Как найти ускорение среда


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости как по величине, так и по направлению. Можно найти среднее ускорение, чтобы определить среднюю быстроту изменения скорости тела в течение определенного периода времени. Возможно, вы не знаете, как вычислить ускорение (так как это неповседневная задача), но с правильным подходом это не составит труда.

  1. Изображение с названием Find Average Acceleration Step 1

    1

    Определение ускорения. Ускорение — это быстрота увеличения или уменьшения скорости,[1]
    или просто быстрота изменения скорости с течением времени.[2]
    Ускорение — векторная величина, имеющая направление (включите его в ответ).

    • Обычно, если тело ускоряется при движении «вправо», «вверх» или «вперед», то ускорение имеет положительное (+) значение.
    • Если тело ускоряется при движении «влево», «вниз» или «назад», то ускорение имеет отрицательное (+) значение.
  2. Изображение с названием Find Average Acceleration Step 2

    2

    Запишите определение ускорения в виде формулы. Как упоминалось выше, ускорение — это быстрота изменения скорости с течением времени.[3]
    Есть два способа записать это определение в виде формулы:

    • aср = Δv/Δt (символ дельта «Δ» означает «изменение»).
    • aср = (vк – vн)/(tк – tн), где vк — конечная скорость, vн — начальная скорость.
  3. Изображение с названием Find Average Acceleration Step 3

    3

    Найдите начальную и конечную скорости тела. Например, автомобиль, начинающий движение (вправо) со стоянки, имеет начальную скорость 0 м/с, а конечную скорость 500 м/с.[4]

    • Движение вправо описывается положительными значениями, поэтому далее мы не будем указывать направление движения.
    • Если автомобиль начинает движение вперед, а заканчивает его движением назад, конечная скорость имеет отрицательное значение.
  4. Изображение с названием Find Average Acceleration Step 4

    4

    Обратите внимание на изменение времени. Например, автомобилю может понадобиться 10 секунд, чтобы достичь конечной скорости. В этом случае tк = 10 с, а tн = 0 с.[5]

    • Убедитесь, что скорость и время даются в соответствующих единицах измерения. Например, если скорость дана в км/ч, то время должно измеряться в часах.
  5. Изображение с названием Find Average Acceleration Step 5

    5

    Подставьте данные вам значения скорости и времени в формулу для вычисления среднего ускорения. В нашем примере:

    • aср = (500 м/с – 0 м/с)/(10с – 0с)
    • aср = (500 м/с)/(10с)
    • aср = 50 м/с / с, то есть 50 м/с2.
  6. Изображение с названием Find Average Acceleration Step 6

    6

    Интерпретация результата. Среднее ускорение задает среднюю быстроту изменения скорости в течение определенного промежутка времени.[6]
    В приведенном выше примере машина в среднем ускорялась на 50 м/с за каждую секунду. Запомните: параметры движения могут быть разными, но среднее ускорение будет таким же, только если изменение скорости и изменение времени не меняются:

    • Автомобиль может начать движение со скоростью 0 м/с и разогнаться за 10 секунд до 500 м/с.
    • Автомобиль может начать движение со скоростью 0 м/с и разогнаться до 900 м/с, а затем сбросить скорость до 500 м/с за 10 секунд.
    • Автомобиль может начать движение со скоростью 0 м/с, стоять на месте в течение 9 секунд, а затем за 1 секунду разогнаться до 500 м/с.

    Реклама

  1. Изображение с названием Find Average Acceleration Step 7

    1

    Определение положительной и отрицательной скорости. Скорость имеет направление (так как это векторная величина), но указывать его, например, как «вверх» или «на север», весьма утомительно. Вместо этого в большинстве задач предполагается, что тело движется вдоль прямой линии. При движении в одном направлении скорость тела положительна, а при движении в противоположном направлении скорость тела отрицательна.[7]

    • Например, синий поезд движется на восток со скоростью 500 м/с. Красный поезд движется на запад с такой же скоростью, но так как он движется в противоположном направлении, его скорость записывается так: -500 м/с.
  2. Изображение с названием Find Average Acceleration Step 8

    2

    Используйте определение ускорения, чтобы определить его знак (+ или -). Ускорение — быстрота изменения скорости с течением времени. Если вы не знаете, какой знак написать у значения ускорения, найдите изменение скорости:

    • vконечная – vначальная = + или – ?
  3. Изображение с названием Find Average Acceleration Step 9

    3

    Ускорение в разных направлениях. Например, синий и красный поезда движутся в противоположных направлениях со скоростью 5 м/с. Представьте это движение на числовой прямой; синий поезд движется со скоростью 5 м/с в положительном направлении числовой прямой (то есть вправо), а красный поезд движется со скоростью -5 м/с в отрицательном направлении числовой прямой (то есть влево). Если каждый поезд увеличивает скорость на 2 м/с (в направлении его движения), то какой знак имеет ускорение?[8]
    Давайте проверим:

    • Синий поезд движется в положительном направлении, поэтому его скорость с 5 м/с возрастает до 7 м/с. Конечная скорость равна 7 – 5 = +2. Поскольку изменение скорости положительно, то и ускорение положительно.
    • Красный поезд движется в отрицательном направлении и увеличивает скорость с -5 м/с до -7 м/с. Конечная скорость равна -7 – (-5) = -7 + 5 = -2 м/с. Поскольку изменение скорости отрицательно, то и ускорение отрицательно.
  4. Изображение с названием Find Average Acceleration Step 10

    4

    Замедление.[9]
    Например, самолет летит со скоростью 500 км/ч, а затем замедляется до 400 км/ч. Хотя самолет движется в положительном направлении, его ускорение отрицательно, так как он замедляется (то есть уменьшает скорость). Это можно проверить через вычисления: 400 – 500 = -100, то есть изменение скорости отрицательно, поэтому и ускорение отрицательно.[10]

    • С другой стороны, если вертолет движется со скоростью -100 км/ч и разгоняется до -50 км/ч, то его ускорение положительно, потому что изменение скорости положительно: -50 – (-100) = 50 (хотя такого изменения скорости было недостаточно, чтобы изменить направление движения вертолета).

    Реклама

Советы

Ускорение и скорость — векторные величины, которые задаются как значением, так и направлением. Величины, задающиеся только значением, называются скалярными (например, длина).[11]

Реклама

Об этой статье

Эту страницу просматривали 46 655 раз.

Была ли эта статья полезной?

Как найти ускорение — определение и формулы расчета в физике

Содержание:

  • Что такое ускорение

    • Единица измерения
  • Как рассчитать ускорение: формулы

    • Для прямолинейного движения
    • Для равноускоренного движения
    • Для равнозамедленного движения
    • Нахождение ускорения через массу и силу
  • Мгновенное ускорение
  • Максимальное ускорение
  • Среднее ускорение
  • Проекция ускорения

Что такое ускорение

Ускорение (overrightarrow а) — векторная величина в физике, характеризующая быстроту изменения скорости тела.

Ускорение является векторной величиной, показывающей, на сколько изменяется вектор скорости тела при его движении за единицу времени.

Единица измерения

В СИ (системе интернациональной) ускорение измеряется: ( begin{bmatrix}aend{bmatrix}=frac м{с^2})

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Как рассчитать ускорение: формулы

Для прямолинейного движения

Прямолинейное движение — механическое движение, при котором траектория тела — прямая линия.

В этом случае ускорение находится по следующим формулам:

(a;=;frac{mathrm V}t)

(a;=;frac{2S}{t^2})

(a;=;frac{V^2}{2S})

Где (a) — достигнутое ускорение тела, (S) — пройденный путь (расстояние), (t) — затраченное время.

Время отсчитывается от начала движения тела.

При прямолинейном равномерном движении ускорение по модулю равняется нулю.

Для равноускоренного движения

Равноускоренное движение — прямолинейное движение с постоянным положительным ускорением (разгон).

При таком виде движения ускорение определяется по формуле: (a;=;frac{V-V_0}t), где (V_0) и (V) начальная и конечная скорости соответственно, (a) — достигнутое ускорение тела, (t) — затраченное время.

Для равнозамедленного движения

Равнозамедленное движение — прямолинейное движение с постоянным отрицательным ускорением (замедление).

При таком виде движения ускорение находим по формуле: (a;=-;frac{V-V_0}t), где V0 и V начальная и конечная скорости соответственно, a — достигнутое ускорение тела, t — затраченное время.

Нахождение ускорения через массу и силу

Принцип инерции Галилея:

Если не действовать на тело, то его скорость не будет меняться.

Система отсчета (СО) — система координат, точка отсчета и указание начала отсчета времени.

Инерциальная система отсчета (ИСО) — это СО, в которой наблюдается движение по инерции (соблюдается принцип инерции).

II закон Ньютона:

В инерциальных системах отсчёта ускорение, приобретаемое материальной точкой, прямо пропорционально вызывающей его силе, совпадает с ней по направлению и обратно пропорционально массе материальной точки.

или

(overrightarrow a=frac{overrightarrow F}m)

Мгновенное ускорение

Мгновенное ускорение тела (материальной точки) в данный момент времени — это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Другими словами — это ускорение, которое развивает тело за максимально короткий отрезок времени.

Выражается по формуле:

( overrightarrow a=lim_{trightarrow0}frac{triangleoverrightarrow V}{triangle t})

Максимальное ускорение

(a_{max}=omega v_{max},) где (a_{max}) — максимальное ускорение, (omega) — круговая (угловая, циклическая) частота, (v_{max}) — максимальная скорость.

Среднее ускорение

Среднее ускорение — это отношение изменения скорости к промежутку времени, за который это изменение произошло.

(overrightarrow{a_{ср}}=frac{triangleoverrightarrow V}{triangle t}), где (overrightarrow{a_{ср}}) — среднее ускорение, (triangleoverrightarrow V) — изменение скорости, ( triangle t) — изменение времени.

Проекция ускорения

Определение проекции ускорения на ось (х):

(a_x=frac{V_x-V_{0x}}t), где где (a_x) — проекция ускорения на ось (х), (V_x) проекция текущей скорости на ось (х)(V_{0x}) — проекция начальной скорости на ось (х), (t) или (triangle t) — промежуток времени, за который произошло изменение проекции скорости.

Насколько полезной была для вас статья?

Рейтинг: 1.94 (Голосов: 35)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Коллоквиум.

1. Механическое движение. Относительность
механического движения.

Механическое движение – это изменение
положения тела в пространстве относительно
других тел.

Относительность механического движения

Все тела во Вселенной движутся, поэтому
не существует тел, которые находятся в
абсолютном покое. По той же причине
определить движется тело или нет, можно
только относительно какого-либо другого
тела.

Например, автомобиль движется по дороге.
Дорога находится на планете Земля.
Дорога неподвижна. Поэтому можно измерить
скорость автомобиля относительно
неподвижной дороги. Но дорога неподвижна
относительно Земли. Однако сама Земля
вращается вокруг Солнца. Следовательно,
дорога вместе с автомобилем также
вращается вокруг Солнца. Следовательно,
автомобиль совершает не только
поступательное движение, но и вращательное
(относительно Солнца). А вот относительно
Земли автомобиль совершает только
поступательное движение. В этом
проявляется относительность механического
движения.

Относительность механического движения
– это зависимость траектории движения
тела, пройденного пути, перемещения и
скорости от выбора системы отсчёта.

2. Перемещение и скорость.

Перемещение
– это вектор, соединяющий начальное и
конечное положение точки. Направление
и величина перемещения определяются
отрезком прямой между начальной и
конечной точками движения.

Скорость.
Механическое
движение характеризуется еще и тем,
насколько быстро движется точка (тело).
Эта характеристика называется скорость
движения
.
Скорость – величина векторная. Для того,
чтобы полностью задать ее, надо задать
собственно величину скорости и
направление, вдоль которого она измерена.
Обычно рассматривается скорость тела
вдоль траектории его движения. Тогда
величина скорости определяется как
путь, пройденный в единицу времени.
Иначе говоря, для того, чтобы найти
скорость вдоль траектории движения
надо путь разделить на время, за которое
он был пройден.

Формулы
для решения:

Пусть
v

скорость, s

путь, t
– время. Скорость
измеряется вдоль траектории движения.
Тогда:


Перемещение
определяется как геометрическая сумма
отрезков пути. Для простейшего случая,
когда один участок пути направлен
перпендикулярно другому решается
прямоугольный треугольник:

3. Виды движения. Ускорение.

В современной механике движение тела
подразделяется на виды
, и существует
следующая классификация видов движения
тела
:

1. Поступательное движение,
при котором любая прямая линия, связанная
с телом, остается при движении параллельной
самой себе.
2. Вращательное движение
или вращение тела вокруг своей оси,
считающейся неподвижной.
3. Сложное
движение
тела, состоящее из
поступательного и вращательного
движений.

Ускорение – это величина,
которая характеризует быстроту изменения
скорости.

Среднее ускорение

Среднее
ускорение
> – это отношение
изменения скорости к промежутку времени,
за который это изменении произошло.
Определить среднее ускорение можно
формулой:

где


вектор ускорения.

Направление
вектора ускорения совпадает с направлением
изменения скорости Δ
=

0
(здесь
0
– это начальная скорость, то есть
скорость, с которой тело начало
ускоряться).

В
момент времени t1 (см. рис 1.8) тело имеет
скорость
0.
В момент времени t2 тело имеет скорость

.
Согласно правилу вычитания векторов
найдём вектор изменения скорости Δ
=

0.
Тогда определить ускорение можно так:

Рис.
1.8. Среднее ускорение.

В
СИ единица ускорения – это 1
метр в секунду за секунду (или метр на
секунду в квадрате), то есть

Метр
на секунду в квадрате равен ускорению
прямолинейно движущейся точки, при
котором за одну секунду скорость этой
точки увеличивается на 1 м/с. Иными
словами, ускорение определяет, насколько
изменяется скорость тела за одну секунду.
Например, если ускорение равно 5 м/с2,
то это означает, что скорость тела каждую
секунду увеличивается на 5 м/с.

Мгновенное ускорение

Мгновенное
ускорение тела (материальной точки)

в данный момент времени – это физическая
величина, равная пределу, к которому
стремится среднее ускорение при
стремлении промежутка времени к нулю.
Иными словами – это ускорение, которое
развивает тело за очень короткий отрезок
времени:

Направление
ускорения также совпадает с направлением
изменения скорости Δ
при очень малых значениях промежутка
времени, за который происходит изменение
скорости. Вектор ускорения может быть
задан проекциями на соответствующие
оси координат в данной системе отсчёта
(проекциями аХ, aY, aZ).

При
ускоренном прямолинейном движении
скорость тела возрастает по модулю, то
есть

v2
> v1

а направление вектора ускорения совпадает
с вектором скорости
2.

Если
скорость тела по модулю уменьшается,
то есть

v2
< v1

то направление вектора ускорения
противоположно направлению вектора
скорости
2.
Иначе говоря, в данном случае происходит
замедление движения, при этом
ускорение будет отрицательным (а < 0).
На рис. 1.9 показано направление векторов
ускорения при прямолинейном движении
тела для случая ускорения и замедления.

Рис.
1.9. Мгновенное ускорение.

При
движении по криволинейной траектории
изменяется не только модуль скорости,
но и её направление. В этом случае вектор
ускорение представляют в виде двух
составляющих (см. следующий раздел).

Тангенциальное ускорение

Тангенциальное
(касательное) ускорение
– это
составляющая вектора ускорения,
направленная вдоль касательной к
траектории в данной точке траектории
движения. Тангенциальное ускорение
характеризует изменение скорости по
модулю при криволинейном движении.

Рис.
1.10. Тангенциальное ускорение.

Направление
вектора тангенциального ускорения
τ
(см. рис. 1.10) совпадает с направлением
линейной скорости или противоположно
ему. То есть вектор тангенциального
ускорения лежит на одной оси с касательной
окружности, которая является траекторией
движения тела.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

В физике рассмотрением особенностей движения макроскопических твердых тел занимается кинематика. Этот раздел механики оперирует такими понятиями, как скорость, ускорение и путь. В данной статье мы сосредоточим свое внимание на вопросах, что такое мгновенное ускорение и скорость. Также рассмотрим, какими формулами можно определить эти величины.

Нахождение скорости

Об этом понятии известно каждому школьнику, начиная уже с младших классов. Все ученики знакомы с приведенной ниже формулой:

Геохимический барьер: определение термина, особенностиВам будет интересно:Геохимический барьер: определение термина, особенности

v = S/t.

Здесь S – путь, который преодолело движущееся тело за время t. Данное выражение позволяет рассчитать некоторую среднюю скорость v. Действительно, нам ведь неизвестно, каким образом двигалось тело, на каком участке пути оно перемещалось быстрее, а на каком медленнее. Даже не исключена ситуация, что в некоторой точке пути оно находилось в состоянии покоя какое-то время. Единственное, что известно, это пройденный путь и соответствующий ему временной отрезок.

В старших классах школ скорость, как физическая величина, рассматривается в новом свете. Ученикам предлагают следующее ее определение:

v = dS/dt.

Чтобы понять это выражение, нужно знать, как вычисляется производная от некоторой функции. В данном случае – это S(t). Поскольку производная характеризует поведение кривой в данной конкретной точке, то вычисляемая по формуле выше скорость называется мгновенной.

Ускорение

Формула ускорения

Если механическое движение является переменным, то для его точного описания необходимо знать не только скорость, но и величину, которая показывает, как она изменяется во времени. Это – ускорение, которое является производная по времени скорости. А та, в свою очередь, есть производная по времени пути. Формула мгновенного ускорения имеет вид:

a = dv/dt.

Благодаря этому равенству можно определить изменение величины v в любой точке траектории.

По аналогии со скоростью, среднее ускорение вычисляется по такой формуле:

a = Δv/Δt.

Здесь Δv – это изменение модуля скорости тела за промежуток времени Δt. Очевидно, что в течение этого периода тело способно как ускоряться, так и замедляться. Величина a, определенная из выражения выше, покажет лишь в среднем быстроту изменения скорости.

Движение с постоянным ускорением

Ускорение и скорость

Отличительной особенностью этого типа перемещения тел в пространстве является постоянство величины а, то есть a=const.

Это движение также называют равноускоренным или равнозамедленным в зависимости от взаимного направления векторов скорости и ускорения. Ниже такое перемещение рассмотрим на примере двух наиболее распространенных траекторий: прямой линии и окружности.

При перемещении по прямой линии во время равноускоренного движения мгновенная скорость и ускорение, а также величина пройденного пути, связаны следующими равенствами:

v = v0 ± a*t;

S = v0*t ± a*t2/2.

Здесь v0 – это значение скорости, которым тело обладало до появления ускорения a. Заметим один нюанс. Для данного типа перемещения бессмысленно говорить о мгновенном ускорении, поскольку в любой точке траектории оно будет одним и тем же. Иными словами, мгновенная и средняя величины его будут равны друг другу.

Что касается скорости, то первое выражение позволяет определить ее в любой момент времени. То есть это будет мгновенный показатель. Для расчета средней скорости необходимо воспользоваться представленным выше выражением, то есть:

v = S/t = v0 ± a*(t1 + t2)/2.

Здесь t1 и t2 – это моменты времени, между которыми вычисляют среднюю скорость.

Знак “плюс” во всех формулах соответствует ускоренному передвижению. Соответственно знак “минус” – замедленному.

Ускоренное и равномерное движение

При изучении движения по окружности с постоянным ускорением в физике используют угловые характеристики, которые аналогичны соответствующим линейным. К ним относится угол поворота θ, угловая скорость и ускорение (ω и α). Эти величины связаны в равенства, аналогичные выражениям равноускоренного движения по прямой линии, которые приводятся ниже:

ω = ω0 ± α*t;

θ = ω0*t ± α*t2/2.

При этом угловые характеристики связаны с линейными следующим образом:

S = θ*R;

v = ω*R;

a = α*R.

Здесь R – радиус окружности.

Вращение с угловым ускорением

Задача на определение среднего и мгновенного ускорения

Известно, что тело движется по сложной траектории. Его мгновенная скорость меняется по времени следующим образом:

v = 10 – 3*t + t3.

Чему равно мгновенное ускорение тела в момент t=3 (секунды)? Найти среднее ускорение за промежуток времени от двух до четырех секунд.

На первый вопрос задачи ответить несложно, если вычислить производную от функции v(t). Получаем:

a = |dv/dt|t=2;

а = |3*t2 – 3|t=2 = 24 м/с2.

Для определения среднего ускорения, следует воспользоваться таким выражением:

a = (v2 – v1)/(t2 – t1);

а = ((10 – 3*4 + 43) – (10 – 3*2 + 23))/2 = 25 м/c2.

Из расчетов следует, что среднее ускорение немного превышает мгновенное в середине рассмотренного временного промежутка.

  • Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением (a=const).
  • Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a.
  • Единица измерения ускорения — метр в секунду в квадрате (м/с2).
  • Акселерометр — прибор для измерения ускорения.

Формула ускорения

Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:

v — скорость тела в данный момент времени, v0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость

Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.

Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.

Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:

Проекция ускорения

Проекция ускорения на ось ОХ

vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость

Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:

  • Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
  • Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.

При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.

Направление вектора ускорения

Направление вектора ускорения не всегда совпадает с направлением вектора скорости!

Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают (а↑↑v).

Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу (а↑↓v).

Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.

График ускорения

График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.

Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:

  • Если график лежит выше оси времени, движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
  • Если график лежит ниже оси времени, движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.

Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.

Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.

Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.

В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).

Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.

В момент времени t1 = 1с ускорение a = 2 м/с2. В момент времени t2 = 3 ускорение a = 0 м/с2.

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17992

Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м/с. После прохождения расстояния 40 м его скорость оказалась равной 15 м/c. Чему равно ускорение автомобиля?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу, связывающую известные из условия задачи величины.
  3. Выразить из формулы искомую величину.
  4. Вычислить искомую величину, подставив в формулу исходные данные.

Решение

Запишем исходные данные:

  • Начальная скорость v0 = 5 м/с.
  • Конечная скорость v = 15 м/с.
  • Пройденный путь s = 40 м.

Формула, которая связывает ускорение тела с пройденным путем:

Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».

Выразим из формулы ускорение:

Подставим известные данные и вычислим ускорение автомобиля:

Ответ: 2,5

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18202

Внимательно прочитайте текст задания и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.

Какой из указанных ниже графиков  совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?


Алгоритм решения

  1. Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
  2. Вычислить ускорение движение тела на этом участке.
  3. Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.

Решение

Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.

Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:

  • t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
  • t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.

Используем для вычислений следующую формулу:

Подставим в нее известные данные и сделаем вычисления:

Этому значению соответствует график «г».

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18027

На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении по оси х. Определите модуль ускорения тела.


Алгоритм решения

  1. Записать формулу ускорения.
  2. Записать формулу для вычисления модуля ускорения.
  3. Выбрать любые 2 точки графика.
  4. Определить для этих точек значения времени и проекции скорости (получить исходные данные).
  5. Подставить данные формулу и вычислить ускорение.

Решение

Записываем формулу ускорения:

По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:

Выбираем любые 2 точки графика. Пусть это будут:

  • t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
  • t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.

Подставляем данные формулу и вычисляем модуль ускорения:

Ответ: 10

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 13.7k

Добавить комментарий