Как найти ускорение свободного падения механические колебания

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 19 августа 2022 года; проверки требуют 4 правки.

Ускорение свободного падения на поверхности[1] некоторых небесных тел, м/с2 и g

Земля 9,81 м/с2 1,00 g Солнце 273,1 м/с2 27,85 g
Луна 1,62 м/с2 0,165 g Меркурий 3,70 м/с2 0,378 g
Венера 8,88 м/с2 0,906 g Марс 3,86 м/с2 0,394 g
Юпитер 24,79 м/с2 2,528 g Сатурн 10,44 м/с2 1,065 g
Уран 8,86 м/с2 0,903 g Нептун 11,09 м/с2 1,131 g
Эрида 0,82 ± 0,02 м/с2 0,084 ± 0,002 g Плутон 0,617 м/с2 0,063 g

Ускоре́ние свобо́дного паде́ния (ускорение силы тяжести) — ускорение, придаваемое телу силой тяжести, при исключении взаимодействия с другими телами.
В соответствии с уравнением движения тел в неинерциальных системах отсчёта[2] ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Ускорение свободного падения на поверхности Земли g (обычно произносится как «же») варьируется от 9,780 м/с² на экваторе до 9,82 м/с² на полюсах[3]. Стандартное («нормальное») значение, принятое при построении систем единиц, составляет 9,80665 м/с²[4][5]. Стандартное значение g было определено как «среднее» в каком-то смысле на всей Земле: оно примерно равно ускорению свободного падения на широте 45,5° на уровне моря. В приблизительных расчётах его обычно принимают равным 9,81, 9,8 или более грубо 10 м/с².

Физическая сущность[править | править код]

Две компоненты ускорения свободного падения на Земле

g: гравитационная (в приближении сферически симметричной зависимости плотности от расстояния от центра Земли) равна

GM/r2 и центробежная, равная

ω2a, где

a — расстояние до земной оси,

ω — угловая скорость вращения Земли.

Для определённости будем считать, что речь идёт о свободном падении на Земле. Эту величину можно представить как векторную сумму двух слагаемых: гравитационного ускорения, вызванного земным притяжением, и центробежного ускорения, связанного с вращением Земли.

Центростремительное ускорение[править | править код]

Центростремительное ускорение является следствием вращения Земли вокруг своей оси. Именно центростремительное ускорение, вызванное вращением Земли вокруг своей оси, вносит наибольший вклад в неинерциальность системы отсчёта, связанную с Землёй. В точке, находящейся на расстоянии a от оси вращения, оно равно ω2a, где ω — угловая скорость вращения Земли, определяемая как ω = 2π/T, а Т — время одного оборота вокруг своей оси, для Земли равное 86164 секундам (звёздные сутки). Центростремительное ускорение направлено по нормали к оси вращения Земли. На экваторе оно составляет 3,39636 см/с2, причём на других широтах направление вектора его не совпадает с направлением вектора гравитационного ускорения, направленного к центру Земли.

Гравитационное ускорение[править | править код]

Гравитационное ускорение на различной высоте h над уровнем моря

h, км g, м/с2 h, км g, м/с2
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

В соответствии с законом всемирного тяготения, величина гравитационного ускорения на поверхности Земли или космического тела связана с его массой M следующим соотношением:

g=G{frac {M}{r^{2}}},

где G — гравитационная постоянная (6,67430[15]·10−11 м3·с−2·кг−1)[6], а r — радиус планеты. Это соотношение справедливо в предположении, что плотность вещества планеты сферически симметрична. Приведённое соотношение позволяет определить массу любого космического тела, включая Землю, зная её радиус и гравитационное ускорение на её поверхности, либо, наоборот, по известной массе и радиусу определить ускорение свободного падения на поверхности.

Исторически масса Земли была впервые определена Генри Кавендишем, который провёл первые измерения гравитационной постоянной.

Гравитационное ускорение на высоте h над поверхностью Земли (или иного космического тела) можно вычислить по формуле:

g(h)={frac {GM}{(r+h)^{2}}},
где M — масса планеты.

Ускорение свободного падения на Земле[править | править код]

Ускорение свободного падения у поверхности Земли зависит от широты. Приблизительно оно может быть вычислено (в м/с²) по эмпирической формуле[7][8]:

{displaystyle g=9{,}780318(1+0{,}005302sin ^{2}varphi -0{,}000006sin ^{2}2varphi )-0{,}000003086h,}
где varphi  — широта рассматриваемого места,
h — высота над уровнем моря в метрах.

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. При более точных расчётах необходимо использовать одну из моделей гравитационного поля Земли[en][9], дополнив её поправками, связанными с вращением Земли, приливными воздействиями.
На ускорение свободного падения влияют и другие факторы, например, атмосферное давление, которое меняется в течение суток: от атмосферного давления зависит плотность воздуха в большом объёме, а следовательно и результирующая сила тяжести, изменение которой могут зафиксировать высокочувствительные гравиметры[10].

Пространственные изменения гравитационного поля Земли (гравитационные аномалии) связаны с неоднородности плотности в её недрах, что может быть использовано для поиска залежей полезных ископаемых методами гравиразведки.

Почти везде ускорение свободного падения на экваторе ниже, чем на полюсах, за счёт центробежных сил, возникающих при вращении планеты, а также потому, что радиус r на полюсах меньше, чем на экваторе из-за сплюснутой формы планеты. Однако места экстремально низкого и высокого значения g несколько отличаются от теоретических показателей по этой модели. Так, самое низкое значение g (9,7639 м/с²) зафиксировано на горе Уаскаран в Перу в 1000 км южнее экватора, а самое большое (9,8337 м/с²) — в 100 км от Северного полюса[11].

Ускорение свободного падения для некоторых городов
Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с2
Алма-Ата 76,85 в.д. 43,22 с.ш. 786 9.78125
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80188
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Измерение[править | править код]

Ускорение свободного падения у поверхности Земли может быть измерено посредством гравиметра. Различают две разновидности гравиметров: абсолютные и относительные. Абсолютные гравиметры измеряют ускорение свободного падения непосредственно. Относительные гравиметры, некоторые модели которых действуют по принципу пружинных весов, определяют приращение ускорения свободного падения относительно значения в некотором исходном пункте.
Ускорение свободного падения на поверхности Земли или другой планеты может быть также вычислено на основе данных о вращении планеты и её гравитационном поле. Последнее может быть определено посредством наблюдения за орбитами спутников и движения других небесных тел вблизи рассматриваемой планеты.

См. также[править | править код]

  • Свободное падение
  • Гравиметрия
  • Гравиразведка
  • Перегрузка (летательные аппараты)

Примечания[править | править код]

  1. У планет газовых гигантов и звёзд «поверхность» понимается как область меньших высот в атмосфере, где давление равно атмосферному давлению на Земле на уровне моря (1,013×105 Па). Также у звёзд поверхностью иногда считают поверхность фотосферы.
  2. Аналог уравнения второго закона Ньютона, выполняющийся для неинерциальных систем отсчёта.
  3. Свободное падение тел. Ускорение свободного падения. Архивировано из оригинала 20101219 года.
  4. Декларация III Генеральной конференции по мерам и весам (1901) (англ.). Международное бюро мер и весов. Дата обращения: 9 апреля 2013. Архивировано 8 июля 2018 года.
  5. Деньгуб В. М., Смирнов В. Г. Единицы величин. Словарь-справочник. — М. : Изд-во стандартов, 1990. — С. 237.
  6. CODATA Value: Newtonian constant of gravitation. physics.nist.gov. Дата обращения: 7 марта 2020. Архивировано 23 сентября 2020 года.
  7. Грушинский Н. П. Гравиметрия // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 521. — 707 с. — 100 000 экз.
  8. Ускорение свободного падения // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Большая российская энциклопедия, 1994. — Т. 4: Пойнтинга — Робертсона — Стримеры. — С. 245—246. — 704 с. — 40 000 экз. — ISBN 5-85270-087-8.
  9. ICCEM – table of models (англ.). Дата обращения: 10 ноября 2021. Архивировано из оригинала 24 августа 2013 года.
  10. GRAVITY MONITORING AT OIL AND GAS FIELDS: DATA INVERSION AND ERRORS // Геология и геофизика. — 2015. — Т. 56, вып. 5. — doi:10.15372/GiG20150507. Архивировано 2 июня 2018 года.
  11. Перуанцам живется легче, чем полярникам? Дата обращения: 21 июля 2016. Архивировано 16 сентября 2016 года.

Литература[править | править код]

  • Енохович А. С. Краткий справочник по физике. — М.: Высшая школа, 1976. — 288 с.

Определение ускорения свободного падения при помощи маятника

Ускорение свободного падения можно
определить из формулы периода колебаний
маятника;

откуда

Из последней формулы видно ,
что для определения ускорения свободного
падения необходимо знать длину маятника
и период его колебаний.Длину
маятника можно измерить непосредственно.
Для этого необходимо иметь лишь линейку
. Период колебаний
можно найти по формуле;

где N – число колебаний
за время t.
Оценим возможные погрешности этого
способа определения ускорения свободного
падения. Так как

Длина маятника

L (м)

Частота колебаний маятника

 ( Гц)

Начальное отклонение маятника

0 ( град.)

Интервал времени за который совершается
20 колебаний t ( c
)

Частота колебаний маятника

э = n t
( Гц)

э
100%

э

1

10

1

20

1

40

1

60

то

Длину маятника с помощью линейки можно
измерить с абсолютной погрешностью
+1 мм

В условиях школьной лаборатории длина
маятника может быть порядка 1- 2 м .Если
l = 1м,
то относительная погрешность
измерения длины маятника

Это обеспечивает достаточно высокую
точность измерения.
Хуже дело обстоит с измерением периода
колебаний. При
длине маятника 1 м период колебаний
примерно 2 с , а
абсолютная погрешность секундомера
примерно + 1 с ;

Точность измерения периода колебаний
можно повысить если измерить время не
одного полного колебания а,
например, 20
полных колебаний. В этом случае
погрешность измерения времени

Порядок выполнения работы

1.
Установите на краю стола штатив.
У его верхнего конца с помощью муфты
укрепите кольцо и подвесьте к нему шарик
на нити. Шарик
должен висеть на расстоянии 1 – 2 см от
пола.

  1. Отклонив шарик на 5 – 8 см ,
    отпустите его.

  2. Заметьте время 20 полных колебаний.

  3. Измерьте длину маятника.

  4. Вычислите ускорение свободного падения
    по формуле

6.Рассчитайте
погрешность измерения и запишите ее в
виде

Изучение зависимости частоты колебаний математического маятника от его длины.

Согласно формуле

частота колебаний математического
маятника должна быть обратно пропорциональна
корню квадратному из его длины.
Отсюда следует ,
что произведение частоты колебаний
математического маятника
на корень квадратный из его длины l
должно быть постоянной величиной;

Для проверки этого свойства маятника
произведите измерения частоты его
колебаний при трех различных значениях
длины и небольшом отклонении шарика от
положения равновесия.
Результаты измерений и вычислений
занесите в таблицу.

Длина маятника(м)

Интервал времени,
за который маятник совершил 20 колебаний
t ( с)

Частота колебаний

 ( Гц)

( м12)

( м12 с-1 )

1

0,
9

0,
8

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Ускорение свободного падения характеризует то, как быстро будет увеличиваться скорость тела при свободном падении. Свободным падением называется ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести. Из физики известно, что ускорение свободного падения на Земле составляет (9,8) 

мс2

.

Вопрос, почему эта величина именно такая, мы рассмотрим в этой теме.

Ускорение свободного падения в упрощённом виде можно рассчитать по формуле 

g=Fm

, которая получается из формулы 

F=m⋅g

, где (F) — сила тяжести либо вес тела в состоянии покоя или равномерного прямолинейного движения, (m) — масса тела, которое притягивает планета, (g) — ускорение свободного падения.

Сила тяжести, действующая на тело, зависит от массы тела, массы планеты, притягивающей тело, и от расстояния, на котором находится тело от центра массы планеты.

(F) — сила тяжести, Н;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

(R) — расстояние между центрами планеты и объекта в метрах. Если притягиваемое тело находится на поверхности планеты, тогда (R) равен радиусу планеты (если планета имеет сферическую форму);

m1 и 

m2

 — масса планеты и притягиваемого тела, выраженные в кг.

Обрати внимание!

Если мы объединим обе формулы, тогда получим формулу 

g=G⋅mR2

, с помощью которой можно вычислить ускорение свободного падения на любом космическом объекте — на планете или звезде.

Пример:

ускорение свободного падения у поверхности Земли вычисляют таким образом:

g=G⋅МЗRЗ2=6,6720⋅10−11⋅5,976⋅10246,371⋅1062=9,8мс2

, где

(g) — ускорение свободного падения;

(G) — гравитационная постоянная,

G=6,6720⋅10−11Н⋅м2кг2

;

Практически на Земле ускорение свободного падения на полюсах немного больше ((9,832) 

мс2

), чем на экваторе ((9,78) 

мс2

), так как Земля не имеет форму идеального шара, а на экваторе скорость вращения больше, чем на полюсах. Среднее значение ускорения свободного падения у поверхности Земли равно (9,8) 

мс2

.

Ускорение свободного падения у поверхности любого космического тела — на планете или звезде — зависит от массы этого тела и квадрата его радиуса. Таким образом, чем больше масса звезды и чем меньше её размеры, тем больше значение ускорения свободного падения у её поверхности.

При помощи формулы расчёта ускорения свободного падения и измерений, проведённых для удалённых объектов, учёные-физики могут определить величину ускорения свободного падения на любой планете или звезде.

Рис. (1). Планеты Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун; и карликовые планеты: Церера, Плутон, Эрида ((2003) UB (313))

SolSys_IAU06.jpg

Таблица (1). Ускорение свободного падения и другие характеристики планет Солнечной системы и карликовых планет

Небесное

тело

Ускорение

свободного

падения, мс2

Диаметр,

км 

Расстояние

до Солнца,

миллионы км

Масса,

кг

Соотношение

 с массой

Земли

Меркурий

(3,7)

(4878)

(58)

(3,3*)

1023

(0,055)

Венера

(8,87)

(12103)

(108)

(4,9*)

1024

(0,82)

Земля

(9,8)

(12756,28)

(150)

(6,0*)

1024

(1)

Марс

(3,7)

(6794)

(228)

(6,4*)

1023

(0,11)

Юпитер

(24,8)

(142984)

(778)

(1,9*)

1027

(317,8)

Сатурн

(10,4)

(120536)

(1427)

(5,7*)

1026

(95,0)

Уран

(8,87)

(51118)

(2871)

(8,7*)

1025

(14,4)

Нептун

(10,15)

(49532)

(4498)

(1,02*)

1026

(17,1)

Плутон

(0,66)

(2390)

(5906)

(1,3*)

1022

(0,0022)

Луна

(1,62)

(3473,8)

(0,3844 )

(до Земли)

(7,35*)

1022

(0,0123)

Солнце

(274,0)

(1391000)

(2,0*)

1030

(332900)

Нейтронные звёзды имеют малый диаметр — порядка десятков километров, — а масса их сопоставима с массой Солнца. Поэтому гравитационное поле у них очень сильное.

Пример:

если диаметр нейтронной звезды равен (20) км, а масса её в (1,4) раза больше массы Солнца, тогда ускорение свободного падения будет в (200000000000) раз больше, чем у поверхности Земли.

Его величина приблизительно равна 

2⋅1012 мс2

. Значение ускорения свободного падения для нейтронной звезды может достигать значения 

7⋅1012 мс2

.

Что такое свободное падение? Это падение тел на Землю при отсутствии сопротивления воздуха. Иначе говоря – падение в пустоте. Конечно, отсутствие сопротивления воздуха – это вакуум, который нельзя встретить на Земле в нормальных условиях. Поэтому мы не будем брать силу сопротивления воздуха во внимание, считая ее настолько малой, что ей можно пренебречь.

Ускорение свободного падения

Проводя свои знаменитые опыты на Пизанской башне Галилео Галилей выяснил, что все тела, независимо от их массы, падают на Землю одинаково. То есть, для всех тел ускорение свободного падения одинаково. По легенде, ученый тогда сбрасывал с башни шары разной массы.

Ускорение свободного падения

Ускорение свободного падения – ускорение, с которым все тела падают на Землю. 

Ускорение свободного падения приблизительно равно 9,81 мс2 и обозначается буквой g. Иногда, когда точность принципиально не важна, ускорение свободного падения округляют до 10 мс2.

Земля – не идеальный шар, и в различных точках земной поверхности, в зависимости от координат и высоты над уровнем моря, значение g варьируется. Так, самое большое ускорение свободного падения – на полюсах (≈9,83 мс2), а самое малое – на экваторе (≈9,78 мс2).

Свободное падение тела

Рассмотрим простой пример свободного падения. Пусть некоторое тело падает с высоты h с нулевой начальной скоростью. Допустим мы подняли рояль на высоту h и спокойно отпустили его. 

Свободное падение – прямолинейное движение с постоянным ускорением. Направим ось координат от точки начального положения тела к Земле. Применяя формулы кинематики для прямолинейного равноускоренного движения, можно записать.

h=v0+gt22.

Так как начальна скорость равна нулю, перепишем:

h=gt22.

Отсюда находится выражение для времени падения тела с высоты h:

t=2hg.

Принимая во внимание, что v=gt, найдем скорость тела в момент падения, то есть максимальную скорость:

v=2hg·g=2hg.

Движение тела, брошенного вертикально вверх

Аналогично можно рассмотреть движение тела, брошенного вертикально вверх с определенной начальной скоростью. Например, мы бросаем вверх мячик.

Пусть ось координат направлена вертикально вверх из точки бросания тела. На сей раз тело движется равнозамедленно, теряя скорость. В наивысшей точки скорость тела равна нулю. Применяя формулы кинематики, можно записать:

v=v0-gt.

Подставив v=0, найдем время подъема тела на максимальную высоту:

t=v0g.

Время падения совпадает со временем подъема, и тело вернется на Землю через t=2v0g.

 Максимальная высота подъема тела, брошенного вертикально:

h=v022g.

Взглянем на рисунок ниже. На нем приведены графики скоростей тел для трех случаев движения с ускорением a=-g. Рассмотрим каждый из них, предварительно уточнив, что в данном примере все числа округлены, а ускорение свободного падения принято равным 10мс2.

Движение тела, брошенного вертикально вверх

Первый график – это падение тела с некоторой высоты без начальной скорости. Время падения tп=1с. Из формул и из графика легко получить, что высота, с которой падало тело, равна h=5м.

Второй график – движение тела, брошенного вертикально вверх с начальной скоростью v0=10 мс. Максимальная высота подъема h=5м. Время подъема и время падения tп=1с.

Третий график является продолжением первого. Падающее тело отскакивает от поверхности и его скорость резко меняет знак на противоположный. Дальнейшее движение тела можно рассматривать по второму графику.

Движение тела, брошенного под углом к горизонту

С задачей о свободном падении тела тесно связана задача о движении тела, брошенного под определенным углом к горизонту. Так, движение по параболической траектории можно представить как сумму двух независимых движений относительно вертикальной и горизонтальной осей.

Вдоль оси OY тело движется равноускоренно с ускорением g, начальная скорость этого движения – v0y. Движение вдоль оси OX – равномерное и прямолинейное, с начальной скоростью v0x.

Движение тела, брошенного под углом к горизонту

Условия для движения вдоль оси ОХ:

x0=0; v0x=v0cosα; ax=0.

Условия для движения вдоль оси OY:

y0=0; v0y=v0sinα; ay=-g.

Приведем формулы для движения тела, брошенного под углом к горизонту.

Время полета тела:

t=2v0sinαg.

Дальность полета тела:

L=v02sin2αg.

Максимальная дальность полета достигается при угле α=45°.

Lmax=v02g.

Максимальная высота подъема:

h=v02sin2α2g.

Отметим, что в реальных условиях движение тела, брошенного под углом к горизонту, может проходить по траектории, отличной от параболической вследствие сопротивления воздуха и ветра. Изучением движения тел, брошенных в пространстве, занимается специальная наука – баллистика.

Общие рекомендации по выполнению
домашних лабораторных работ

Проведение экспериментальной работы направлено
на определение значения некоторой физической величины. При этом часто
непосредственно эту величину измерить не представляется возможным. Реально в
домашних опытах мы можем измерить расстояние (длину), время и температуру (если
есть под рукой подходящий термометр). Остальные интересующие нас величины
приходится рассчитывать по соответствующим формулам.

Для повышения точности опыт проводится
несколько раз, то есть, измерение определяемого экспериментально значения
(например, времени) проводится несколько раз при одинаковых условиях. Затем
рассчитывается среднее значение этой величины. В окончательную формулу
подставляется среднее значение измеренной величины.

Лабораторная
работа по теме 8.1. Механические колебания

Название работы:

Определение
ускорения свободного падения с
помощью математического маятника

Цель работы: определить экспериментально ускорение свободного
падения на широте г. Саратова.

Оборудование: небольшой грузик на нити длиной 70 – 100 см,
секундомер, измерительная лента или линейка.

Теоретическое обоснование

Известно, что период колебаний математического
маятника определяется длиной подвеса и значением ускорения свободного падения в
данной местности: , где Т – период
колебаний маятника,
l  – длина подвеса,  g
ускорение свободного падения. Выразим из этой формулы ускорение свободного
падения: . Это и есть наша рабочая формула.

Однако точно определить период, как время
одного полного колебания, достаточно сложно. Поэтому поступают следующим
образом. Измеряют время
t определенного числа N
полных колебаний (например, 10 или 20), а затем делят это время на число
колебаний, то есть получаем . Такое определение
периода значительно повышает точность.

Это число полных колебаний надо выбрать таким
образом, чтобы можно было пренебречь явлением затухания, т.е. так, чтобы за
время
t амплитуда колебаний практически не изменилась.

Кроме того, надо помнить, что для выполнения
условия гармоничности колебаний необходимо начальный угол отклонения брать не
более 5°.

Ход работы

1.    
Подвесьте маятник так,
чтобы он мог совершать свободные колебания в вертикальной плоскости. Заставив
маятник совершать колебания, убедитесь, что в течение 10 или 20 полных
колебаний изменение амплитуды колебаний невелико и им можно пренебречь.

2.    
Несколько раз (3 – 5 раз)
измерьте время
t  10 полных колебаний и занесите данные
в таблицу.

3.    
По результатам измерений
найдите среднее значение  времени 10 полных
колебаний и по формуле  найдите среднее
значение периода колебаний  Вашего маятника.

4.    
С помощью измерительной
ленты или линейки измерьте длину подвеса маятника
l.
Результат так же занесите в таблицу.

5.    
По формуле  рассчитайте ускорение свободного падения
в нашей местности.

6.    
Найдите в справочной
литературе широту города Саратова и табличное значение ускорения свободного
падения для нашей местности. Сравните свой результат с табличным значением и
сделайте выводы.

Таблицу измерений составьте самостоятельно. Не
забудьте в таблице указать единицы измерения всех физических величин.

Добавить комментарий