Как найти ускорение свободного падения джи

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 августа 2022 года; проверки требуют 4 правки.

Ускорение свободного падения на поверхности[1] некоторых небесных тел, м/с2 и g

Земля 9,81 м/с2 1,00 g Солнце 273,1 м/с2 27,85 g
Луна 1,62 м/с2 0,165 g Меркурий 3,70 м/с2 0,378 g
Венера 8,88 м/с2 0,906 g Марс 3,86 м/с2 0,394 g
Юпитер 24,79 м/с2 2,528 g Сатурн 10,44 м/с2 1,065 g
Уран 8,86 м/с2 0,903 g Нептун 11,09 м/с2 1,131 g
Эрида 0,82 ± 0,02 м/с2 0,084 ± 0,002 g Плутон 0,617 м/с2 0,063 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении взаимодействия с другими телами.
В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле: оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или более грубо 10 м/с².

Физическая сущность[править | править код]

Две компоненты ускорения свободного падения на Земле

g: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна

GM/r2 и центробежная, равная

ω2a, где

a — расстояние до земной оси,

ω — угловая скорость вращения Земли.

Для определённости будем считать, что речь идёт о свободном падении на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центробежного ускорения, связанного с вращением Земли.

Центростремительное ускорение[править | править код]

Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, оно равно ω2a, где ω — угловая скорость вращения Земли, определяемая как ω = 2π/T, а Т — время одного оборота вокруг своей оси, для Земли равное 86164 секундам (звёздные сутки). Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с2, причём на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение[править | править код]

Гравитационное ускорение на различной высоте h над уровнем моря

h, км g, м/с2 h, км g, м/с2
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связана с его массой M следующим соотношением:

g=G{frac {M}{r^{2}}},

где G — гравитационная постоянная (6,67430[15]·10−11 м3·с−2·кг−1)[6], а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрична. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо, наоборот, по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

g(h)={frac {GM}{(r+h)^{2}}},
где M — масса планеты.

Ускорение свободного падения на Земле[править | править код]

Ускорение свободного падения у поверхности Земли зависит от широты. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:

{displaystyle g=9{,}780318(1+0{,}005302sin ^{2}varphi -0{,}000006sin ^{2}2varphi )-0{,}000003086h,}
где varphi  — широта рассматриваемого места,
h — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли[en][9], дополнив её поправками, связанными с вращением Земли, приливными воздействиями.
На ускорение свободного падения влияют и другие факторы, например, атмосферное давление, которое меняется в течение суток: от атмосферного давления зависит плотность воздуха в большом объёме, а следовательно и результирующая сила тяжести, изменение которой могут зафиксировать высокочувствительные гравиметры[10].

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счёт центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от теоретических показателей по этой модели. Так, самое низкое значение g (9,7639 м/с²) зафиксировано на горе Уаскаран в Перу в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от Северного полюса[11].

Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с2
Алма-Ата 76,85 в.д. 43,22 с.ш. 786 9.78125
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80188
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Измерение[править | править код]

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.
Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

См. также[править | править код]

  • Свободное падение
  • Гравиметрия
  • Гравиразведка
  • Перегрузка (летательные аппараты)

Примечания[править | править код]

  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105 Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3. Свободное падение тел. Ускорение свободного падения. Архивировано из оригинала 20101219 года.
  4. Декларация III Генеральной конференции по мерам и весам (1901) (англ.). Международное бюро мер и весов. Дата обращения: 9 апреля 2013. Архивировано 8 июля 2018 года.
  5. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Изд-во стандартов, 1990. — С. 237.
  6. CODATA Value: Newtonian constant of gravitation. physics.nist.gov. Дата обращения: 7 марта 2020. Архивировано 23 сентября 2020 года.
  7. Грушинский Н. П. Гравиметрия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  8. Ускорение свободного падения // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  9. ICCEM – table of models (англ.). Дата обращения: 10 ноября 2021. Архивировано из оригинала 24 августа 2013 года.
  10. GRAVITY MONITORING AT OIL AND GAS FIELDS: DATA INVERSION AND ERRORS // Геология и геофизика. — 2015. — Т. 56, вып. 5. — doi:10.15372/GiG20150507. Архивировано 2 июня 2018 года.
  11. Перуанцам живется легче, чем полярникам? Дата обращения: 21 июля 2016. Архивировано 16 сентября 2016 года.

Литература[править | править код]

  • Енохович А. С. Краткий справочник по физике. — М.: Высшая школа, 1976. — 288 с.

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Ускорение свободного падения

Ускорение свободного падения — движение объекта, который получает ускорение из-за действующей на него силы тяжести; обозначается буквой g и измеряется в м/с². На поверхности Земли ускорение свободного падения примерно равно 9,81 м/с².

На полюсах (Южном и Северном) ускорение свободного падения будет больше, а на экваторе — меньше. Это происходит из-за двух фактов:

  • Земля — не идеальный круг, а приплюснутый шар и её радиус на полюсах меньше, чем на экваторе (ускорение зависит от радиуса),
  • центробежные силы (при вращении Земли) минимально компенсируют гравитацию больше на экваторе, чем на полюсах.

В вакууме тела падают с одинаковой скоростью потому, что ускорение свободного падения не зависит от массы.

Таблица ускорения свободного падения небесных тел

Небесное тело g (в м/с²)
Луна 1,62
Солнце 274
Меркурий 3,72
Венера 8,87
Земля 9,81
Марс 3,711
Юпитер 24,79
Сатурн 10,44
Уран 8,87
Нептун 11,15

От чего зависит ускорение свободного падения?

Ускорение свободного падения зависит от массы планеты и радиуса планеты — чем она тяжелее, тем сильнее притягивает тела (т.е. масса тела не влияет на ускорение).

Возможно для будущих вычислений нужны будут эти данные:

  1. Масса Земли = 5,98 × (10^24) кг (или 5,972E24 кг)
  2. Радиус Земли = 6 371 км = 6,37×(10^6) м.

Как найти ускорение свободного падения?

Формула ускорения свободного падения

ускорение свободного падения формула g = G × (M/R²)
Где:
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Гравитационная постоянная (“G”, не путайте с “g”) — это фундаментальная физическая константа, которая примерно равна

Гравитационная постоянная G

и связывает силы гравитационного притяжения между двумя телами (G) с их массами (m1 и m2) и расстоянием между ними (R) в формуле:

Гравитационная постоянная 'G', F= G*(m1.m2)/r^2

Пример расчёта ускорения свободного падения (для Земли):

Вспомним формулу:

ускорение свободного падения формула g = G × (M/R²)
g — ускорение свободного падения
G — гравитационная постоянная
M — масса планеты
R — радиус планеты

Пример расчёта ускорения свободного падения для Землиб Формула ускорения свободного падения g = G × (M/R²) пример

Как узнать время падения тела?

Формула времени свободного падения (когда тело падает вертикально):

t = V / g = √(2h/g)

Где:

  • t — время
  • V — скорость тела
  • g — ускорение ≈ 9,8 м/с²
  • h — расстояние

Пример:

Высота (h) = 20 м

Нужно найти скорость и время падения.

Решение:

Формула скорости:

Формула скорости     (V² = V²0 + 2×g×h)

V0 = 0

g ≈ 9,8 м/с²

h = 20 м

V² = 0² + 2 × 9,8 м/с² × 20 м ⇔ V = √392 м/с ≈ 19,8 м/с

Зная скорость, применяем эту формулу:

t = V / g = (19,8 м/с) / (9,8 м/с²) ≈ 2,02 с

Либо используя только высоту и ускорение:

t = √(2h/g) = √(2 × 20 м / 9,8 м/с²) ≈ 2,02 с

Где нужны знания о свободном падении?

Они могут понадобиться:

  • в авиации,
  • в космонавтике,
  • при поиске полезных ископаемых (там, где есть залежи тяжёлых ископаемых, g меняется),
  • при разработке новых лыжных трамплинов и полос приземления,
  • при разработке новых автомобилей (рассчитываются наилучшие показатели для экономии топлива).

Узнайте также про Закон сохранения энергии, Силу Архимеда, Законы Ньютона и Космологию.

Свободное падение – это движение тела под действием силы тяжести. В упрощенном виде расчет производится без учета сопротивления воздуха.
На поверхности Земли ускорение свободного падения имеет величину от 9,78 м/с2 на экваторе до 9,82 м/с2 на полюсах.
Кроме того, на планете существуют места с экстремальными значениями, которые не вписываются в математическую модель. Минимум составляет
9,76 м/с2, максимум – 9,83 м/с2. Для расчетов в физике используется усредненная величина – 9,8 м/с2

Формула ускорения свободного падения:

Ускорение свободного падения вычисляется по следующей формуле:

Формула ускорения свободного падения

где

G – гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10-11 м3/(кг*с2), или Н*м2/кг2

R – расстояние, на котором находится тело от центра планеты

M – масса планеты

Как видно из вышеприведенной формулы, значение ускорения свободного падения обратно пропорционально квадрату расстояния от центра планеты,
т.е. зависит не только от радиуса самой планеты, но от того, на какой высоте над ее поверхностью находится тело.
Поэтому для расчёта величины “g” на определенной высоте формулу можно скорректировать вот таким образом:

Формула ускорения свободного падения на разной высоте над поверхностью планеты

где

G – гравитационная постоянная

R – радиус планеты

h – высота над поверхностью планеты, на которой находится тело

M – масса планеты

Для расчёта можно воспользоваться калькулятором, который приведен ниже.

Калькулятор ускорения свободного падения

Другие формулы

Калькулятор космических скоростей

Выберем тело, например, камень. Расположим его не некотором расстоянии от поверхности земли. Расстояние от центра Земли до камня равно ( R = left( r + h right) ), как представлено на рисунке 1.

Малое тело и планета притягиваются

Рис. 1. Камень (черная точка), притягивается к планете (центральная окружность).

Пусть на камень действует только сила, с которой Земля притягивает его, а других сил нет (нет, например, силы сопротивления воздуха).

Свободное падение – это движение тела под действием только одной силы — силы притяжения.

Из законов Ньютона известно: если на тело действует сила, то тело получает ускорение.

Ускорение свободного падения – это ускорение, с которым движется тело, когда на него действует только сила тяжести.

Формула для расчета ускорения свободного падения

Ускорение свободного падения можно посчитать по формуле:

[ large boxed { g = G cdot frac{M}{left( r + h right)^{2}} }]

( g left( frac{text{м}}{c^{2}} right) ) (метры, деленные на секунду в квадрате) – ускорение свободного падения

( M left( text{кг} right) ) (килограммы) — масса планеты, которая притягивает

( r left( text{м} right) ) (метры) – радиус планеты

( h left( text{м} right) ) (метры) — расстояние от поверхности планеты до тела

(G = 6{,}67 cdot 10^{-11} left( text{Н} cdot frac{text{м}^2}{text{кг}^2} right)) — гравитационная постоянная

Интересные факты

У разных планет ускорение свободного падения различается.

  • чем больше масса планеты (или звезды), тем больше будет ускорение свободного падения рядом с такой планетой (или звездой);
  • чем дальше от планеты, тем меньше ускорение свободного падения;
  • на полюсах ускорение свободного падения больше, чем на экваторе планеты;

Важно!

Все тела под действием силы тяжести падают с одинаковым ускорением! Это ускорение не зависит от массы тела.

Из житейского опыта мы знаем: чем больше площадь тела, тем больше времени ему нужно, чтобы упасть с какой-либо высоты. При своем падении тело опирается на воздух, поэтому, к примеру, лист бумаги будет падать дольше, чем шарик из пластилина, или гирька.

В безвоздушном пространстве опираться не на что. Поэтому гирька, лист бумаги, птичье перо и пластилиновый шарик, стартовав с одной и той же высоты одновременно, упадут на поверхность планеты тоже одновременно.

Ускорение свободного падения у поверхности некоторых небесных тел

  • у поверхности Земли  ( g = 9{,}8 left( frac{text{м}}{c^{2}} right) )
  • у поверхности Луны  ( g = 1{,}68 left( frac{text{м}}{c^{2}} right) )
  • у поверхности Марса  ( g = 3{,}86 left( frac{text{м}}{c^{2}} right) )
  • у поверхности Солнца  ( g = 273{,}1 left( frac{text{м}}{c^{2}} right) )
  • у поверхности Юпитера  ( g = 23{,}95 left( frac{text{м}}{c^{2}} right) )

Как вывести формулу ускорения свободного падения

Рассмотрим камень, находящийся на некотором расстоянии от Земли.

Земля и камень притягиваются, запишем закон притяжения между планетой и камнем

[  F = G cdot frac{mcdot M}{left( r + h right)^{2}} ]

С другой стороны, у камня есть вес, так как на него действует сила тяжести.

[  F_{text{тяж}} = m cdot g ]

Мы можем записать эти уравнения в виде системы.

[  begin{cases} displaystyle F = G cdot frac{mcdot M}{( r + h)^{2}} \ displaystyle  F_{text{тяж}} = m cdot g  end{cases} ]

Земля и камень притягиваются, благодаря этому на камень действует сила тяжести. На языке математики это запишется так:

[  F = F_{text{тяж}} ]

А если равны левые части уравнений, то будут равны и правые:

[  G cdot frac{mcdot M}{left( r + h right)^{2}} = m cdot g ]

Масса ( m ) камня встречается в обеих частях уравнения. Поделим обе части уравнения на массу камня.

[  G cdot frac{M}{ left( r + h right)^{2}} = g ]

Все)

Вам будет интересно почитать:

Закон всемирного тяготения

Законы Ньютона

Первая космическая скорость

Вторая космическая скорость

Добавить комментарий