать в виде , где — коэффициент пропорциональности, определяющийся выбором единиц измерения[34][35][36][37]).
Сила во втором законе Ньютона зависит только от координат и скорости материальной точки: . Основная задача физической механики сводится к нахождению функции [38].
Формула второго закона Ньютона выражает принцип причинности классической механики. Координаты и скорости материальной точки в момент времени (где ) непрерывно и однозначно определяются через их значения в момент времени и заданную силу , действующую на материальную точку. Разлагая в ряд Тейлора и ограничиваясь малыми первого порядка по , получаем[39]: , . Форма, в которой в механике реализуется причинность, называется механистическим или лапласовским детерминизмом[40].
Уравнение второго закона Ньютона инвариантно относительно преобразований Галилея. Это утверждение называется принципом относительности Галилея[41].
В классической механике закон сохранения энергии, закон сохранения импульса и закон сохранения момента импульса являются следствиями второго закона Ньютона, однородности времени, однородности и изотропности пространства, а также некоторых предположений относительно характера действующих сил[42].
В случае, когда сила постоянна, интегрирование уравнения второго закона Ньютона приводит к равенству . Это соотношение показывает, что под действием заданной силы определённое изменение скорости у тела с большей массой происходит за более продолжительный промежуток времени. Поэтому говорят, что все тела обладают инерцией, а массу называют мерой инерции тела[43].
Запись закона в разных системах координат[править | править код]
Основной источник: [18]
Векторная запись второго закона Ньютона верна для любой инерциальной системы координат, относительно которой определяются входящие в этот закон величины (сила, масса, ускорение)[44]. Однако, разложение на компоненты (проекции) будет различным для декартовой, цилиндрической и сферической систем. Интерес также представляет разложение на нормальную и тангенциальную составляющие.
- Декартова прямоугольная система координат
, , ,
где , а орты декартовой системы , , направлены по осям координат (в сторону возрастания конкретной координаты),
- Цилиндрическая система координат
, , ,
где , а орты , , цилиндрической системы берутся в точке приложения силы и направлены, соответственно, от оси под 900 к ней, по окружности в плоскости с центром на оси, и вдоль (в сторону возрастания конкретной координаты),
- Сферическая система координат
,
,
,
где , а орты , , сферической системы берутся в точке приложения силы и направлены, соответственно, от центра , по «параллелям», и по «меридианам» (в сторону возрастания конкретной координаты).
- Разложение в соприкасающейся плоскости
В соприкасающейся плоскости ускорение материальной точки массой и действующую на неё силу можно разложить на нормальную (перпендикулярную касательной к траектории в соприкасающейся плоскости) и тангенциальную (параллельную касательной к траектории в соприкасающейся плоскости) составляющие.
Абсолютная величина нормальной силы равна , где — радиус кривизны траектории материальной точки, — абсолютная величина её скорости. Нормальная сила направлена к центру кривизны траектории материальной точки. В случае круговой траектории радиуса абсолютная величина нормальной силы , где — угловая скорость обращения точки. Нормальную силу также называют центростремительной.
Тангенциальная составляющая силы равна , где — дуговая координата по траектории точки[45]. Если , то сила совпадает по направлению с вектором скорости и её называют движущей силой. Если , то сила противоположна по направлению вектору скорости и её называют тормозящей силой.
Второй закон за пределами классической механики[править | править код]
В релятивистской динамике[править | править код]
Второй закон Ньютона в виде приближённо справедлив только для скоростей, много меньших скорости света, и в инерциальных системах отсчёта.
В виде второй закон Ньютона точно справедлив также в инерциальных системах отсчёта специальной теории относительности и в локально инерциальных системах отсчёта общей теории относительности, однако при этом вместо прежнего выражения для импульса используется равенство , где — скорость света[46].
Существует и четырёхмерное релятивистское обобщение второго закона Ньютона. Производная четырёхимпульса по собственному времени материальной точки равна четырёхсиле [47]:
- .
В релятивистской динамике вектор трёхмерного ускорения уже не параллелен вектору трёхмерной силы [48].
В квантовой механике[править | править код]
Законы ньютоновской динамики, в том числе второй закон Ньютона, неприменимы, если длина волны де Бройля рассматриваемого объекта соизмерима с характерными размерами области, в которой изучается его движение. В этом случае необходимо пользоваться квантовомеханическими законами[49].
Тем не менее, второй закон Ньютона при определённых условиях актуален применительно к движению волнового пакета в квантовой механике. Если потенциальная энергия волнового пакета пренебрежимо мало изменяется в области нахождения пакета, то производная по времени среднего значения импульса пакета будет равна силе, понимаемой как градиент потенциальной энергии, взятый с обратным знаком (теорема Эренфеста).
Для описания движения частицы в потенциальном поле, в квантовой механике справедливо операторное уравнение, по форме совпадающее с уравнением второго закона Ньютона: . Здесь: — масса частицы, — оператор скорости, — оператор импульса, — оператор потенциальной энергии[50].
Видоизменённый второй закон Ньютона используется и при квантовомеханическом описании движения электронов в кристаллической решётке. Взаимодействие электрона с периодическим электромагнитным полем решётки при этом учитывается введением понятия эффективной массы.
Научно-историческое значение закона[править | править код]
Оценивая значение второго закона Ньютона, А. Эйнштейн писал:
Дифференциальный закон является той единственной формой причинного объяснения, которая может полностью удовлетворять современного физика. Ясное понимание дифференциального закона есть одно из величайших духовных достижений Ньютона… Только переход к рассмотрению явления за бесконечно малое время (т. е. к дифференциальному закону) позволил Ньютону дать формулировку, пригодную для описания любого движения… Так Ньютон пришёл… к установлению знаменитого закона движения:
Вектор ускорения × Масса = Вектор силы.
Это — фундамент всей механики и, пожалуй, всей теоретической физики.
— Эйнштейн А. Собрание научных трудов. — М.: Наука, 1967. — Т. 4. — С. 82, 92. — 599 с. — 31 700 экз.
Все законы природы для сил в зависимости от свойств тел, их состояний и движений получаются из опытов и устанавливаются всегда и только на основе решения уравнения , которое употребляется для выражения силы[51].
Второй закон Ньютона является важной частью парадигмы, принятой в классической физической картине мира[52].
Лагранжево и гамильтоново обобщения закона[править | править код]
В аналитической механике существует два аксиоматических подхода. При одном подходе в качестве аксиомы принимается второй закон Ньютона и из него выводятся уравнения Лагранжа. При другом подходе в качестве аксиомы принимаются уравнения Лагранжа. Тогда второй закон Ньютона рассматривается как следствие из них [53].
Из уравнений Лагранжа для произвольной голономной системы, на которую действуют как потенциальные (), так и непотенциальные () обобщённые силы, следует, что производная по времени обобщённого импульса равна суммарной обобщённой силе :
- .
Записанные так в декартовых координатах уравнения Лагранжа называются уравнениями движения в форме Ньютона[54].
Теорема об изменении обобщённого импульса обобщает и включает как частные случаи теоремы ньютоновской динамики об изменении количества движения и об изменении кинетического момента[55].
В гамильтоновой динамике
- ,
где, как и выше, — обобщённый импульс, через обозначена функция Гамильтона, а — лагранжиан, то есть разность кинетической и потенциальной энергий системы.
См. также[править | править код]
- Первый закон Ньютона
- Уравнение Гейзенберга
- Уравнение Мещерского
- Уравнение Эренфеста
- Теорема о движении центра масс системы
- Принцип причинности
Примечания[править | править код]
- ↑ Г. А. Бугаенко, В. В. Маланин, В. И. Яковлев Основы классической механики. — М., Высшая школа, 1999. — ISBN 5-06-003587-5 — Тираж 3000 экз. — c. 43
- ↑ Кузнецов Б. Г. Основные принципы физики Ньютона // отв. ред. Григорьян А. Т., Полак Л. С. Очерки развития основных физических идей. — М., АН СССР, 1959. — Тираж 5000 экз. — с. 188;
- ↑ Тарасов В. Н., Бояркина И. В., Коваленко М. В., Федорченко Н. П., Фисенко Н. И. Теоретическая механика. — М., ТрансЛит, 2012. — ISBN 978-5-94976-455-8. — Тираж 1000 экз. — с. 249
- ↑ То же, что инертность. См. Инерция // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1990. — Т. 2: Добротность — Магнитооптика. — С. 146. — 704 с. — 100 000 экз. — ISBN 5-85270-061-4.
- ↑ “Дополнительной характеристикой (по сравнению с геометрическими характеристиками) материальной точки является скалярная величина m — масса материальной точки, которая, вообще говоря, может быть как постоянной, так и переменной величиной. … В классической ньютоновской механике материальная точка обычно моделируется геометрической точкой с присущей ей постоянной массой) являющейся мерой её инерции.” стр. 137 Седов Л. И., Цыпкин А. Г. Основы макроскопических теорий гравитации и электромагнетизма. М: Наука, 1989.
- ↑ Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 87. — 572 с. «Масса материальной точки считается постоянной величиной, не зависящей от обстоятельств движения».
- ↑ Голубев Ю. Ф. Основы теоретической механики. — М.: МГУ, 2000. — С. 160. — 720 с. — ISBN 5-211-04244-1. «Аксиома 3.3.1. Масса материальной точки сохраняет своё значение не только во времени, но и при любых взаимодействиях материальной точки с другими материальными точками независимо от их числа и от природы взаимодействий».
- ↑ Тарг С. М. Краткий курс теоретической механики. — М.: Высшая школа, 1995. — С. 287. — 416 с. — ISBN 5-06-003117-9. «В классической механике масса каждой точки или частицы системы считается при движении величиной постоянной»
- ↑ Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С.39.
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 107
- ↑ Исаак Ньютон. Математические начала натуральной философии. — М.: Наука, 1989. — С. 40. — 690 с. — («Классики науки»). — 5000 экз. — ISBN 5-02-000747-1.
- ↑ Сивухин Д. В. Общий курс физики. — М.: Физматлит; изд-во МФТИ, 2005. — Т. I. Механика. — С. 76. — 560 с. — ISBN 5-9221-0225-7.
- ↑ Маркеев А. П. Теоретическая механика. — М.: ЧеРО, 1999. — С. 254. — 572 с. «…второй закон Ньютона справедлив только для точки постоянного состава. Динамика систем переменного состава требует особого рассмотрения».
- ↑ Иродов И. Е. Основные законы механики. — М.: Высшая школа, 1985. — С. 41. — 248 с.«В ньютоновской механике… m=const и dp/dt=ma».
- ↑ Kleppner D., Kolenkow R. J. An Introduction to Mechanics. — McGraw-Hill, 1973. — P. 112. — ISBN 0-07-035048-5. Архивная копия от 17 июня 2013 на Wayback Machine Архивированная копия. Дата обращения: 9 февраля 2013. Архивировано 17 июня 2013 года. «For a particle in Newtonian mechanics, M is a constant and (d/dt)(Mv) = M(dv/dt) = Ma».
- ↑ Зоммерфельд А. Механика = Sommerfeld A. Mechanik. Zweite, revidierte Auflage, 1944. — Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. — С. 45-46. — 368 с. — ISBN 5-93972-051-X.
- ↑ Кильчевский Н. А. Курс теоретической механики. Том 1. — М.: Наука, 1977. 480 с.
- ↑ 1 2 Яворский Б.М., Детлаф А.А., Лебедев А.К. Справочник по физике для инженеров и студентов вузов. — М.: Оникс, 2007. — ISBN 978-5-488-01248-6. — Тираж 5 100 экз. — С. 38 – 39
- ↑ Орир Дж. Физика // М., Мир, 1981. — Тираж 75 000 экз. — Том 1. — с. 54
- ↑ Д. В. Александров, А. Ю. Зубарев, Л. Ю. Искакова. Введение в гидродинамику. Изд-во УрФУ, Екатеринбург (2012). — см. стр. 8-11. Дата обращения: 30 апреля 2023.
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 289
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 118-119
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 291
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 119
- ↑ Ландсберг Г. С. Элементарный учебник физики. Том 1. Механика. Теплота. Молекулярная физика. — М.: Наука, 1975. — C. 106
- ↑ Хайкин С. Э. Физические основы механики. — М.: Физматгиз, 1963. — C. 104
- ↑ Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 30.
- ↑ Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 209-210.
- ↑ Савельев И. В. Курс общей физики. Том 1. Механика. Молекулярная физика. — М.: Наука, 1987. — C. 54
- ↑ Селезнев Ю. А. Основы элементарной физики. – М., Наука, 1966. – Тираж 100 000 экз. – с. 40
- ↑ Г. Д. Бурдун, Б. Н. Марков Основы метрологии. — М.: Издательство стандартов, 1972. — Тираж 30 000 экз. — С. 49.
- ↑ Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1977. — С. 24.
- ↑ Савельев И. В. Курс общей физики / 2-е изд., перераб. — М.: Наука, 1982. — Т. 1. Механика. Молекулярная физика. — С. 54. — 432 с. Архивная копия от 4 февраля 2014 на Wayback Machine
- ↑ Сена Л. А. Единицы физических величин и их размерности. — М.: Наука, 1969. — С. 22. — 304 с. Архивная копия от 1 февраля 2014 на Wayback Machine
- ↑ Мултановский В.В. Курс теоретической физики: Классическая механика. Основы специальной теории относительности. Релятивистская механика. — М.: Просвещение, 1988. — С. 73. — 304 с. — ISBN 5-09-000625-3. Архивная копия от 5 июля 2014 на Wayback Machine
- ↑ «Не следует смешивать понятия силы и произведения массы на ускорение, которому она равна» (Фок В.А. Механика. Рецензия на книгу: Л. Ландау и Л. Пятигорский. Механика. (Теоретическая физика под общей редакцией проф. Л.Д. Ландау, т. I). Гостехиздат. Москва — Ленинград, 1940 // УФН. — 1946. — Т. 28, вып. 2–3. — С. 377–383. Архивировано 31 октября 2015 года.).
- ↑ Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 71-72
- ↑ Р. Ф. Фейнман Фейнмановские лекции по физике. Том I. Современная наука о природе Законы механики. — М.: Наука, 1978. — С. 164.
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. ISBN 5-06-003587-5 — Тираж 3 000 экз. — С. 47.
- ↑ Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 94
- ↑ Сивухин Д. В. Общий курс физики. Механика. – М., Наука, 1979. – Тираж 50 000 экз. – с. 199
- ↑ Жирнов Н. И. Классическая механика. – М., Просвещение, 1980. – с. 34-35
- ↑ Р. Неванлинна Пространство, время и относительность. – М., Мир, 1966. – c. 202
- ↑ Тарасов В. Н., Бояркина И. В., Коваленко М. В. Теоретическая механика. – М., ТрансЛит, 2012. – ISBN 978-5-94976-455-8. – с. 254
- ↑ Савельев И. В. Курс общей физики. Т. 1. Механика. Молекулярная физика.
— М.: Наука, 1987. — С. 237. - ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 347. — ISBN 5-06-003587-5
- ↑ Кычкин И. С., Сивцев В. И. Школьная физика: второй закон Ньютона Архивная копия от 30 мая 2019 на Wayback Machine // Международный журнал экспериментального образования. – 2016. № 3-2. – С. 194-197.
- ↑ Бутиков Е. И., Быков А. А., Кондратьев А. С. Физика для поступающих в вузы. — М.: Наука, 1982. — С. 544.
- ↑ Ландау Л. Д., Лившиц Е. М. Квантовая механика. — М., Наука, 1972. — с. 76
- ↑ Седов Л.И.Методы подобия и размерности в механике. — М.: Гостехтеориздат, 1954. — С. 21 – 28.
- ↑ Томас Кун Структура научных революций. — М., АСТ, 2020. — ISBN 978-5-17-122824-8. — с. 280-282
- ↑ Айзерман М.А. Классическая механика. — М.: Наука, 1980. — Тираж 17 500 экз. — С. 164-165
- ↑ Медведев Б. В. Начала теоретической физики. Механика, теория поля, элементы квантовой механики. — М.: Физматлит, 2007. — ISBN 978-5-9221-0770-9 — С. 38.
- ↑ Бугаенко Г. А., Маланин В. В., Яковлев В. И. Основы классической механики. — М.: Высшая школа, 1999. — С. 247. — ISBN 5-06-003587-5
Ссылки[править | править код]
- Gundlach J. H., Schlamminger S., Spitzer C. D., Choi K.-Y., Woodahl B. A., Coy J. J., Fischbach E. Laboratory Test of Newton’s Second Law for Small Accelerations (англ.). Phys. Rev. Lett., Vol. 98. American Physical Society (13 апреля 2007). Дата обращения: 7 апреля 2017. Архивировано 30 марта 2021 года.
как определить ускорение если известны масса и сила?
Наталья Кривина
Ученик
(86),
на голосовании
10 лет назад
Голосование за лучший ответ
Богдан Дудар
Ученик
(164)
10 лет назад
Сила=Ускорение*массу, отсюда
Ускорение=Сила/масса
vladosika savostin
Знаток
(311)
10 лет назад
Силу делить на массу
Ирик Жижченко
Мастер
(2026)
10 лет назад
Это второй закон Ньютона:
Сила деленная на массу даст ускорение
Похожие вопросы