Как найти ускорение тела через расстояния

как найти ускорение через расстояние и время????



Ученик

(168),
закрыт



12 лет назад

Нечеловек Видимка

Мастер

(1482)


14 лет назад

Ну в простейшем случае – среднее ускорение это скорость делённая на время. Соответственно скорость – это растояние делённое на время. Итого: делим скорость на время в квадрате – получаем ускорение!

Елена

Профи

(647)


14 лет назад

через расстояние и время можно найти скорость ( расстояние поделить на время) , а потом полученную скорость поделить на время = ускорение.

Anna Ulanova

Знаток

(346)


6 лет назад

Все тела падают на землю с одним и тем же ускорением. Формула: a=s/t2(путь делённое на время в квадрате) где a-ускорение S-пройденный путь, t-время

Темп изменения скорости называется ускорением. Другими словами, если  скорость возрастала на одну и ту же величину в единицу времени, то такое движение называется движение с равномерным ускорением.

.

Найти ускорение движения тела

Расстояние, ускорение, скорость

Какое бывает ускорение

Ускорение бывает равномерное, положительное и отрицательное.

  • Если скорость изменяется (возрастает или убывает) равномерно, то ускорение называется равномерным;
  • Если скорость возрастает, то ускорение положительно;
  • Если скорость убывает, то ускорение отрицательно.

Формула для нахождения ускорения: a=v/t

Путь, скорость и ускорение

Формула v=at дает соотношение между скоростью, ускорением и временем, а формула S = at2/2 дает соотношение между путем, ускорением и временем. До сих пор, однако, мы не имели соотношения между путем S, скоростью и и ускорением а. Один из способов вывести это соотношение заключается в подстановке t2, выраженного через v и а, в формулу S = at2/2. Решая относительно t формулу v=at, мы получим t=v/a. Возведя обе части в квадрат: t2=v2/a2, подставляя v2/a2 вместо t2, имеем

v2 = 2aS

Задача:

Скорость автомобиля 90 см/сек. Через 3 сек его скорость равна нулю. Найдите его отрицательное ускорение (темп равномерного уменьшения скорости).

Решение:

a=-v/t

Подстановка значений:

a=-90/3=-30 см/сек. за 1 сек.

Ответ можно записать и так: 30 см/сек2, это будет означать, что автомобиль уменьшает свою скорость на 30 см/сек за каждую секунду.


Загрузить PDF


Загрузить PDF

Ускорение характеризует быстроту изменения скорости движущегося тела.[1]
Если скорость тела остается постоянной, то оно не ускоряется. Ускорение имеет место только в том случае, когда скорость тела меняется. Если скорость тела увеличивается или уменьшается на некоторую постоянную величину, то такое тело движется с постоянным ускорением. [2]
Ускорение измеряется в метрах в секунду за секунду (м/с2) и вычисляется по значениям двух скоростей и времени или по значению силы, приложенной к телу.

  1. Изображение с названием Calculate Acceleration Step 1

    1

    Формула для вычисления среднего ускорения. Среднее ускорение тела вычисляется по его начальной и конечной скоростям (скорость – это быстрота передвижения в определенном направлении) и времени, которое необходимо телу для достижения конечной скорости. Формула для вычисления ускорения: a = Δv / Δt, где а – ускорение, Δv – изменение скорости, Δt – время, необходимое для достижения конечной скорости.[3]

    • Единицами измерения ускорения являются метры в секунду за секунду, то есть м/с2.
    • Ускорение является векторной величиной, то есть задается как значением, так и направлением.[4]
      Значение – это числовая характеристика ускорения, а направление – это направление движения тела. Если тело замедляется, то ускорение будет отрицательным.
  2. Изображение с названием Calculate Acceleration Step 2

    2

    Определение переменных. Вы можете вычислить Δv и Δt следующим образом: Δv = vк – vн и Δt = tк – tн, где vк – конечная скорость, vн – начальная скорость, tк – конечное время, tн – начальное время.[5]

    • Так как ускорение имеет направление, всегда вычитайте начальную скорость из конечной скорости; в противно случае направление вычисленного ускорения будет неверным.
    • Если в задаче начальное время не дано, то подразумевается, что tн = 0.
  3. Изображение с названием Calculate Acceleration Step 3

    3

    Найдите ускорение при помощи формулы. Для начала напишите формулу и данные вам переменные. Формула: a = Δv / Δt = (vк – vн)/(tк – tн). Вычтите начальную скорость из конечной скорости, а затем разделите результат на промежуток времени (изменение времени). Вы получите среднее ускорение за данный промежуток времени.

    • Если конечная скорость меньше начальной, то ускорение имеет отрицательное значение, то есть тело замедляется.
    • Пример 1: автомобиль разгоняется с 18,5 м/с до 46,1 м/с за 2,47 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк – vн)/(tк – tн)
      • Напишите переменные: vк = 46,1 м/с, vн = 18,5 м/с, tк = 2,47 с, tн = 0 с.
      • Вычисление: a = (46,1 – 18,5)/2,47 = 11,17 м/с2.
    • Пример 2: мотоцикл начинает торможение при скорости 22,4 м/с и останавливается через 2,55 с. Найдите среднее ускорение.
      • Напишите формулу: a = Δv / Δt = (vк – vн)/(tк – tн)
      • Напишите переменные: vк = 0 м/с, vн = 22,4 м/с, tк = 2,55 с, tн = 0 с.
      • Вычисление: а = (0 – 22,4)/2,55 = -8,78 м/с2.

    Реклама

  1. Изображение с названием Calculate Acceleration Step 4

    1

    Второй закон Ньютона. Согласно второму закону Ньютона тело будет ускоряться, если силы, действующие на него, не уравновешивают друг друга. Такое ускорение зависит от результирующей силы, действующей на тело.[6]
    Используя второй закон Ньютона, вы можете найти ускорение тела, если вам известна его масса и сила, действующая на это тело.

    • Второй закон Ньютона описывается формулой: Fрез = m x a, где Fрез – результирующая сила, действующая на тело, m – масса тела, a – ускорение тела.
    • Работая с этой формулой, используйте единицы измерения метрической системы, в которой масса измеряется в килограммах (кг), сила в ньютонах (Н), а ускорение в метрах в секунду за секунду (м/с2).
  2. Изображение с названием Calculate Acceleration Step 5

    2

    Найдите массу тела. Для этого положите тело на весы и найдите его массу в граммах. Если вы рассматриваете очень большое тело, поищите его массу в справочниках или в интернете. Масса больших тел измеряется в килограммах.

    • Для вычисления ускорения по приведенной формуле необходимо преобразовать граммы в килограммы. Разделите массу в граммах на 1000, чтобы получить массу в килограммах.
  3. Изображение с названием Calculate Acceleration Step 6

    3

    Найдите результирующую силу, действующую на тело. Результирующая сила не уравновешивается другими силами. Если на тело действуют две разнонаправленные силы, причем одна из них больше другой, то направление результирующей силы совпадает с направлением большей силы.[7]
    Ускорение возникает тогда, когда на тело действует сила, которая не уравновешена другими силами и которая приводит к изменению скорости тела в направлении действия этой силы.

    • Например, вы с братом перетягиваете канат. Вы тянете канат с силой 5 Н, а ваш брат тянет канат (в противоположном направлении) с силой 7 Н. Результирующая сила равна 2 Н и направлена в сторону вашего брата.
    • Помните, что 1 Н = 1 кг∙м/с2.[8]
  4. Изображение с названием Calculate Acceleration Step 7

    4

    Преобразуйте формулу F = ma так, чтобы вычислить ускорение. Для этого разделите обе стороны этой формулы на m (массу) и получите: a = F/m. Таким образом, для нахождения ускорения разделите силу на массу ускоряющегося тела.

    • Сила прямо пропорциональна ускорению, то есть чем больше сила, действующая на тело, тем быстрее оно ускоряется.
    • Масса обратно пропорциональна ускорению, то есть чем больше масса тела, тем медленнее оно ускоряется.
  5. Изображение с названием Calculate Acceleration Step 8

    5

    Вычислите ускорение по полученной формуле. Ускорение равно частному от деления результирующей силы, действующей на тело, на его массу. Подставьте данные вам значения в эту формулу, чтобы вычислить ускорение тела.

    • Например: сила, равная 10 Н, действует на тело массой 2 кг. Найдите ускорение тела.
    • a = F/m = 10/2 = 5 м/с2

    Реклама

  1. 1

    Направление ускорения. Научная концепция ускорения не всегда совпадает с использованием этой величины в повседневной жизни. Помните, что у ускорения есть направление; ускорение имеет положительное значение, если оно направлено вверх или вправо; ускорение имеет отрицательное значение, если оно направлено вниз или влево. Проверьте правильность вашего решения, основываясь на следующей таблице:

      Движение автомобиля Изменение скорости Значение и направление ускорения
      Движется вправо (+) и ускоряется + → ++ (более положительное) Положительное
      Движется вправо (+) и замедляется ++ → + (менее положительное) Отрицательное
      Движется влево (-) и ускоряется – → — (более отрицательное) Отрицательное
      Движется влево (-) и замедляется — → – (менее отрицательное) Положительное
      Движется с постоянной скоростью Не меняется Равно 0
  2. Изображение с названием Calculate Acceleration Step 10

    2

    Направление силы. Помните, что ускорение всегда сонаправлено силе, действующей на тело. В некоторых задачах даются данные, цель которых заключается в том, чтобы ввести вас в заблуждение.

    • Пример: игрушечная лодка массой 10 кг движется на север с ускорением 2 м/с2. Ветер, дующий в западном направлении, действует на лодку с силой 100 Н. Найдите ускорение лодки в северном направлении.
    • Решение: так как сила перпендикулярна направлению движения, то она не влияет на движение в этом направлении. Поэтому ускорение лодки в северном направлении не изменится и будет равно 2 м/с2.
  3. Изображение с названием Calculate Acceleration Step 11

    3

    Результирующая сила. Если на тело действуют сразу несколько сил, найдите результирующую силу, а затем приступайте к вычислению ускорения. Рассмотрим следующую задачу (в двумерном пространстве):

    Реклама

  • Владимир тянет (справа) контейнер массой 400 кг с силой 150 Н. Дмитрий толкает (слева) контейнер с силой 200 Н. Ветер дует справа налево и действует на контейнер с силой 10 Н. Найдите ускорение контейнера.
  • Решение: условие этой задачи составлено так, чтобы запутать вас. На самом деле все очень просто. Нарисуйте схему направления сил, так вы увидите, что сила в 150 Н направлена вправо, сила в 200 Н тоже направлена вправо, а вот сила в 10 Н направлена влево. Таким образом, результирующая сила равна: 150 + 200 – 10 = 340 Н. Ускорение равно: a = F/m = 340/400 = 0,85 м/с2.

Об этой статье

Эту страницу просматривали 190 101 раз.

Была ли эта статья полезной?

Ускорение. Равноускоренное движение. Зависимость скорости от времени при равноускоренном движении

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

На данном уроке мы с вами рассмотрим важную характеристику неравномерного движения – ускорение. Кроме того, мы рассмотрим неравномерное движение с постоянным ускорением. Такое движение еще называется равноускоренным или равнозамедленным. Наконец, мы поговорим о том, как графически изображать зависимости скорости тела от времени при равноускоренном движении.

Как определить скорость с помощью ускорения и расстояния: разные подходы, проблемы, примеры

В кинематической теории расстояние, скорость, ускорение, смещение и время являются фундаментальными понятиями для вывода уравнения движения в 2-мерном пространстве.

Как правило, расстояние, пройденное телом за единицу времени, дает скорость. Если скорость изменяется со временем во время движения, тело обладает термином ускорение. В этом посте, как скорость, ускорениеи расстояние связаны подробно, и мы узнаем, как найти скорость с ускорением и расстоянием.

Как найти скорость с учетом ускорения и расстояния?

Предположим, тело начинает двигаться с начальной скоростью, равной нулю. Тело движется с ускорением «а» и преодолевает расстояние «d» метров; тогда нам нужно найти скорость при котором тело движется. Теперь возникает вопрос, как найти скорость с ускорением и расстоянием?

Скорость показывает, насколько быстро объект может перемещаться на расстояние за определенный период времени.

Но из рассмотрения уравнения

Подставляя значение t и переставляя, получаем

Полученное выше уравнение применимо, если тело начинает двигаться из нулевая скорость а потом разгоняется. Тело движется с постоянным ускорением, преодолев расстояние d.

Используя общее выражение, мы можем найти скорость тела с помощью ускорение и расстояние с учетом или без учета времени.

Как найти скорость из ускорения и расстояния без учета времени?

Скорость тела всегда измеряется с помощью время принято телом пройти определенное расстояние. Если к тому времени не указано время, как найти скорость с ускорением и расстоянием?

Мы следуем двум методам, чтобы найти скорость с заданными ускорением и расстоянием. Обычно мы рассматриваем время в самом первом уравнении; исключив фактор времени, мы получим уравнение скорости без время.

Алгебраическим методом:

Чтобы вычислить скорость без учета времени, рассмотрим уравнение скорости с ускорением и временем,

Отношение пройденного расстояния и времени дает скорость тела. Он задается уравнением,

Где x – пройденное расстояние, а t – время, необходимое для преодоления расстояния d,

Подставляя значение v в первое уравнение; мы получили,

Из кинематической теории, если скорость тела изменяется со временем, то мы берем среднее значение скорости;

Но мы можем сказать, что , подставив в приведенное выше уравнение,

Решая и переставляя термины, мы получаем,

Приведенное выше уравнение отвечает как найти скорость с ускорением и расстояние.

Методом интегрального исчисления:

Ускорение можно записать как,

Скорость – это не что иное, как производная по времени от расстояния, пройденного телом; это дается,

Подставляя значение dt в уравнение ускорения, получаем

a dx = v dv Так как мы считали, что исходное тело обладает нулевая скорость, мы интегрируем приведенное выше уравнение с предельным нулем до максимального значения скорости и расстояния.

Как найти скорость по графику ускорения и расстояния?

График зависимости ускорения от расстояния дает уравнение движение в течение определенного периода времени.

Площадь под ускорение – расстояние график дает квадрат скорости движущегося тела. Согласно определению ускорения, это производная второго порядка от расстояния, так что скорость будет в два раза больше площади.

Например, график ускорения-смещения для тела, движущегося с постоянным ускорением, по истечении определенного времени тело замедляется и преодолевает определенное расстояние, приведенный ниже, скорость тела может быть рассчитана с помощью графика.

Область, покрываемая рекламным графом, представляет собой треугольник; следовательно, площадь треугольника определяется выражением

Скорость можно записать как

Потому что 2А = 35 единиц.

Как найти начальную скорость по ускорению и расстоянию?

Начальная скорость – скорость, с которой тело начинает движение.

Чтобы вычислить начальную скорость, мы должны рассмотреть основное уравнение скорости; это дается;

Таким образом, расстояние задается как; х = v * т

Здесь скорость не постоянна; следовательно, мы можем взять среднее значение скорости как

Итак, уравнение будет

Но уравнение движения vf = Vi + at, подставив значение vf, мы получаем

После преобразования приведенного выше уравнения,

Приведенное выше уравнение дает начальную скорость с ускорением и расстоянием.

Как найти конечную скорость по ускорению и расстоянию?

Конечная скорость – это скорость, достигаемая телом до того, как движение остановится из-за какого-либо препятствия.

Когда движущееся тело начинает ускоряться, это означает, что скорость изменилась. Это изменение скорости определяется начальной и конечной скоростью тела. Предположим, мы предоставили только начальную скорость, тогда как найти скорость с ускорением и расстоянием в конечной точке движения, будет дан ответ ниже.

Чтобы вывести уравнение для конечная скорость, рассмотрим движение автомобиля. Автомобиль движется с начальной скоростью vi, и через некоторое время t автомобиль начинает разгоняться. Автомобиль достигает ускорения «а» и преодолевает расстояние x.

Вывод можно сделать тремя способами

Остановимся на детальном изучении трех указанных выше методов.

Алгебраическим методом:

Путь, пройденный телом, определяется выражением

Скорость не постоянна; она изменяется с периодом времени, поэтому выберите усреднение скоростей.

Из кинематического уравнения движения имеем

Давайте изменим приведенное выше уравнение, чтобы получить время как

Подставляя значение в первое уравнение,

Вышеприведенное уравнение аналогично (a + b) (ab) = a 2 -b 2 , то искомое решение будет

Полученное выше уравнение является требуемым уравнением конечной скорости. Мы можем еще больше упростить его, взяв квадратный корень с обеих сторон; мы получили

Расчетным методом:

Мы знаем, что ускорение определяется первой производной скорости по времени t.

Перемножая оба уравнения крест-накрест, а затем интегрируя, выбирая предел от x = 0 до x = x и v = vi к v = vf мы получили;

Графическим методом:

График зависимости скорости от время может помогает найти конечную скорость тела.

Обычно расстояние, пройденное телом, можно определить, найдя область, покрытую телом. Используя эти доступные данные, мы можем рассчитать пройденное расстояние, чтобы можно было вычислить уравнение конечной скорости.

Из приведенного выше графика площадь трапеции OABD дает расстояние, пройденное телом,

OA – начальная скорость vi, BD – конечная скорость vf, OD – время, поэтому уравнение можно изменить как

Но мы знаем, что

Графическим методом получено требуемое уравнение конечной скорости.

Окончательное уравнение скорости на основе ускорения и расстояния может быть преобразовано для вычисления начальной скорости тела; это показано ниже:

Как найти среднюю скорость с учетом ускорения и расстояния?

Если скорость продолжает меняться, то нам нужно найти среднюю скорость для описания движения.

Чтобы установить уравнение для средней скорости, мы должны знать начальную и конечную скорости. Но мы можем найти среднюю скорость, даже если начальная и конечная скорости неизвестны, зная ускорение и расстояние. Сообщите нам, как найти среднюю скорость.

Предположим, что автомобиль движется с начальной скоростью vi и поскольку он начинает ускоряться после прохождения некоторого расстояния xi и проходит расстояние xf при которой он имеет конечную скорость vf.

Расстояние, которое преодолевает тело – от xi до xf, т.е. на расстоянии xi, скорость тела vi, а в точке xf, скорость тела vf, тогда.

Общее выражение средней скорости дается как,

Уравнение движения для конечной скорости vf = Vi+ в

Подставляя в общее уравнение, имеем

Рассматривая исходное выражение для скорости, получаем

Но

Подставляя указанное выше выражение, получаем

Квадрат с обеих сторон, получаем

Вышеприведенное уравнение дает среднюю скорость движущегося тела.

Решенные задачи о том, как найти скорость через ускорение и расстояние

Приведено как найти скорость с ускорением и расстояние, если автомобиль движется с постоянным ускорением 12 м / с. 2 и преодолевает расстояние 87 м и, следовательно, определяет время, за которое автомобиль преодолевает такое же расстояние.

Решение:

Приведенные данные – Расстояние, пройденное транспортным средством x = 87 м.

Ускорение автомобиля а = 12 м / с 2 .

Чтобы найти скорость автомобиля,

Из связи между скоростью, ускорением, расстоянием и временем мы получаем уравнение скорости.

В гонке гонщик едет на байке с начальной скоростью 9 м / с. По истечении времени t скорость меняется, а ускорение составляет 3 м / с. 2 . Гонщик преодолевает дистанцию ​​10 м. рассчитать конечную скорость велосипеда для достижения заданного расстояния и, следовательно, найти среднюю скорость велосипеда.

Решение:

Уравнение для определения конечной скорости велосипеда имеет вид:

vf 2 = (9) 2 – 2 (3 * 10)

Средняя скорость определяется выражением

Спортсмен бежит с начальной скоростью 10 м / с. Он преодолевает 10 м с постоянным ускорением 4 м / с. 2 . Найдите начальную скорость.

Решение:

Данные приведены для расчета – начальная скорость vi = 10 м / с.

Ускорение a = 4 м / с 2 .

Расстояние x = 10 м

vf 2 = (10) 2 – 2 (4 * 10)

Рассчитайте среднюю скорость движения частицы с ускорением 12 м / с. 2 а расстояние, которое проходит частица, составляет 26 метров.

Решение:

Формула дает среднюю скорость для заданного ускорения и расстояния.

Приведены данные – Ускорение частицы а = 12 м / с. 2 .

Расстояние, пройденное частицей x = 26 м.

Подставляя заданные значения в уравнение

Автомобиль преодолевает расстояние 56 метров за 4 секунды. Ускорение автомобиля за указанное время составляет 2 м / с. 2 . Вычислите начальную скорость автомобиля.

Решение:

Дано – расстояние, пройденное автомобилем x = 56 м.

Автомобиль преодолевает расстояние xt = 4 с за время.

Разгон автомобиля a = 2 м / с 2 .

Начальная скорость автомобиля находится по формуле

Подставляя данные значения в приведенное выше уравнение,

Построен график ускорения и расстояния, затем на графике показано, как найти скорость с учетом ускорения и расстояния.

Расстояние, пройденное с ускорением, указанное на графике, образует трапецию, площадь трапеции определяется как

Где a и b – смежная сторона трапеции, а h – высота.

Из приведенного выше графика

Подставляя в данное уравнение,

Скорость задается как

Последние сообщения о передовой науке и исследованиях

Я Кирти К. Мурти, я закончила аспирантуру по физике со специализацией в области физики твердого тела. Я всегда считал физику фундаментальным предметом, связанным с нашей повседневной жизнью. Будучи студентом естественных наук, я люблю изучать новые вещи в физике. Как писатель, моя цель – через свои статьи дойти до читателей в упрощенной форме.
Свяжитесь со мной – keerthikmurthy24@gmail.com

сообщить об этом объявлении Похожие сообщения

Ускорение против. Замедление: подробный анализ

Примеры положительного ускорения: подробный анализ

Поверхностное ускорение без трения: исчерпывающая информация…

Как найти ускорение свободного падения:…

Как найти ускорение свободного падения…

Пример гравитационного ускорения: подробные сведения

Как рассчитать ускорение с помощью…

Как найти среднюю скорость…

Скорость графика постоянного ускорения против…

Как найти ускорение с…

Как рассчитать силу без…

Как найти нормальную силу…

15 Пример чистой силы:…

Как найти нормальную силу…

Как найти чистую силу:…

Мгновенная скорость и ускорение: сравнительное…

Отрицательно ли замедление: подробные факты

Как определить конечную скорость…

Как найти скорость с помощью…

Как найти скорость с помощью…

Свяжитесь с нами

Электронная почта: hr@lambdageeks.com
support@lambdageeks.com

Контактное лицо: + 91-8106864654

Наша миссия

Наша миссия – служить и делиться своим опытом с большим и разносторонним сообществом студентов или работающих профессионалов для удовлетворения их потребностей в обучении.

Физика

Помощь студентам в решении контрольных и курсовых работ

Подготовка к дипломной, повышение уникальности

План урока:

Закон сложения скоростей

Как уже упоминалось в предыдущем уроке, скорость тела зависит от выбранной наблюдателем системы отсчета. Разберем следующий пример: в безветренную погоду пчела летит со скоростью относительно земли. Это будет собственная скорость пчелы. Затем погода меняется и начинает дуть ветер, перпендикулярный скорости пчелы. Скорость ветра обозначена (см. рисунок 1).

Рисунок 1 – Первоначальная скорость пчелы и ветра

Естественно, что ветер начнет сдувать пчелу с первоначального курса. Собственная скорость не изменяется, так как это характеристика самой пчелы, но ее скорость относительно земли (по модулю и направлению) изменится и станет (см. рисунок 2):

Рисунок 2 – Изменившаяся скорость пчелы

Систему отсчета, связанную с землей, можно считать неподвижной. Если же рассматривать движение пчелы относительно воздуха, можно говорить о движущейся со скоростью v2 системе отсчета.

Рисунок 3 – Векторы скорости и перемещений при движении пчелы при ветре

Мгновенная скорость, направление мгновенной скорости

Средняя скорость. Средняя путевая скорость

Так как в реальной жизни тела редко движутся с постоянной скорость, но необходимо как-то описывать их движение и скорость, ввели понятие мгновенной скорости.

Мгновенная скорость – это скорость тела в выбранный конкретный момент времени.

Если по определению скорости разделить перемещение на суммарное время пути, можно получить средняя скорость:

Фактически, это та же формула, которая используется при расчетах для прямолинейного равномерного движения.

То есть средняя скорость движения – это такая скорость, с которой тело должно было бы двигаться, если бы оно перемещалось из начальной точки в конечную равномерно и прямолинейно. Из выражения для вычисления средней скорости можно увидеть, что средняя скорость сонаправлена вектору перемещения.

Касательно же мгновенной скорости, чтобы ее найти, необходимо разделить общее время Δt на одинаковые отрезки Δt1, Δt2,…Δtn, и найти средние скорости за эти отрезки времени:

А куда направлена мгновенная скорость? Из рисунка 5 видно, что при уменьшении отрезков времени Δtb направление вектора перемещения ему соответствующее постепенно приближается к направлению касательной к траектории. Значит, мгновенная скорость направлена по касательной к линии траектории.

Еще одна важная характеристика, использующаяся в кинематике – средняя путевая скорость. Из названия вытекает, что средняя путевая скорость – это отношение пути (S), пройденного телом, к отрезку времени (t), за которое оно этот путь прошло:

Именно о путевой скорости идет речь, когда говорят, что автомобиль ехал из одного города в другой со скоростью 70 км/ч, например.

Ускорение. Касательное ускорение. Центростремительное ускорение

Продолжая речь о телах, движущихся неравномерно, необходимо сказать о такой физической величине, как ускорение.

Единицы измерения ускорения:

Рисунок 6 – Тело перемещается из точки 1 в точку 2 (в верхнем правом углу дана иллюстрация к разности векторов)

Если скорость тела меняется не равномерно на выбранном участке пути, нужно поступить так же, как и в случае с поиском мгновенной скорости: разделить на маленькие отрезки времени и рассматривать ускорение на каждом из них.

Поскольку ускорение получается из разности векторов скорости (конечной и начальной), в общем случае оно будет направлено под некоторым углом к мгновенной скорости (а, следовательно, и к вектору перемещения, и к касательной к траектории).

Рисунок 7 – Полное, касательно и центростремительное ускорение тела, движущегося из точки 1 в точку 2

Равноускоренное движение

Прямолинейное равноускоренное движение. Определение скорости при равноускоренном движении. Уравнения движения при равноускоренном движении

Когда движение тела происходит с постоянным по модулю и направлению ускорением, такой тип движения называют равноускоренным. Для него справедливо выражение:

Частный случай равноускоренного движения – прямолинейное равноускоренное движение. Как следует из названия, это движение вдоль прямой линии с постоянным ускорением.

При условии, что ускорение сонаправлено начальной скорости, формула для вычисления скорости при прямолинейном равноускоренном движении записывается в скалярном виде:

Если же ускорение противонаправлено начальной скорости, это выражение станет таким:

Рассмотрим график зависимости скорости от времени при равноускоренном движении (см. рисунок 8). Считаем, что тело совершает движение вдоль оси ОХ, а все величины – начальная скорость (vox) , ускорение (ax) – взяты в проекции на эту ось.

Рисунок 8 – График зависимости скорости от времени при прямолинейном равноускоренном движении

Как известно из предыдущего курса физики, путь, который прошло тело, можно найти как площадь фигуры под графиком зависимости скорости движения от времени. Общую площадь под графиком можно найти как сумму площадей прямоугольника ABCD и треугольника ADE.

Свободное падение

Движение тела, брошенного вертикально вверх. Движение тела, брошенного под углом к горизонту. Криволинейное равноускоренное движение

Примерами движения с постоянным ускорением может служить свободное падение, движение брошенного вертикально вверх тела, движение тела, брошенного под углом к горизонту. Поговорим об этих видах движения подробнее.

Представим, что какое-то небольшое, но тяжелое тело подняли на высоту h, а затем отпустили (см. рисунок 9).

Рисунок 9 – Свободное падение тела

Тело начнет падать. Принимаем допущение, что на это тело воздействует одна только сила тяжести (силой сопротивления воздуха и силой ветра пренебрегаем). Тогда тело будет двигаться вертикально вниз, а его ускорение будет равняться ускорению свободного падения:

  • Движение тела, брошенного вертикально вверх

Представим, что тело подкинули вертикально наверх с начальной скоростью v0 (см. рисунок 10).

Рисунок 10 – Тело бросили вертикально вверх

Очевидно, что тело сначала будет лететь вверх, постепенно замедляясь, пока его скорость не уменьшится до нуля. Затем тело полетит вниз, постепенно ускоряясь. Получается, что максимальной своей скорости тело будет достигать два раза – у земли, и эта скорость будет равно начальной скорости v0 (вообще нужно было бы писать voy, но так как рассматривается движение вдоль только одной оси OY, опустим индекс y).

Отсюда можно найти полное время полета:

  • Движение тела, брошенного под углом к горизонту

Данный тип движения чуть сложнее, чем предыдущие два, так как придется рассматривать движение сразу вдоль двух осей OX и OY (см. рисунок 11). Этот тип движения относится к криволинейному равноускоренному движению. Будем считать, что тело подбросили с начальной скоростью под углом α к горизонту.

Рисунок 11 – Тело брошено под углом к горизонту

Уравнения движения в общем виде по двум осям выглядят так:

Еще время полета можно посчитать, учитывая что в двух моментах – в начале полета и в конце. Значит можно посчитать:

Равномерное движение точки по окружности

Центростремительное ускорение

Представим себе равномерное движение по окружности: во время этого типа движения скорость не меняется по модулю, однако меняется по направлению (см. рисунок 12).

Рисунок 12 – Изменение направления скорости при равномерном движении по окружности

За изменение направления скорости отвечает центростремительное ускорение ( Оно, так же как и скорость, постоянно по модулю, но меняется по направлению – в любой точке окружности оно направлено к ее центру. Центростремительное ускорение можно найти по формуле:

где R – радиус окружности, по которой циклически движется тело.

Вектор скорости и ускорения материальной точки и их модули. Пример решения задач.

В очередной раз меня попросили решить пару задачек по физике, и я вдруг обнаружил, что не могу решить их с ходу. Немного погуглив, я обнаружил, что сайты в топе выдачи содержат сканы одного и того же учебника и не описывают конкретных примеров решений задачи о том, как найти вектор скорости и ускорения материальной точки. По-этому я решил поделиться с миром примером своего решения.

Траектория движения материальной точки через радиус-вектор

Подзабыв этот раздел математики, в моей памяти уравнения движения материальной точки всегда представлялись при помощи знакомой всем нам зависимости y(x) , и взглянув на текст задачи, я немного опешил когда увидел векторы. Оказалось, что существует представление траектории материальной точки при помощи радиус-вектора – вектора, задающего положение точки в пространстве относительно некоторой заранее фиксированной точки, называемой началом координат.

Формула траектория движения материальной точки помимо радиус-вектора описывается так же ортами – единичными векторами i, j , k в нашем случае совпадающими с осями системы координат. И, наконец, рассмотрим пример уравнения траектории материальной точки (в двумерном пространстве):

Что интересного в данном примере? Траектория движения точки задается синусами и косинусами, как вы думаете, как будет выглядеть график в всем нам знакомом представлении y(x) ? “Наверное какой-то жуткий”, подумали вы, но все не так сложно как кажется! Попробуем построить траекторию движения материальной точки y(x), если она движется по представленному выше закону:

Здесь я заметил квадрат косинуса, если вы в каком-нибудь примере видите квадрат синуса или косинуса, это значит что нужно применять основное тригонометрическое тождество, что я и сделал (вторая формула) и преобразовал формулу координаты y, чтобы вместо синуса подставить в нее формулу изменения x:

В итоге жуткий закон движения точки оказался обычной параболой, ветви которой направлены вниз. Надеюсь, вы поняли примерный алгоритм построения зависимости y(x) из представления движения через радиус-вектор. Теперь перейдем к нашему главному вопросу: как же найти вектор скорости и ускорения материальной точки, а так же их модули.

Вектор скорости материальной точки

Всем известно, что скорость материальной точки – это величина пройденного пути точкой за единицу времени, то есть производная от формулы закона движения. Чтобы найти вектор скорости нужно взять производную по времени. Давайте рассмотрим конкретный пример нахождения вектора скорости.

Пример нахождения вектора скорости

Имеем закон перемещения материальной точки:

Теперь нужно взять производную от этого многочлена, если вы забыли как это делается, то вот вам таблица производных различных функций. В итоге вектор скорости будет иметь следующий вид:

Все оказалось проще, чем вы думали, теперь найдем вектор ускорения материальной точки по тому же самому закону, представленному выше.

Как найти вектор ускорения материальной точки

Вектор ускорения точки это векторная величина, характеризующая изменение с течением времени модуля и направления скорости точки. Чтобы найти вектор ускорения материальной точки в нашем примере, нужно взять производную, но уже от формулы вектора скорости, представленной чуть выше:

Модуль вектора скорости точки

Теперь найдем модуль вектора скорости материальной точки. Как вы знаете из 9-го класса, модуль вектора – это его длина, в прямоугольных декартовых координатах равна квадратному корню из суммы квадратов его координат. И откуда же из полученного нами выше вектора скорости взять его координаты спросите вы? Все очень просто:

Теперь достаточно только подставить время, указанное в задаче и получить конкретное числовое значение.

Модуль вектора ускорения

Как вы поняли из написанного выше (и из 9-го класса), нахождение модуля вектора ускорения происходит тем же образом, что и модуля вектора скорости: извлекаем корень квадратный из суммы квадратов координат вектора, все просто! Ну и вот вам, конечно же, пример:

Как вы видите, ускорение материальной точки по заданному выше закону не зависит от времени и имеет постоянную величину и направление.

Еще примеры решений задачи нахождения вектора скорости и ускорения

А вот тут вы можете найти примеры решения и других задач по физике на тему “механика твердых тел”. А для тех, кто не совсем понял как найти вектор скорости и ускорения, вот вам еще парочка примеров из сети без всяких лишних объяснений, надеюсь, они вам помогут.

Если у вас возникли какие-нибудь вопросы, вы можете задать их в комментариях.

[spoiler title=”источники:”]

http://ru.lambdageeks.com/how-to-find-velocity-with-acceleration-and-distance/

http://100urokov.ru/predmety/kinematika-tochki-chast-2

[/spoiler]

Kinematics is the branch of physics that describes the basics of motion, and you’re often tasked with finding one quantity given knowledge of a couple of others. Learning the constant acceleration equations sets you up perfectly for this type of problem, and if you have to find acceleration but only have a starting and final velocity, along with the distance travelled, you can determine the acceleration. You only need the right one of the four equations and a little bit of algebra to find the expression you need.

TL;DR (Too Long; Didn’t Read)

The acceleration formula applies to constant acceleration only, and ​a​ stands for acceleration, ​v​ means final velocity, ​u​ means starting velocity and ​s​ is the distance travelled between the starting and final velocity.

The Constant Acceleration Equations

There are four main constant acceleration equations that you’ll need to solve all problems like this. They’re only valid when the acceleration is “constant,” so when something is accelerating at a consistent rate rather than accelerating faster and faster as time goes on. Acceleration due to gravity can be used as an example of constant acceleration, but problems often specify when the acceleration continues at a constant rate.

The constant acceleration equations use the following symbols: ​a​ stands for acceleration, ​v​ means final velocity, ​u​ means starting velocity, ​s​ means displacement (i.e. distance traveled) and ​t​ means time. The equations state:

v=u+at\ s=0.5(u+v)t\ s=ut+0.5at^2\ v^2=u^2+2as

Different equations are useful for different situations, but if you only have the velocities ​v​ and ​u​, along with distance ​s​, the last equation perfectly meets your needs.

Re-Arrange the Equation for ​a

Get the equation in the correct form by re-arranging. Remember, you can re-arrange equations however you like provided you do the same thing to both sides of the equation in every step.

Starting from:

v^2=u^2+2as

Subtract ​u2 from both sides to get:

v^2-u^2=2as

Divide both sides by 2 ​s​ (and reverse the equation) to get:

a=frac{v^2-u^2}{2s}

This tells you how to find acceleration with velocity and distance. Remember, though, that this only applies to constant acceleration in one direction. Things get a bit more complicated if you have to add a second or third dimension to the motion, but essentially you create one of these equations for motion in each direction individually. For a varying acceleration, there is no simple equation like this to use and you have to use calculus to solve the problem.

An Example Constant Acceleration Calculation

Imagine a car travels with constant acceleration, with a velocity of 10 meters per second (m / s) at the start of a 1 kilometer (i.e. 1,000 meter) long track, and a velocity of 50 m / s by the end of the track. What is the constant acceleration of the car? Use the equation from the last section, remembering that ​v​ is the final velocity and ​u​ is the starting velocity. So, you have ​v​ = 50 m/s, ​u​ = 10 m / s and ​s​ = 1000 m. Insert these into the equation to get:

a=frac{50^2-10^2}{2times 1000}=frac{2400}{2000}=1.2text{ m/s}^2

So the car accelerates at 1.2 meters per second per second during its journey across the track, or in other words, it gains 1.2 meters per second of speed every second.

Добавить комментарий