Нахождение точек разрыва функции является одним из обязательных моментов исследования на непрерывность. Для кого-то это может прозвучать непонятно, а для остальных будет слишком банально.
Но и тем, и другим не стоит делать поспешные выводы: материал этой темы действительно предельно прост, но вместе с тем для успешного решения практических задач потребуется осмыслить и запомнить несколько технических приемов и нюансов.
Как минимум необходимо понимать, что за «зверь» кроется под понятием предела функции. И конечно же, нужно уметь их решать. Не менее полезным станет понимание геометрического смысла, дополненное графиком — большинство задач подобного характера требуют построения чертежа после решения.
Определение точки разрыва
Как уже упоминалось, их поиск напрямую связан с темой непрерывности. Если говорить простым языком, то это не что иное, как координаты графика функции, в которых точки не соединяются между собой. Образуются «рваные области», которые и называют местом разрыва. Вообще, чтобы понять смысл, достаточно всего лишь взглянуть на рисунок:
Он более чем очевидно иллюстрирует определение понятия. Если функция прерывается в X0, то непрерывность в этом месте нарушена одним из двух возможных способов:
- первый род;
- второй род.
Задачи похожего типа, где необходимо находить точки разрыва, могут выступать не только, как один из этапов полного исследования на непрерывность, но и в качестве самостоятельных заданий. Чтобы определить их вид, потребуется отыскать предел для найденных значений. Поэтому, если вы еще не умеете их решать, самое время ненадолго отвлечься, чтобы изучить базовые основы.
К счастью, на практике это не так сложно — самый трудный этап заключается в приведении примера к одному из табличных. Остальные моменты легко запомнить. Не стоит забывать и о большом количестве сервисов, которые в несколько кликов выдадут значение предела любой сложности онлайн.
Классификация точек разрыва.
Точки разрыва первого и второго рода
Если функция не определена, но односторонние пределы имеют конечное значение, то ее относят к случаю первого рода. Который, в свою очередь, может иметь характеристику устранимого или конечного:
- Точки устранимого разрыва функции. Значения вычислений обоих пределов для них равны. Но также имеется возможность «исправить ситуацию»: нахождения между двумя координатами такой, левый и правый пределы которой будут одинаковы, а сама она — соединит «порванный» участок, сделав график непрерывным.
-
Точки конечного разрыва первого рода — скачок функции. Пределы могут быть вычислены, но в то же время не равны друг другу, и поэтому доопределение уравнения невозможно. Разница первого и второго называется скачком.
- Точки разрыва второго рода отличаются тем, что вычисляемые пределы не просто различны по значению, но результат хотя бы одного из них обязательно должен быть равен бесконечности или несуществующему числу.
Как найти точки разрыва функции
Если в условиях задачи не были даны координаты проверяемого отрезка, то процесс решения делится на несколько этапов. Для начала нужно найти область определенных значений, с которой в дальнейшем пойдет работа. После это вычисляются односторонние пределы функции. Полученные результаты необходимо будет сравнить, чтобы однозначно определить род и характеристику разрыва.
Рассмотрим более подробно каждый из этих моментов на примере нахождения нужных нам точек у конкретного примера f (y)=(y² – 25)/(y – 5):
- Областью определения называют множество значений, в котором существует функция. Здесь не нужны никакие сложные вычисления, достаточно взять лишь знаменатель. Если y=5, то он будет (5−5)=0 и, как всем известно, делить на него нельзя. Таким образом, получаем область допустимых y ∈ (-∞; 5) ∪ (5; +∞) и предполагаем, что наша y = 5 является точкой разрыва.
- Вычисление односторонних пределов. Это самая сложная для учеников часть, т. к. пределы не всегда бывают удобными для вычисления, да не все на них «собаку съели». Но в этом случае функцию можно значительно упростить еще до начала вычисления: f (y) = (y ²-25)/(y — 5) = ((y-5)(y+5)) /(y — 5) = y+5. Никогда не пренебрегайте такой возможностью, если она есть. Заметим, что новая функция непрерывна при любом численном значении, т. ч. по всем математическим правилам пределы будут равны: lim (y + 5) = 5 + 5 = 10.
- Проверяя совпадение результатов, мы выяснили, что левый и правый предел функции в точке y=5 одинаковые. Но вместе с тем функция f(y) не может быть определена в этой координате, иначе ее знаменатель обращается в ноль, что невозможно по условиям. Следовательно, она действительно является разрывом, а именно: устранимым и первого рода.
Видео
Из этого видео вы узнаете, как исследовать непрерывность функции.
Процесс исследования функции на непрерывность неразрывно связан с навыком нахождения односторонних пределов функции. Поэтому, чтобы приступить к изучению материала данной статьи, желательно предварительно разобрать тему предела функции.
Непрерывность функции в точке
Функция f(x) является непрерывной в точке x0, если предел слева равен пределу справа и совпадает со значением функции в точке x0, т.е.: limx→x0-0f(x)=limx→x0+0f(x)=f(x0)
Данное определение позволяет вывести следствие: значение предела функции в точках непрерывности совпадает со значением функции в этих точках.
Дана функция f(x)=16(x-8)2-8. Необходимо доказать ее непрерывность в точке х0= 2.
Решение
В первую очередь, определим существование предела слева. Чтобы это сделать, используем последовательность аргументов хn, сводящуюся к х0 =2·(хn<2). Например, такой последовательностью может быть:
-2, 0, 1, 112, 134, 178, 11516,…, 110231024,…→2
Соответствующая последовательность значений функций выглядит так:
f(-2); f(0); f(1); f112; f134; f178; f11516;…; f110231024;…==8.667; 2.667; 0.167; -0.958; -1.489; -1.747; -1.874;…;-1.998;…→-2
на чертеже они обозначены зеленым цветом.
Достаточно очевидно, что такая последовательность сводится к -2, значит limx→2-016(x-8)2-8=-2.
Определим существование предела справа: используем последовательность аргументов хn, сводящуюся к х0= 2 (хn>2). Например, такой последовательностью может быть:
6, 4, 3, 212, 214, 218, 2116,…, 211024,…→2
Соответствующая последовательность функций:
f(6); f(4); f(3); f212; f214; f218; f2116;…; f211024;…==-7.333; -5.333; -3.833; -2.958; -2.489; -2.247; -2.247; -2.124;…; -2.001;…→-2
на рисунке обозначена синим цветом.
И эта последовательность сводится к -2, тогда limx→2+016(x-8)2-8=-2.
Действиями выше было показано, что пределы справа и слева являются равными, а значит существует предел функции f(x)=16x-82-8 в точке х0= 2, при этом limx→216(x-8)2-8=-2.
После вычисления значения функции в заданной точке очевидно выполнение равенства:
limx→2-0f(x)=limx→2+0f(x)=f(2)=16(2-8)2-8=-2 что свидетельствует о непрерывности заданной функции в заданной точке.
Покажем графически:
Ответ: Непрерывность функции f(x)=16(x-8)2-8 в заданной части доказано.
Устранимый разрыв первого рода
Функция имеет устранимый разрыв первого рода в точке х0, когда пределы справа и слева равны, но не равны значению функции в точке, т.е.:
limx→x0-0f(x)=limx→x0+0f(x)≠f(x0)
Задана функция f(x)=x2-25x-5. Необходимо определить точки ее разрыва и определить их тип.
Решение
Сначала обозначим область определения функции: D(f(x))⇔Dx2-25x-5⇔x-5≠0⇔x∈(-∞; 5)∪(5; +∞)
В заданной функции точкой разрыва может служить только граничная точка области определения, т.е. х0= 5. Исследуем функцию на непрерывность в этой точке.
Выражение x2-25x-5 упростим: x2-25x-5=(x-5)(x+5)x-5=x+5.
Определим пределы справа и слева. Поскольку функция g(x)=x+5 является непрерывной при любом действительном x, тогда:
limx→5-0(x+5)=5+5=10limx→5+0(x+5)=5+5=10
Ответ: пределы справа и слева являются равными, а заданная функция в точке х0= 5 не определена, т.е. в этой точке функция имеет устранимый разрыв первого рода.
Неустранимый разрыв первого рода
Неустранимый разрыв первого рода также определяется точкой скачка функции.
Функция имеет неустранимый разрыв первого рода в точке х0, когда пределы справа и слева не являются равными, т.е.: limx→x0-0f(x)≠limx→x0+0f(x). Точка х0 здесь – точка скачка функции.
Задана кусочно-непрерывная функция f(x)=x+4, x<-1,x2+2, -1≤x<12x, x≥1. Необходимо изучить заданную функцию на предмет непрерывности, обозначить вид точек разрыва, составить чертеж.
Решение
Разрывы данной функции могут быть лишь в точке х0=-1 или в точке х0=1.
Определим пределы справа и слева от этих точек и значение заданной функции в этих точках:
- слева от точки х0=-1 заданная функция есть f(x)=x+4, тогда в силу непрерывности линейной функции: limx→-1-0f(x)=limx→-1-0(x+4)=-1+4=3;
- непосредственно в точке х0=-1 функция принимает вид: f(x)=x2+2, тогда: f(-1)=(-1)2+2=3;
- на промежутке (-1; 1) заданная функция есть: f(x)=x2+2. Опираясь на свойство непрерывности квадратичной функции, имеем: limx→-1+0f(x)=limx→-1+0(x2+2)=(-1)2+2=3limx→1-0f(x)=limx→1-0(x2+2)=(1)2+2=3
- в точке х0=-1 функция имеет вид: f(x)=2x и f(1)=2·1=2.
- справа от точки х0 заданная функция есть f(x)=2x. В силу непрерывности линейной функции: limx→1+0f(x)=limx→1+0(2x)=2·1=2
Ответ: в конечном счете мы получили:
- limx→-1-0f(x)=limx→-1+0f(x)=f(-1)=3 – это означает, что в точке х0=-1 заданная кусочная функция непрерывна;
- limx→-1-0f(x)=3, limx→1+0f(x)=2 – таким образом, в точке х0=1 определён неустранимый разрыв первого рода (скачок).
Нам остается только подготовить чертеж данного задания.
Разрыв второго рода (бесконечный разрыв)
Функция имеет разрыв второго рода в точке х0, когда какой-либо из пределов слева limx→x0-0f(x) или справа limx→x0+0f(x) не существует или бесконечен.
Задана функция f(x)=1x. Необходимо исследовать заданную функцию на непрерывность, определить вид точек разрыва, подготовить чертеж.
Решение
Запишем область определения функции: x∈(-∞; 0)∪(0; +∞).
Найдем пределы справа и слева от точки х0= 0.
Зададим произвольную последовательность значений аргумента, сходящуюся к х0 слева. К примеру:
-8; -4; -2; -1; -12; -14;…; -11024;…
Ей соответствует последовательность значений функции:
f(-8); f(-4); f(-2); f(-1); f-12; f-14;…; f-11024;…==-18;-14; -12; -1; -2; -4;…; -1024;…
Очевидно, что эта последовательность является бесконечно большой отрицательной, тогда limx→0-0f(x)=limx→0-01x=-∞.
Тепереь зададим произвольную последовательность значений аргумента, сходящуюся к х0 справа. К примеру: 8; 4; 2; 1; 12; 14;…; 11024;…, и ей соответствует последовательность значений функции:
f(8); f(4); f(2); f(1); f12; f14;…; f11024;…==18; 14; 12; 1; 2; 4;…; 1024;…
Эта последовательность – бесконечно большая положительная, а значит limx→0+0f(x)=limx→0+01x=+∞.
Ответ: точка х0= 0 – точка разрыва функции второго рода.
Проиллюстрируем:
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Содержание:
- Определение точки разрыва
- Точка разрыва первого рода
- Точка разрыва второго рода
- Точка устранимого разрыва
- Примеры решения задач
Определение точки разрыва
Определение
Точка $a$, в которой нарушено хотя бы одно
из трех условий непрерывности функции, а именно:
- функция $f(x)$ определена в точке и ее окрестности;
- существует конечный предел функции $f(x)$
в точке $a$; - это предел равен значению функции в точке $a$,
т.е. $lim _{x rightarrow a} f(x)=f(a)$
называется точкой разрыва функции.
Пример
Функция $y=sqrt{x}$ не определена в точке
$x=-1$, а значит, эта точка является точкой
разрыва указанной функции.
Точка разрыва первого рода
Определение
Если в точке $a$ существуют конечные
пределы $f(a-0)$ и
$f(a+0)$, такие, что
$f(a-0) neq f(a+0)$, то точка
$a$ называется точкой разрыва первого рода.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Функция $f(x)=left{begin{array}{l}{0, x>1} \ {1, x leq 1}end{array}right.$ в точке
$x=1$ имеет разрыв первого рода, так как
$f(1-0)=1$, а
$f(1+0)=0$
Точка разрыва второго рода
Определение
Если хотя б один из пределов $f(a-0)$ или
$f(a+0)$ не существует или равен бесконечности, то
точка $a$ называется точкой разрыва второго рода.
Пример
Для функции $y=frac{1}{x}$ точка
$x=0$ – точка разрыва второго рода, так как
$f(0-0)=-infty$ .
Точка устранимого разрыва
Определение
Если существуют
левый и правый пределы функции в точке и они равны друг другу, но не совпадают со значением
функции $f(x)$ в точке
$a$:
$f(a) neq f(a-0)=f(a+0)$ или функция
$f(x)$ не определена в точке
$a$, то точка
$a$ называется точкой устранимого разрыва.
Пример
Рассмотрим функцию $f(x)=left{begin{array}{l}{3 x+1, x lt 0} \ {1-4 x, x>0} \ {e^{2}, x=0}end{array}right.$ .
Найдем односторонние пределы и значение функции в точке $x=0$:
$f(0)=e^{2}$
$f(0-0)=lim _{x rightarrow 0-} f(x)=lim _{x rightarrow 0-}(3 x+1)=1$
$f(0+0)=lim _{x rightarrow 0+} f(x)=lim _{x rightarrow 0+}(1-4 x)=1$
Так как $f(0-0)=f(0+0)$ и не равны значению функции в
точке, то точка $x=0$ – точка устранимого разрыва.
Примеры решения задач
Пример
Задание. Исследовать функцию $f(x)=left{begin{array}{l}{x^{2}, x lt 1} \ {(x-1)^{2}, 1 leq x leq 2} \ {3-x, x>2}end{array}right.$ на непрерывность.
Решение. Рассматриваемая функция определена и
непрерывна на промежутках
$(-infty ; 1)$,
$(1 ; 2)$ и
$(2 ;+infty)$, на которых она задана непрерывными
элементарными функциями $y_{1}(x)=x^{2}$,
$y_{2}(x)=(x-1)^{2}$ и
$y_{3}(x)=3-x$ соответственно. А тогда, разрыв возможен
только на концах указанных промежутков, то есть в точках
$x=1$ и
$x=2$ .
Найдем односторонние пределы и значение функции в каждой из точек.
1) Рассмотрим точку $x=1$ . Для нее
$f(1)=left.(x-1)^{2}right|_{x=1}=0$
$f(1-0)=lim _{x rightarrow 1-} f(x)=lim _{x rightarrow 1-} y_{1}(x)=lim _{x rightarrow 1-} x^{2}=1$
$f(1+0)=lim _{x rightarrow 1+} f(x)=lim _{x rightarrow 1+} y_{2}(x)=lim _{x rightarrow 1+}(x-1)^{2}=0$
Так как $f(1-0) neq f(1+0)$ , то в точке
$x=1$ функция терпит разрыв первого рода.
2) Для точки $x=2$ имеем:
$f(2)=left.(x-1)^{2}right|_{x=2}=1$
$f(2-0)=lim _{x rightarrow 2-} f(x)=lim _{x rightarrow 2-} y_{2}(x)=lim _{x rightarrow 2-}(x-1)^{2}=1$
$f(2+0)=lim _{x rightarrow 2+} f(x)=lim _{x rightarrow 2+} y_{3}(x)=lim _{x rightarrow 2+}(3-x)=1$
Так как односторонние пределы и значение функции в этой точке равны, то это означает, что в точке
$x=2$ функция непрерывна.
Ответ. В точке $x=1$ функция
терпит разрыв первого рода, а в точке $x=2$ непрерывна.
Пример
Задание. Исследовать функцию $y=e^{frac{1}{x-1}}$
на непрерывность в точках $x_{1}=1$ и
$x_{2}=0$ .
Решение. 1) Исследуем функцию на
непрерывность в точке
$x_{1}=1$:
$f(1-0)=lim _{x rightarrow 1-} e^{frac{1}{x-1}}=e^{-infty}=0$
$f(1+0)=lim _{x rightarrow 1+} e^{frac{1}{x-1}}=e^{+infty}=infty$
Так как один из односторонних пределов бесконечен, то точка $x_{1}=1$
– точка разрыва второго рода.
2) Для точки $x_{2}=0$ получаем:
$f(0-0)=lim _{x rightarrow 0-} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$
$f(0+0)=lim _{x rightarrow 0+} e^{frac{1}{x-1}}=e^{-1}=frac{1}{e}$
и значение функции в точке
$f(0)=e^{frac{1}{x-1}}=frac{1}{e}$
Таким образом, в точке $x_{2}=0$ заданная
функция является непрерывной.
Ответ. $x_{1}=1$
– точка разрыва второго рода, а в точке $x_{2}=0$
функция непрерывна.
Читать дальше: основные теоремы о непрерывности функций.
Содержание:
Непрерывность функций и точки разрыва
Непрерывность функции
Определение: Функция
- – она определена в этой точке и ее некоторой -окрестности;
- – существуют конечные лево- и правосторонние пределы от функции в этой точке и они равны между собой, т.е.
– предел функции в точке равен значению функции в исследуемой точке, т.е.
Пример:
Найти область непрерывности функции
Решение:
Данная функция непрерывна так как в каждой точке указанного интервала функция определена, в каждой точке существуют конечные и равные лево- и правосторонние пределы, а предел функции в каждой точке равен значению функции в этой точке.
Замечание: Всякая элементарная функция непрерывна в области своего определения.
Точки разрыва
Определение: Точки, в которых не выполняется хотя бы одно из условий непрерывности функции, называются точками разрыва. Различают точки разрыва первого и второго родов.
Определение: Точкой разрыва I рода называется точка, в которой нарушается условие равенства лево- и правостороннего пределов, т.е.
Пример:
Доказать, что функция в точке имеет разрыв первого рода.
Решение:
Нарисуем график функции в окрестности нуля (Рис. 64): Рис. 64. График функции Область определения функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Следовательно, в изучаемой точке данная функция терпит разрыв первого рода.
Замечание: По поводу точки разрыва I рода иначе говорят, что в этой точке функция испытывает конечный скачок (на Рис. 64 скачок равен 1).
Определение: Точка, подозрительная на разрыв, называется точкой устранимого разрыва, если в этой точке левосторонний предел равен правостороннему.
Пример:
Доказать, что функция имеет в точке устранимый разрыв.
Решение:
В точке функция имеет неопределенность поэтому эта точка является точкой, подозрительной на разрыв. Вычислив в этой точке лево- и правосторонний пределы убеждаемся, что данная точка является точкой устранимого разрыва.
Определение: Все остальные точки разрыва называются точками разрыва II рода.
Замечание: Для точек разрыва второго рода характерен тот факт, что хотя бы
один из односторонних пределов равен т.е. в такой точке функция терпит бесконечный разрыв.
Пример:
Исследовать на непрерывность функцию
Решение:
Найдем область определения этой функции: т.е. точка
является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний предел конечен, а правосторонний предел бесконечен, то в изучаемой точке данная функция терпит разрыв II рода.
Пример:
Исследовать на непрерывность функцию
Решение:
Найдем область определения этой функции: т.е. точка является точкой подозрительной на разрыв. Вычислим лево- и правосторонние пределы в этой точке: Так как левосторонний и правосторонний пределы бесконечены, то в изучаемой точке данная функция терпит разрыв II рода.
Операции над непрерывными функциями
Теорема: Сумма (разность) непрерывных функций есть непрерывная функция.
Доказательство: Докажем приведенную теорему для суммы двух функций которые определены в некоторой -окрестности точки в которой лево- и правосторонние пределы равны между собой. Так как функции непрерывны в некоторой -окрестности точки то выполняются равенства: В силу того, что существуют конечные пределы обеих функций, то по теореме о пределе суммы двух функций имеем, что Аналогично теорема доказывается для суммы (разности) любого конечного числа непрерывных функций. Нижеприведенные теоремы доказываются так же, как и теорема.
Теорема: Произведение непрерывных функций есть непрерывная функция.
Теорема: Частное двух непрерывных функций при условии, что во всех точках общей области определения функция , есть непрерывная функция.
Теорема: Сложная функция от непрерывных функций есть непрерывная функция.
- Заказать решение задач по высшей математике
Схема исследования функции на непрерывность
Исследование функции на непрерывность проводят по следующей схеме:
Пример:
Исследовать на непрерывность функцию
Решение:
Согласно схеме исследования функции на непрерывность имеем:
Рис. 65. Поведение графика функции в малой окрестности точки разрыва второго рода
Из рисунка видно, что график функции —неограниченно приближается к вертикальной прямой нигде не пересекая эту прямую.
Свойства непрерывных функций на отрезке (a; b)
Свойства непрерывных функций на отрезке .
Определение: Замкнутый интервал будем называть сегментом.
Приведем без доказательства свойства непрерывных функций на сегменте .
Теорема: Если функция непрерывна на сегменте , то она достигает своего наименьшего () и наибольшего () значения либо во внутренних точках сегмента, либо на его концах.
Пример:
Привести примеры графиков функций, удовлетворяющих условиям теорем(см. Рис. 66).
Рис. 66. Графики функций, удовлетворяющих условиям теоремы.
Решение:
На графике а) функция достигает своего наименьшего и наибольшего значений на концах сегмента На графике б) функция достигает своего наименьшего и наибольшего значения во внутренних точках сегмента На графике в) функция достигает своего наименьшего значения на левом конце сегмента а наибольшего значения во внутренней точке сегмента
Тб. Если функция непрерывна на сегменте и достигает своего наименьшего () и наибольшего () значений, то для любого вещественного числа С, удовлетворяющего неравенству , найдется хотя бы одна точка такая, что .
Пример:
Изобразить графики функций, удовлетворяющих условиям Тб (см. Рис. 67).
Рис. 67. Графики функций, удовлетворяющих условиям Тб.
Теорема: Если функция непрерывна на сегменте и на его концах принимает значения разных знаков, то найдется хотя бы одна точка такая, что.
Пример:
Изобразить графики функций, удовлетворяющих условиям теоремы(см. Рис. 68).
Рис. 68. Графики функций, удовлетворяющих условиям теоремы.
На графике а) существует единственная точка, в которой выполняются условия теоремы. На графиках б) и в) таких точек две и четыре, соответственно. Однако в случаях б) и в) для удовлетворения условий теоремы надо разбивать сегмент на отдельные отрезки.
- Точки разрыва и их классификация
- Дифференциальное исчисление
- Исследование функций с помощью производных
- Формула Тейлора и ее применение
- Векторное и смешанное произведения векторов
- Преобразования декартовой системы координат
- Бесконечно малые и бесконечно большие функции
- Замечательные пределы
Доказательство |
||||||
Найдем |
||||||
lim F(x) = lim (f (x) + g(x))= lim |
f (x) + lim g(x) = f (x0 ) + g(x0 ) = F(x0 ) |
|||||
x→х0 |
x→х0 |
x→х0 |
x→x0 |
|||
функция F(x) = f (x) + g(x) |
― непрерывная в точке x0 . Аналогично доказываются |
|||||
теоремы для произведения и частного. |
||||||
Если функция g(x) |
непрерывна в точке x0 , а функция |
f (u) ― в точке u0 = g(x0 ) , |
||||
то сложная функция f (g(x)) непрерывна в точке x0 . |
||||||
Доказательство |
||||||
lim f (g(x)) = lim |
f (u) = f (u0 ) = f (g(u0 )) . |
|||||
x→х0 |
u→u0 |
|||||
Определение 2.2.4 |
||||||
Функция y = f (x) |
называется непрерывной слева (справа) в точке x0 , если она |
|||||
определена в точке x0 |
и |
lim |
f (x) = f (x0 ) (или lim |
f (x) = f (x0 ) ). |
||
x→х0 −0 |
x→х0 +0 |
|||||
2.2.2. Классификация точек разрыва |
||||||
Если функция |
f (x) |
не является непрерывной в точке x0 , то говорят, что она терпит в |
этой точке разрыв.
Чтобы классифицировать точки разрыва функции дадим определение непрерывной в точке функции в развернутом виде.
Функция f (x) называется непрерывной в точке x0 , если:
1)f (x) определена в некоторой окрестности точки x0 ;Устранимый разрыв
2)существуют конечные односторонние пределы
lim f (x) = f (x0 − 0) и |
lim f (x) = f (x0 + 0) ; |
|
x→x0 −0 |
x→x0 +0 |
|
3) эти пределы равны значению функции в точке x0 , т.е. |
||
lim |
f (x) = lim |
f (x) = f (x0 ) . |
x→х0 −0 |
x→х0 +0 |
Если в точке x0 хотя бы одно из условий непрерывности нарушается, точка x0 является точкой разрыва данной функции.
1. Устранимый разрыв
Пусть существуют конечные односторонние пределы:
lim f (x) = f (x0 − 0) и |
lim |
f (x) = f (x0 + 0) . |
x→x0 −0 |
x→x0 +0 |
|
Если А= f (x0 − 0) = f (x0 + 0) ≠ f (x0 ) , то точка |
x0 называется точкой устранимого |
разрыва (рис. 2.1).
у
А= f (хо– 0) =
= f (хо+ 0)
х |
|||
0 |
хо |
||
Рис. 2.1. |
23
Для того, чтобы устранить разрыв, нужно доопределить (или переопределить) функцию в самой точке x0 , т.е. ввести новую функцию
f (x), если х ≠ x0 |
. |
||
у = |
х = x0 |
||
А, |
если |
||
2. Неустранимый разрыв первого рода |
|||
Пусть существуют конечные односторонние пределы: |
|||
lim f (x) = f (x0 − 0) |
и |
lim f (x) = f (x0 + 0) . |
|
x→x0 −0 |
x→x0 +0 |
||
Если f (x0 − 0) ≠ f (x0 + 0) , то точка x0 |
называется точкой неустранимого разрыва |
первого рода (рис. 2.2). Величина δ = f (x0 + 0) − f (x0 − 0) называется скачком функции f (x) в точке x0 .
у
f (хо+ 0) f (хо– 0)
3. Неустранимый разрыв второго рода
Если в точке x0 хотя бы один из односторонних пределов не существует или равен
∞, то точка x0 называется точкой неустранимого разрыва второго рода (рис. 2.3).
у
0 |
хо |
х |
||||||
Рис. 2.3. |
||||||||
Задача 2.2.1 |
||||||||
Исследовать функцию |
x −1, |
если 0 ≤ х < 3, |
на непрерывность: |
|||||
f (x) = |
3 − х, |
если |
3 ≤ х ≤ 4. |
|||||
Решение
Изобразим график этой функции (рис. 2.4).
у |
|
2 |
|
0 |
3 4 |
– 1 |
х |
Рис. 2.4. |
Для функции f (x) точка х = 3 является точкой разрыва первого рода, так как
24
lim |
f (x) = |
lim |
(x |
−1) |
= 2 |
|
x→3−0 |
x→3−0 |
разрыв первого рода, скачок δ = 2 . |
||||
lim |
f (x) = |
lim |
(3 |
|||
− x) = 0 |
||||||
x→3+0 |
x→3+0 |
Следует отметить, что в точке х = 0 функция непрерывна справа, так как
lim |
f (x) = |
lim (x −1) = −1 = f (0) . |
|||
x→0+0 |
x→0+0 |
||||
А в точке х = 4 функция непрерывна слева, так как |
|||||
lim |
f (x) = |
lim (3 − x) = −1 = f (4) . |
|||
x→4−0 |
x→4−0 |
||||
Задача 2.2.2 |
|||||
Исследовать функцию |
y = |
sin x |
на непрерывность. |
||
x |
Решение
Функция f (х) не определена в точке x = 0 . Эта точка является точкой устранимого разрыва, так как
lim |
sin x |
= |
lim |
sin x |
=1 . |
|
x |
x |
|||||
x→0−0 |
x→0+0 |
у
1
0 |
х |
||||
Рис. 2.5. |
|||||
График функции |
y = |
sin x |
изображен на рисунке 2.5. |
||
x |
Доопределить функцию по непрерывности – это значит задать f (0) =1 , т.е. получить
sin x |
, x |
≠ 0 |
||||||
x |
x = 0 . |
|||||||
функцию y = |
, которая непрерывна в точке |
|||||||
x = 0 |
||||||||
1, |
||||||||
Задача 2.2.3 |
||||||||
Исследовать функцию y = sin |
1 |
на непрерывность. |
||||||
x |
||||||||
Решение |
||||||||
Точка x = 0 |
является точкой разрыва второго рода, так как пределы lim sin |
1 |
не |
x→0±0 x
существуют.
у
Рис. 2.6.
25
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #