Как найти узловую проводимость

Главная

Примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

Методы и примеры решения задач ТОЭ

РЕШЕНИЕ ЗАДАЧ ТОЭ — МЕТОДЫ, АЛГОРИТМЫ, ПРИМЕРЫ РЕШЕНИЯ

1 Методы расчета электрических цепей при постоянных токах и напряжениях

1.4 Метод узловых потенциалов. Метод узлового напряжения (метод двух узлов)

В методе узловых потенциалов за вспомогательные расчетные величины принимают потенциалы узлов схемы. При этом потенциалом одного из узлов задаются, обычно считая его равным нулю (заземляют). Этот узел называют опорным узлом. Затем для каждого узла схемы, кроме опорного узла, составляют систему уравнений методом узловых потенциалов. По найденным потенциалам узлов находят токи ветвей по обобщенному закону Ома (закону Ома для ветви с ЭДС).

Отметим, что метод узловых потенциалов без предварительного преобразования схемы не применим к схемам с взаимной индукцией.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), не имеющих общего узла нужно применять особые способы составления системы уравнений метода узловых потенциалов.

Для схем, содержащих несколько ветвей только с идеальными источниками ЭДС (без пассивных элементов), имеющих общий узел, этот общий узел принимают за опорный узел (заземляют). Тогда потенциалы узлов, соединенных этими идеальными источниками ЭДС без пассивных элементов с опорным узлом, равны ЭДС этих идеальных источников (+E, если идеальный источник ЭДС направлен от опорного узла и –E в противном случае).

Метод двух узлов является частным случаем метода узловых потенциалов. Он применяется для определения токов в ветвях схемы с двумя узлами и произвольным числом параллельных активных и пассивных ветвей.


Решение задач методом узловых потенциалов и методом двух узлов


Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов.

Задача 1.4.1 Рассчитать цепь рис. 1.4.1 методом узловых, потенциалов

Рис. 1.4.1

Решение. В рассматриваемой схеме четыре узла. Заземлим узел 4 (опорный узел)

φ 4 =0.

Тогда

φ 3 = φ 4 + E 2 =200  B.

Необходимо найти потенциалы узлов 1 и 2. Составим систему уравнений по методу узловых потенциалов для узлов 1 и 2.

Рассматривая узел 1, получим

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 − φ 3 ⋅ g 13 =J+ E 1 R 1 + R ′ 1

или

φ 1 ⋅ g 11 − φ 2 ⋅ g 12 =J+ E 1 R 1 + R ′ 1 + E 1 ⋅ g 13 .

В правой части этого уравнения оба слагаемых учтены со знаком плюс, так как J и E1 направлены к узлу 1.

Рассматривая узел 2 (правая часть уравнения равна нулю, так как в ветвях, подсоединенных к узлу 2, нет источников энергии), получим

Индивидуалка Лиза (25 лет) т.8 929 529-57-81 Москва, метро Полянка. газификатор – вся актуальная информация на нашем сайте.

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 − φ 3 ⋅ g 23 =0

или

− φ 1 ⋅ g 21 + φ 2 ⋅ g 22 = E 2 ⋅ g 23 .

Найдем собственную проводимость первого узла

g 11 = 1 R 6 + 1 R 1 + R ′ 1 + 1 R ИТ + 1 R 2 + 1 R 5 = 1 20 + 1 25 + 1 25 + 1 40 =0,155  См.

Проводимость ветви с идеальным источником тока равна нулю, так как внутреннее сопротивление идеального источника тока RИТ равно бесконечности.

Собственная проводимость узла 2

g 22 = 1 R 2 + 1 R 3 + 1 R 4 = 1 25 + 1 30 + 1 35 =0,102  См.

Взаимные проводимости между узлами

g 13 = 1 R 6 + 1 R 1 + R ′ 1 = 1 20 + 1 25 =0,09  См; g 21 = g 12 = 1 R 2 = 1 25 =0,04  См; g 23 = 1 R 3 = 1 30 =0,033  См.

Подставив в уравнения известные величины, получим

{ φ 1 ⋅0,155− φ 2 ⋅0,04=39 − φ 1 ⋅0,04+ φ 2 ⋅0,102=6,6

Для решения этой системы используем метод определителей. Главный определитель системы

Δ=| 0,155 −0,04 −0,04 0,102 |=0,01421.

Частные определители

Δ 1 =| 39 −0,04 6,6 0,102 |=4,242; Δ 2 =| 0,155 39 −0,04 6,6 |=2,583.

Находим потенциалы узлов

φ 1 = Δ 1 Δ = 4,242 0,01421 =298,6   В;    φ 2 = Δ 2 Δ = 2,583 0,01421 =181,8   В.

Определяем токи в ветвях (положительные направления токов в ветвях с ЭДС выбираем по направлению ЭДС, в остальных ветвях произвольно)

I 1 = φ 3 − φ 1 + E 1 R 1 + R ′ 1 = 200−298,6+150 10+15 =2,056  А.

В числителе этого выражения от потенциала узла 3, из которого вытекает ток I1, вычитается потенциал узла 1, к которому ток подтекает. Если ЭДС ветви совпадает (не совпадает) с выбранным направлением тока, то она учитывается со знаком плюс (минус). В знаменателе выражения учитываются сопротивления ветви.

Аналогично определяем другие токи (направления токов указаны на схеме рис. 1.4.1)

I 1 = φ 3 − φ 1 R 6 = 200−298,6 20 =−4,93  А; I 2 = φ 1 − φ 2 R 2 = 298,6−181,8 25 =4,67  А; I 3 = φ 3 − φ 2 R 3 = 200−181,8 30 =0,607  А; I 4 = φ 2 − φ 4 R 4 = 181,8−0 35 =5,194  А.

Для определения тока в ветви с идеальной ЭДС зададимся направлением тока I7. По первому закону Кирхгофа для узла 3 составим уравнение

− I 7 + I 3 + I 1 + I 6 =0.

Откуда

I 7 = I 3 + I 1 + I 6 =0,607+2,056−4,98=−2,317  A.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения.

Задача 1.4.2 Определить токи в схеме рис. 1.4.2 методом узлового напряжения

Рис. 1.4.2

Решение

1 Находим напряжение между двумя узлами по методу двух узлов

U ab = φ a − φ b = E 1 ⋅ g 1 +J g 1 + g 2 + g 3 = 32⋅ 1 1 +18 1 1 + 1 6 + 1 2 =30   B.

При составлении этого уравнения по методу двух узлов в числителе необходимо брать произведение ЭДС на проводимость своей ветви со знаком плюс, если ЭДС направлена к узлу a, и минус — если направлена от узла a к узлу b.

Аналогичное правило определяет и знаки токов источников тока.

2 Находим токи по закону Ома (по закону Ома для ветви с ЭДС)

I 1 = E 1 + φ b − φ a R 1 = E 1 − U ab R 1 = 32−30 1 =2  А; I 2 = U ab R 2 = 30 6 =5  А; I 3 = U ab R 3 = 30 2 =15  А.

Правильность решения проверим по первому закону Кирхгофа

I 1 − I 2 + I 3 +J=0; 2−5−15+18=0.


Метод узловых потенциалов в статье ЛИНЕЙНЫЕ ЭЛЕКТРИЧЕСКИЕ ЦЕПИ ПОСТОЯННОГО ТОКА. Основные положения и соотношения. Упражнения и задачи

опорный узел,
метод двух узлов,
метод узловых напряжений,
метод узловых потенциалов,
собственная проводимость,
взаимная проводимость

Содержание:

Метод узловых напряжений:

Метод узловых напряжений (узловых потенциалов) является наиболее общим. Он базируется на первом законе Кирхгофа (ЗТК) и законе Ома. В отличие от методов, рассмотренных в лекции 4, метод позволяет уменьшить число уравнений, описывающих схему, до величины, равной количеству рёбер (ветвей) дерева (2.1)

Метод узловых напряжений

Идея метода состоит в следующем:

  1. Выбирается базисный узел — один из узлов цепи, относительно которого рассчитываются напряжения во всех узлах; базисный               узел помечается цифрой 0.
  2. Потенциал базисного узла принимается равным нулю.
  3. Рассчитываются напряжения во всех узлах относительно базисного.
  4. По закону Ома находятся токи и напряжения в соответствующих ветвях.

Напряжения в узлах цепи, отсчитанные относительно базисного, называют узловыми напряжениями.

Определение:

Метод анализа колебаний в электрических цепях, в котором неизвестными, подлежащими определению, являются узловые напряжения, называется методом узловых напряжений.

В дальнейшем будем полагать, что цепь имеет Метод узловых напряжений

Метод узловых напряжений

Предварительно покажем, что при известных узловых напряжениях можно найти напряжения на всех элементах цепи, а потому и все токи. Действительно, напряжение на любой ветви определяется по второму закону Кирхгофа (ЗНК) как разность соответствующих узловых напряжений, а токи в элементах найдутся по закону Ома. Для контура, включающего элементы Метод узловых напряжений  (рис. 5.1), по ЗНК имеем:

Метод узловых напряжений

откуда

Метод узловых напряжений

Аналогично можно записать

Метод узловых напряжений

что и требовалось показать.

Составление узловых уравнений

При составлении уравнений для, схемы рис. 5.1 будем полагать, что задающие токи Метод узловых напряженийи Метод узловых напряжений источников тока (их на схеме два) известны.

Тогда согласно первому закону Кирхгофа для узлов 1 и 2 в предположении, что в общем случае они связаны со всеми другими узлами, получим:

Метод узловых напряжений

Выразим токи в уравнениях через узловые напряжения, как показано в разд. 5.1:

Метод узловых напряжений

Раскрыв скобки и приведя подобные члены, получаем узловые уравнения:

Метод узловых напряжений

Полученный результат позволяет сделать следующие выводы:

Метод узловых напряжений– ый и Метод узловых напряжений-ый узлы; все эти слагаемые входят в уравнение с отрицательным знаком.

Аналогично записываются узловые уравнения для всех других узлов цепи, в результате чего образуется система узловых уравнений вида:

Метод узловых напряжений

где:

Метод узловых напряженийсобственная проводимость Метод узловых напряжений-го узла цепи, являющаяся арифметической суммой проводимостей всех элементов, подключённых одним из зажимов к Метод узловых напряжений-му узлу;

 Метод узловых напряженийвзаимная проводимость Метод узловых напряжений-го и Метод узловых напряжений-го узлов цепи, являющаяся проводимостью элемента, включённого между Метод узловых напряжений-ым и Метод узловых напряжений-ым            узлами;

Метод узловых напряженийзадающий ток Метод узловых напряжений-го узла цепи, являющийся алгебраической суммой задающих токов источников тока, подключённых одним         из зажимов к Метод узловых напряжений-му узлу цепи; слагаемые этой суммы входят в правые части уравнений со знаком “+”, если направление отсчёта           задающего тока источника ориентировано в сторону к-го узла, и со знаком Метод узловых напряжений в противном случае.

Систему узловых уравнений принято записывать в канонической форме, а именно:

  • токи, как свободные члены, записываются в правых частях уравнений;
  • неизвестные напряжения записываются в левых частях уравнений с последовательно возрастающими индексами;
  • уравнения располагаются в соответствии с порядковыми номерами узлов. Такая запись применена в (5.2).

Система (5.2) является линейной неоднороднойМетод узловых напряжений системой независимых уравнений, поэтому позволяет найти искомые узловые напряжения. Методы решения таких систем широко известны (Крамера, Гаусса, Гаусса—Жордана).

Метод узловых напряжений даёт существенное сокращение необходимого числа уравнений по сравнению с методом токов элементов. Выигрыш оказывается тем значительнее, чем больше независимых контуров имеет цепь.

Метод узловых напряжений Система называется неоднородной, если хотя бы один из свободных членов (в данном случае это Метод узловых напряжений) не равен нулю.

Особенности составления узловых уравнений

Метод узловых напряжений можно применять и в тех случаях, когда в анализируемой цепи имеются источники напряжения. При этом:

  • напряжение между любой парой узлов, к которым подключён источник напряжения, известно;
  • в качестве базисного желательно выбирать узел, к которому одним из своих зажимов подключён источник напряжения — тогда   узловое напряжение, отсчитываемое между базисным узлом и вторым зажимом источника, равно ЭДС источника или    отличается от него знаком; кроме того, базисным может быть выбран узел, к которому подключено наибольшее число элементов,        если этот выбор не противоречит первой рекомендаций;
  • уменьшается число независимых узловых напряжений, а потому понижается и порядок системы, т. е. число входящих в систему          независимых уравнений;
  • если цепь содержит Метод узловых напряжений источников напряжения, имеющих один общий зажим, то число узловых уравнений, которое можно                  составить для такой цепи, равно

Метод узловых напряжений

Пример 5.1.

Записать систему узловых уравнений для удлинителяМетод узловых напряжений(рис. 5.2), рассмотренного в лекции 4.

Решение. Удлинитель содержит четыре узла и один источник тока, поэтому согласно (5.3) достаточно составить всего два узловых уравнения

Метод узловых напряжений

Положим узел 0 базисным, поскольку к нему одним из своих зажимов подключён источник напряжения. Узловое напряжение узла 1 известно и равно. ЭДС источника напряжения Метод узловых напряжений поэтому остаётся записать уравнения для узлов 2 и 3 по правилам, рассмотренным в разд. 5.1. Предварительно запишем собственные и взаимные проводимости узлов.

Метод узловых напряженийТакое обращение справедливо,-поскольку удлинители применяются для построения магазина затуханий, или аттенюатора.

Метод узловых напряжений

Собственная проводимость второго узла

Метод узловых напряжений

взаимные проводимости второго узла

Метод узловых напряжений

собственная проводимость третьего узла

Метод узловых напряжений

взаимные проводимости третьего узла

Метод узловых напряжений

Теперь получим систему узловых уравнений, записав узловые уравнения для второго и третьего узлов:

Метод узловых напряжений

Поскольку Метод узловых напряжений запишем эту систему уравнений в каноническом виде

Метод узловых напряжений

Эта система уравнений и является окончательным результатом решения задачи, поставленной в примере.

Если содержащиеся в цепи источники напряжения не имеют общего зажима, то задачу анализа следует решать или методом узловых напряжений в сочетании с принципом наложения или путём эквивалентных преобразований перейти к другой модели цепи.

При составлении узловых уравнений для цепей, содержащих многополюсники (например, транзисторы, операционные усилители
и т. д), следует прежде всего заменить эти многополюсники их схемами замещения.

Метод узлового напряжения

Расчет сложных разветвленных электрических цепей с несколькими источниками и двумя узлам, можно осуществить методом узлового напряжения. Напряжение межи узлами и называется узловым. UAB R3 узловое напряжение цепи (рис. 4.9) Для различных ветвей (рис. 4.9) узловое напряжение UAB можно опредо лить следующим образом.

1. Поскольку для первой ветви источник работает в режиме генератор:

Метод узловых напряжений

Величина тока определяется как

Метод узловых напряжений

где Метод узловых напряжений — проводимость

2.Для второй ветви источник работает в режиме потребителя следовательно

Метод узловых напряжений

Тогда ток

Метод узловых напряжений

3.Для третьей ветви

Метод узловых напряжений

(Потенциал точки В для третьей ветви больше, чем потенций точки А, так как ток направлен из точки с большим потенциалом в точку с меньшим потенциалом)

Величину тока Метод узловых напряжений можно определить по закону Ома

Метод узловых напряжений

По первому закону Кирхгофа для узловой точки А (или В):

Метод узловых напряжений

Подставив в уравнение (4.6) значения токов из уравнений (4.3), .4) и (4.5) для рассматриваемой цепи, можно записать

Метод узловых напряжений

Решив это уравнение относительно узлового напряжения UAB,  можно определить его значение

Метод узловых напряжений

Следовательно, величина узлового напряжения определяется отношением алгебраической суммы произведений ЭДС и проводимости ветвей с источниками к сумме проводимостей всех ветвей:

Метод узловых напряжений

Для определения знака алгебраической суммы направление токов во всех ветвях выбирают одинаковым, т.е. от одного узла другому (рис. 4.9). Тогда ЭДС источника, работающего в режиме генератора, берется со знаком «плюс», а источника, работающего в режиме потребителя, со знаком «минус». Таким образом, для определения токов в сложной цепи с двумя узлами вычисляется сначала узловое напряжение по выражению 4.9), а затем значения токов по формулам (4.3), (4.4), (4.5). Узловое напряжение UAB может получиться положительным или отрицательным, как и ток в любой ветви.

Знак «минус» в вычисленном значении тока указывает, что реальное направление тока в данной ветви противоположно словно выбранному.

Пример 4.7

В ветвях схемы (рис. 4.10) требуется определить токи, если: Метод узловых напряжений Метод узловых напряженийМетод узловых напряжений

Метод узловых напряжений

Решение

Узловое напряжение Метод узловых напряжений

Метод узловых напряжений

где Метод узловых напряжений

Метод узловых напряжений

тогда Метод узловых напряжений

Токи в ветвях будут соответственно равны

Метод узловых напряжений

Как видно из полученных результатов, направление токов Метод узловых напряжений противоположно выбранному. Следовательно, источник £ работает в режиме потребителя.

Пример 4.8

Два генератора (рис. 4.11), ЭДС и внутреннее сопротивление которых одинаковы: Метод узловых напряжений, питают потребитель (нагрузку) с сопротивлением R= 5,85 Ом.

Как изменится ток второго генератора: 1) при увеличении его ЭДС (£2) на 1 %; ” 2) при увеличении узлового напряжения (UAB) на 1 %.

Решение

Определяется узловое напряжение UAB цепи (рис. 4.11)

Метод узловых напряжений

где

Метод узловых напряжений=Метод узловых напряжений

Тогда ток второго генератора

Метод узловых напряжений

При увеличении Е2 на 1 %, его величина станет равной

Метод узловых напряжений

тогда

Метод узловых напряжений

При этом Метод узловых напряжений

Следовательно, увеличение ЭДС генератора Е2 на 1 % приводит увеличению тока этого генератора на 24 %.

Метод узловых напряжений

2. При увеличении узлового напряжения на 1% его величины станет равной

Метод узловых напряжений

При этом Метод узловых напряжений Таким образом, ток второго генератора при увеличении узлового напряжения на 1 % уменьшится на 23,4 %.

Метод узловых напряжений

Знак «минус» означает уменьшение, а не увеличение тока Метод узловых напряжений.

Определение метода узловых напряжений

Метод узловых напряжений заключается в том, что на основании первого закона Кирхгофа определяются потенциалы в узлах электрической цепи относительно некоторого базисного узла. Эти разности потенциалов называются узловыми напряжениями, причем положительное направление их указывается стрелкой от рассматриваемого узла к базисному.

Напряжение на какой-либо ветви равно, очевидно, разности узловых напряжений концов данной ветви; произведение же этого напряжения на комплексную проводимость данной ветви равно току в этой ветви. Таким образом, зная узловые напряжения в электрической цепи, можно найти токи в ветвях.

Если принять потенциал базисного узла равным нулю, то напряжения между остальными узлами и базисным узлом будут равны также потенциалам этих узлов. Поэтому данный метод называется также методом узловых потенциалов.

На рис. 7-7 в виде примера изображена электрическая схема с двумя источниками тока, имеющая три узла: 1, 2 и 3. Выберем в данной схеме в качестве базиса узел 3 и

обозначим узловые напряжения точек 1 и 2 через Метод узловых напряжений Согласно принятым на рис. 7-7 обозначениям комплексные проводимости ветвей равны соответственно:
Метод узловых напряжений
Для заданной электрической цепи с тремя узлами могут быть записаны два уравнения по первому закону Кирхгофа, а именно: для узла 1

Метод узловых напряжений

для узла 2

Метод узловых напряжений

Величина Метод узловых напряжений представляющая собой сумму комплексных проводимостей ветвей, сходящихся в узле 1, называется собственной проводимостью узла 1 величина Метод узловых напряженийравная комплексной проводимости ветви между узлами 1 и 2, входящая в уравнения со знаком минус, называется об-, щей проводимостью между узлами 1 и 2.

Если заданы токи источников тока и комплексные проводимости ветвей, то узловые напряжения находятся совместным решением уравнений.

В общем случае если электрическая схема содержит q узлов, то на основании первого закона Кирхгофа получается система из q — 1 уравнений (узел q принят за базисный):

Метод узловых напряжений

Здесь ток источника тока, подходящий к узлу, берется со знаком плюс, а отходящий от узла — со знаком минус;Метод узловых напряжений — собственная проводимость всех ветвей, сходящихся в данном узле Метод узловых напряжений — общая проводимость между узламп Метод узловых напряжений входящая со знаком минус при выбранном направлении всех узловых напряжений к базису, независимо от того, является ли данная электрическая цепь планарной или непланарной.

Решив систему уравнений (7-5) при помощи определителейМетод узловых напряжений получим формулу для Метод узловых напряжений узлового напряжения относительно базиса:

Метод узловых напряжений
гдеМетод узловых напряжений — определитель системыМетод узловых напряжений

Метод узловых напряжений

Метод узловых напряжений — алгебраическое дополнение элемента Метод узловых напряжений данного определителя.

Первый индекс i алгебраического дополнения, обозначающий номер строки, вычеркиваемой в определителе системы, соответствует номеру узла, заданный ток источника тока которого умножается на данное алгебраическое дополнение. Второй индекс Метод узловых напряжений обозначающий номер столбца, вычеркиваемого в определителе системы, соответствует номеру узла, для которого вычисляется узловое напряжение.

Уравнения (7-5), выражающие первый закон Кирхгофа, записаны в предположении, что в качестве источников электрической энергии служат источники тока. При наличии в электрической схеме источников э. д. с. последние должны быть заменены эквивалентными источниками тока.

Если в схеме имеются ветви, содержащие только э. д, с. (проводимости таких ветвей бесконечно велики), то эти ветви следует рассматривать как источники неизвестных токов, которые затем исключаются при сложении соответствующих уравнений. Дополнительными связями между неизвестными узловыми напряжениями будут являться известные напряжения между узлами, равные заданным э. д. с. 

Метод узловых напряженийОпределитель снабжен индексом у, так как его элементами являются комплексные проводимости.

При наличии только одной ветви с э. д. с. и бесконечной проводимостью целесообразно принять за базисный узел один из узлов, к которому примыкает данная ветвь; тогда напряжение другого узла становится известным и число неизвестных сокращается на одно.

Метод узловых напряжений имеет преимущество перед методом контурных токов в том случае, когда число уравнений, записанных по первому закону Кирхгофа, меньше числа уравнений, записанных по второму закону Кирхгофа. Если заданная электрическая схема имеет q узлов и р ветвей, то в соответствии со сказанным выше, метод узловых напряжений представляет преимущество при q — 1 < р — q + 1. или, что то же, при 2 (q — 1) < р.

Здесь имеется в виду общий случай, когда число уравнений не сокращается за счет известных контурных токов
или узловых напряжении.

Метод узловых напряжений

Пример 7-3. 

Пользуясь методом узловых напряжений определить ток в диагонали мостовой схемы (см. рис. 7-6).

В результате замены заданного источника э. д. с. .эквивалентным источником тока получается схема (рис. 7-8), содержащая четыре узла. Для этой схемы по первому закону Кирхгофа записывают 4—1 = 3 уравнения (по числу независимых узлов). Если выбрать в данной схеме в качестве базиса узел 4 и направить узловые напряжения к базису, то уравнения примут вид:

для узла 1
Метод узловых напряжений
для узла 2

Метод узловых напряжений
для узла 3

Метод узловых напряжений

Решение полученной системы уравнений относительно Метод узловых напряжений даст

Метод узловых напряжений

где

Метод узловых напряжений

Умножив найденное узловое напряжение Метод узловых напряжений на проводимость Метод узловых напряжений диагональной ветви мостовой схемы и изменив знак в соответствии с выбранным ранее направлением тока Метод узловых напряжений(см. рис. 7,-3), найдем искомый ток:

Метод узловых напряжений

  • Метод узловых потенциалов 
  • Принцип и метод наложения
  • Входные и взаимные проводимости
  • Преобразование треугольника сопротивлений в эквивалентную звезду
  • Электрическая цепь
  • Электрический ток
  • Электрические цепи постоянного тока
  • Методы анализа сложных электрических цепей

Ме́тод узловы́х потенциа́лов — формальный метод расчета электрических цепей путём записи системы линейных алгебраических уравнений, в которой неизвестными являются потенциалы в узлах цепи. В результате применения метода определяются потенциалы во всех узлах цепи, а также, при необходимости, силу тока во всех рёбрах (ветвях).

Введение[править | править код]

Часто необходимым этапом при решении самых разных задач электротехники и электроники является расчет электрической цепи. Под этим термином понимается процесс получения полной информации о напряжениях во всех узлах и о токах во всех рёбрах заданной электрической цепи. Для расчета линейной цепи достаточно записать необходимое число уравнений, которые базируются на правилах Кирхгофа и законе Ома, а затем решить полученную систему уравнений.

Однако на практике записать систему уравнений просто из вида принципиальной электрической схемы удается только для очень простых схем. Если в схеме более десятка элементов или она содержит много взаимосвязанных контуров (участки типа мостов), то для записи, определяющей схему системы уравнений, уже требуются специальные методики. К таким методикам относятся метод узловых потенциалов и метод контурных токов.

Метод узловых потенциалов не привносит ничего нового к правилам Кирхгофа и закону Ома. Данный метод лишь формализует их использование настолько, чтобы их можно было применить к любой, сколь угодно сложной цепи и пригоден для расчёта посредством вычислений на компьютерах. Иными словами, метод даёт ответ на вопрос «как использовать законы для расчета данной цепи?».

Теоретические основы[править | править код]

Если в цепи, состоящей из У узлов и Р рёбер, известны все характеристики звеньев (полные сопротивления R, величины источников ЭДС E и тока J), то возможно вычислить токи Ii во всех рёбрах и потенциалы φi во всех узлах. Поскольку электрический потенциал определён с точностью до произвольного постоянного слагаемого, то потенциал в одном из узлов (назовём его базовым узлом) можно принять равным нулю, а потенциалы в остальных узлах определять относительно базового узла. Таким образом, при расчёте цепи имеем У+Р-1 неизвестных переменных: У-1 узловых потенциалов и Р токов в рёбрах.

Не все из указанных переменных независимы. Например, исходя из закона Ома для участка цепи, токи в звеньях полностью определяются потенциалами в узлах:

{displaystyle I_{i}={frac {varphi _{A}-varphi _{B}+E_{i}}{R_{i}}}+J_{i}.}

С другой стороны, токи в рёбрах однозначно определяют распределение потенциала в узлах относительно базового узла:

{displaystyle varphi _{B}=varphi _{A}+E_{i}+(J_{i}-I_{i})R_{i}.}

Таким образом, минимальное число независимых переменных в уравнениях цепи равно либо числу звеньев, либо числу узлов минус 1, в зависимости от того, какое из этих чисел меньше.

При расчёте цепей чаще всего используются уравнения, записываемые, исходя из правил Кирхгофа. Система состоит из У-1 уравнений по 1-му правилу Кирхгофа (для всех узлов, кроме базового) и К уравнений по 2-му правилу Кирхгофа для каждого независимого контура. Независимыми переменными в уравнениях составленных по правилам Кирхгофа являются токи звеньев. Поскольку согласно формуле Эйлера для плоского графа число узлов, рёбер и независимых контуров связаны соотношением

{displaystyle Y-P+K=1,}

или

{displaystyle P=Y+K-1,}

то число уравнений составленных по правилам Кирхгофа равно числу переменных, и система разрешима. Однако число уравнений в системе Кирхгофа избыточно. Одним из методов сокращения числа уравнений является метод узловых потенциалов. Переменными в системе уравнений являются У-1 узловых потенциалов. Уравнения записываются для всех узлов, кроме базового. Уравнения для контуров в системе отсутствуют.

Уравнение для потенциала в узлах[править | править код]

Рис. 1. Фрагмент цепи: узел с примыкающими звеньями

Рассмотрим фрагмент цепи, состоящий из узла и примыкающих к нему звеньев (рис. 1). Согласно 1-му правилу Кирхгофа сумма токов в узле равна нулю:

{displaystyle sum _{i=1}^{n}I_{i}=0.}

Ток в звене определим, исходя из закона Ома для участка цепи:

{displaystyle I_{i}={frac {varphi _{i}-varphi +E_{i}}{R_{i}}}+J_{i}}

откуда:

{displaystyle sum _{i=1}^{n}left({frac {varphi _{i}-varphi +E_{i}}{R_{i}}}+J_{i}right)=0;}
{displaystyle varphi sum _{i=1}^{n}{frac {1}{R_{i}}}-sum _{i=1}^{n}{frac {varphi _{i}}{R_{i}}}=sum _{i=1}^{n}left({frac {E_{i}}{R_{i}}}+J_{i}right).}

Обозначив проводимости рёбер через

{displaystyle Y_{i}={frac {1}{R_{i}}}}

получим окончательное уравнение для узла:

{displaystyle varphi sum _{i=1}^{n}Y_{i}-sum _{i=1}^{n}varphi _{i}Y_{i}=sum _{i=1}^{n}(E_{i}Y_{i}+J_{i}).}

Последнее уравнение получено, исходя из предположения, что все источники тока и ЭДС направлены в сторону рассматриваемого узла. Если какой-либо источник направлен в противоположную сторону, его ЭДС или ток необходимо взять с обратным знаком.

Записав последнее уравнение для каждого узла цепи, кроме базового, получим систему уравнений для узловых потенциалов.

Практическое применение[править | править код]

Составление системы уравнений[править | править код]

Перед началом расчёта выбирается один из узлов (базовый узел), потенциал которого считается равным 0. Затем узлы нумеруются, после чего составляется система уравнений.

Уравнения составляются для каждого узла, кроме базового. Слева от знака равенства записывается:

  • потенциал рассматриваемого узла, умноженный на сумму проводимостей рёбер, примыкающих к нему (проводимости рёбер, содержащих источники тока, считаются нулевыми и не принимаются в расчёт);
  • минус потенциалы узлов, примыкающих к данному, умноженные на проводимости рёбер, соединяющих их с данным узлом. Если узел соединён с данным узлом ребром, содержащим источник тока, этот узел не принимается в расчёт.

Справа от знака равенства записывается:

  • сумма всех источников токов, примыкающих к данному узлу;
  • сумма произведений всех ЭДС, примыкающих к данному узлу, на проводимость соответствующего звена.

Если источник направлен в сторону рассматриваемого узла, то он записывается со знаком «+», в противном случае — со знаком «−». Не стоит забывать, что проводимость звена с последовательно подключенным идеальным источником тока равна 0.

Рис. 2. Пример электрической схемы

Пример системы уравнений[править | править код]

На схеме (рис. 2) четыре узла. Потенциал в узле 0 принят равным нулю (φ0 = 0). Записываем уравнения для узлов 1, 2 и 3:

{displaystyle {begin{cases}varphi _{1}(Y_{1}+Y_{4}+Y_{6})+varphi _{2}(-Y_{1})+varphi _{3}(-Y_{6})=E_{6}Y_{6}-E_{4}Y_{4}\varphi _{1}(-Y_{1})+varphi _{2}(Y_{1}+Y_{2}+Y_{3})+varphi _{3}(-Y_{3})=0\varphi _{1}(-Y_{6})+varphi _{2}(-Y_{3})+varphi _{3}(Y_{3}+Y_{5}+Y_{6})=J_{5}-E_{6}Y_{6}end{cases}},}

где проводимости рёбер равны:

{displaystyle Y_{1}={frac {1}{R_{1}}};quad Y_{2}={frac {1}{R_{2}}};quad Y_{3}={frac {1}{R_{3}}};}
{displaystyle Y_{4}={frac {1}{R_{4}}};quad Y_{5}={frac {1}{R_{5}}};quad Y_{6}={frac {1}{R_{6}}}.}

Формальный подход[править | править код]

В матричном виде система уравнений для метода узловых потенциалов выглядит следующим образом[1]:

{displaystyle mathbf {AYA^{t}U_{0}=-A(J+YE)} },

где

{mathbf  A} — матрица соединений размера (q — 1) × p (q — количество узлов, р — количество рёбер), в которой i-я строка соответствует узлу i, а j-й столбец соответствует ребру j, причём элемент Aij равен:

  • 0, если ребро j не присоединено к узлу i;
  • 1, если ребро выходит из узла;
  • −1, если ребро входит в узел.

Термины «входит» и «выходит» означает, что для каждого ребра задаётся направление, которое обычно ассоциируется с направлением тока в этом ребре;

mathbf Y — диагональная матрица проводимостей размера p × p, в которой диагональный элемент Yii равен проводимости i-го ребра, а недиагональные элементы равны нулю;

{displaystyle mathbf {A} ^{t}} — транспонированная матрица соединений;

{displaystyle mathbf {U} _{0}} — матрица-столбец узловых потенциалов размером (q — 1) × 1. Потенциалы измеряется относительно предварительно выбранного узла, потенциал которого считается равным нулю. Нулевой узел не входит ни в одну из перечисленных в данном разделе матриц;

{displaystyle mathbf {J} } — матрица-столбец источников тока размером p × 1, где каждый элемент равен току соответствующего источника, причём эта величина нулевая, если в данном ребре источник тока отсутствует; положительная, если направление тока источника совпадает с направлением тока в ребре; и отрицательная в противном случае;

mathbf {E}  — матрица-столбец источников ЭДС размером p × 1, где каждый элемент равен ЭДС соответствующего источника, причём эта величина нулевая, если в данном ребре источник ЭДС отсутствует; положительная, если направление ЭДС источника совпадает с направлением тока в ребре; и отрицательная в противном случае.

Пример системы уравнений[править | править код]

Для схемы рис. 2 матрицы имеют вид:

{displaystyle mathbf {A} ={begin{pmatrix}1&0&0&1&0&-1\-1&1&1&0&0&0\0&0&-1&0&-1&1end{pmatrix}};quad mathbf {U} _{0}={begin{pmatrix}varphi _{1}\varphi _{2}\varphi _{3}end{pmatrix}}}

{displaystyle mathbf {A} ^{t}={begin{pmatrix}1&-1&0\0&1&0\0&1&-1\1&0&0\0&0&-1\-1&0&1\end{pmatrix}};quad mathbf {Y} ={begin{pmatrix}Y_{1}&0&0&0&0&0\0&Y_{2}&0&0&0&0\0&0&Y_{3}&0&0&0\0&0&0&Y_{4}&0&0\0&0&0&0&Y_{5}&0\0&0&0&0&0&Y_{6}\end{pmatrix}};quad mathbf {J} ={begin{pmatrix}0\0\0\0\J_{5}\0end{pmatrix}};quad mathbf {E} ={begin{pmatrix}0\0\0\E_{4}\0\E_{6}end{pmatrix}}}

Перемножаем матрицы в соответствии с матричным уравнением:

{displaystyle mathbf {AY} ={begin{pmatrix}Y_{1}&0&0&Y_{4}&0&-Y_{6}\-Y_{1}&Y_{2}&Y_{3}&0&0&0\0&0&-Y_{3}&0&-Y_{5}&Y_{6}end{pmatrix}};}

{displaystyle mathbf {AYA^{t}} ={begin{pmatrix}Y_{1}+Y_{4}+Y_{6}&-Y_{1}&-Y_{6}\-Y_{1}&Y_{1}+Y_{2}+Y_{3}&-Y_{3}\-Y_{6}&-Y_{3}&Y_{3}+Y_{5}+Y_{6}end{pmatrix}};}

{displaystyle mathbf {AYA^{t}U_{0}} ={begin{pmatrix}(Y_{1}+Y_{4}+Y_{6})cdot varphi _{1}-Y_{1}cdot varphi _{2}-Y_{6}cdot varphi _{3}\-Y_{1}cdot varphi _{1}+(Y_{1}+Y_{2}+Y_{3})cdot varphi _{2}-Y_{3}cdot varphi _{3}\-Y_{6}cdot varphi _{1}-Y_{3}cdot varphi _{2}+(Y_{3}+Y_{5}+Y_{6})cdot varphi _{3}end{pmatrix}};}

{displaystyle mathbf {J+YE} ={begin{pmatrix}0\0\0\Y_{4}E_{4}\J_{5}\Y_{6}E_{6}end{pmatrix}};quad mathbf {-A(J+YE)} ={begin{pmatrix}-Y_{4}E_{4}+Y_{6}E_{6}\0\J_{5}-Y_{6}E_{6}end{pmatrix}}}

Раскрывая матричную запись, получаем следующую систему уравнений:

{displaystyle {begin{cases}(Y_{1}+Y_{4}+Y_{6})cdot varphi _{1}-Y_{1}cdot varphi _{2}-Y_{6}cdot varphi _{3}=-E_{4}Y_{4}+E_{6}Y_{6}\-Y_{1}cdot varphi _{1}+(Y_{1}+Y_{2}+Y_{3})cdot varphi _{2}-Y_{3}cdot varphi _{3}=0\-Y_{6}cdot varphi _{1}-Y_{3}cdot varphi _{2}+(Y_{3}+Y_{5}+Y_{6})cdot varphi _{3}=J_{5}-E_{6}Y_{6}end{cases}}}

Ограничения[править | править код]

Метод узловых потенциалов применяется к эквивалентной схеме, поэтому имеют силу те же ограничения, что и для применимости эквивалентных схем. Если изначально дана реальная схема, то для неё необходимо составить эквивалентную схему и дальнейший расчет производить с ней. Таким образом, схема, к которой применяется метод узловых потенциалов, не содержит никаких реальных[уточнить] элементов (транзисторов, диодов, ламп, гальванических элементов, пассивных элементов с паразитными параметрами и т. д.).

Примечания[править | править код]


  1. Нейман Л. Р., Демирчян К. С. Теоретические основы электротехники: в 2-х т. Учебник для вузов. Том I. — 3-е изд., перераб. и доп. — Л.: Энергоиздат. Ленингр. отд-ние, 1981. — 536 с., ил.

См. также[править | править код]

  • Эквивалентная схема
  • Источник ЭДС
  • Источник тока

ads

При изучении основ электротехники приходится сталкиваться с необходимостью расчета тех или иных параметров различных схем. И самое простое, что приходится делать – это расчет токов ветвей в цепях постоянного тока.

Существует несколько наиболее применяемых методов расчетов для таких цепей: с помощью законов Кирхгофа, методом контурных токов, узловых потенциалов, методом эквивалентного генератора, эквивалентного источника тока, методом наложения. Для расчета более сложных цепей, например, в нелинейных схемах, могут применяться метод аппроксимации, графические методы и другие.
В данном разделе рассмотрим один из методов определения токов в цепи постоянного тока – метод узловых потенциалов.

Важно отличать метод узловых напряжений (потенциалов) от метода узлового напряжения (метод двух узлов).

Метод узловых потенциалов примеры решения задач

Для того, чтобы лучше разобраться в этом вопросе, рассмотрим конкретный пример схемы, показанной на рис.1.

Рис.1. Схема постоянного тока

Рис.1. Схема постоянного тока

        

Для начала обозначают направления токов в ветвях. Направление можно выбирать любым. Если в результате вычислений какой-то из токов получится с отрицательным значением, значит, его направление в действительности будет направлено в противоположную сторону относительно ранее обозначенного. Если в ветви имеется источник, то для удобства лучше обозначить направление тока в этой ветви совпадающим с направлением источника в этой ветви, хотя и не обязательно. Далее один из узлов схемы заземляем. Заземленный узел будет называться опорным, или базисным. Такой метод заземления на общее токораспределение в схеме влияния не оказывает.

Какой именно узел заземлять, значения не имеет. Заземлим, например, узел 4  φ4 = 0.

Каждый из этих узлов будет обладать своим значением потенциала относительно узла 4. Именно значения этих потенциалов для дальнейшего определения токов и находят. Соответственно, для удобства этим потенциалам присваивают номера в соответствии с номером узла, т.е. φ1, φ2, φ3. Далее составляется система уравнений для оставшихся узлов 1, 2, 3.

В общем виде система имеет вид:

Использованные в этой системе уравнений буквенно-цифровые обозначения

имеют следующий смысл:

– сумма проводимостей ветвей, сходящихся в узле 1. В данном случае

 – сумма проводимостей ветвей, сходящихся в узле 2. В данном случае

 – сумма проводимостей ветвей, сходящихся в узле 3. В данном случае

 – сумма проводимостей ветвей, соединяющих узлы 1 и 2, взятая со знаком «минус». Для этого единица и взята с отрицательным знаком:

 – сумма проводимостей ветвей, соединяющих узлы 1 и 3, взятая со знаком «минус». Для этого единица и в этом случае взята с отрицательным знаком:

Аналогично находятся и остальные проводимости:

J11 – узловой ток узла 1, в котором участвуют ветви, подходящие именно к этому узлу, и содержащие в своем составе ЭДС. При этом, если ЭДС ветви, входящий в узел, направлена к рассматриваемому узлу (в данном случае к узлу 1), то такой узловой ток записывается с плюсом, если от узла, то с минусом. В данном случае

Аналогично

В результате всех ранее приведенных вычисленных значений исходная система уравнений примет вид:

Решать данную систему можно всеми доступными методами, мы же для упрощения решим ее в пакете Mathcad:

В результате получены следующие значения потенциалов в узлах цепи:

Токи в ветвях находятся в соответствии с законом Ома. Поясним это простыми словами.

В ветви с сопротивлением и источником, учитывая ранее обозначенное направление тока в рассматриваемой ветви, необходимо из потенциала узла, находящегося у начала стрелки направления тока, вычесть потенциал узла, находящегося у конца стрелки направления тока, а затем прибавить значение ЭДС в этой ветви. Далее все это разделить на сопротивление, имеющееся в ветви. Если бы ток и ЭДС в рассматриваемой ветви не совпадали по направлению, тогда значение ЭДС вычиталось. В ветви без ЭДС действует то же самое правило, только ЭДС в числителе, разумеется, отсутствует. В нашем примере получим, что

Значение тока первой ветви, как видно из расчета, получилось отрицательным. Значит, в действительности, этот ток направлен в противоположную сторону относительно его обозначенного направления на рис.1.

Правильность расчетов можно проверить, например, составлением баланса мощностей либо, к примеру, моделированием, схемы. Выполним моделирование в программе Multisim.

Рис.2. Моделирование в Multisim

Рис.2. Моделирование в Multisim

Как видим, результаты моделирования совпадают с расчетными значениями. Незначительная разница в тысячных долях из-за округлений промежуточных вычислений.

(узловых
потенциалов)

Ещё один метод расчёта цепей – метод
узловых напряжений (метод узловых
потенциалов)
. В качестве неизвестных
промежуточных величин принимаются
напряжения (или потенциалы) в узлах
схемы.

Рассмотрим схему на рисунке 1.23.

В схеме три узла (не показалось ли вам,
что их четыре?) – обозначенных числами
1, 2, 3. Потенциал каждого узла: φ1,
φ2, φ3. Напряжения между ними:

U121
– φ2 (напряжение U12 направлено
от узла 1 к узлу 2)

U13 = φ1
– φ3

U23 = φ2
– φ3

В схеме играют роль не сами потенциалы,
а их разность – напряжение. Примем
потенциал одного узла, например 3, равным
нулю – φ3=0. Так часто делается в
электронике – называется «общий провод».
Таким образом, между величиной напряжения
и потенциала нет никакой разницы:

U13= φ1 = U1

U23= φ2 = U2

U3 = φ3 = 0

При расчёте схемы за неизвестные примем
напряже-ния (или потенциалы, что
безразлично) узлов. Число уравнений
такое же, как по первому закону Кирхгофа,
в данном случае – два, так как узлов –
три. Понятно, что если известны два
потенциала, то легко найти и третий.
Искомыми напряжениями будут U1 и
U2.

Для составления уравнений введём новые
понятия.

Собственная проводимость узла
Gii
– сумма про-водимостей всех ветвей,
подключённых к этому узлу. При этом
нужно учитывать проводимости источников
энергии.

Источник ЭДС – R = 0, G = ∞;

Источник тока – R = ∞, G = 0; (G = 1/R)

В данной схеме:

G11 = G1
+ G2 + G3

G22 = G3
+ G4

(проводимость ветви с источником тока
равна нулю)

Общая проводимость двух узлов
Gik
– сумма проводимостей всех ветвей
между двумя узлами.

G12 = G21
= G3

Узел с потенциалом, равным нулю, не
учитывается, поэтому получилась только
одна величина общей проводимости.

Узловой ток Jii
– алгебраическая сумма токов
источников, действующих в ветвях,
подключённых к данному узлу i.

При этом необходимо учитывать знак.
Если ток, вызываемый источником, подтекает
к узлу, то он считается со знаком «плюс»,
а если вытекает из узла – то «минус».

Ток в ветви с источником тока считается
равным Ji. Ток, вызываемый источником
ЭДС равен: Jэкв = E/R = EG.

В данной схеме:

J11 = E2G2
– E1G1
= E2/R2
– E1/R1

J22 = J (источники ЭДС
в ветвях узла 2 отсутствуют)

Составляем систему уравнений.

Коэффициенты при собственных проводимостях
Gii
положительны, при общих проводимостях
Gik
отрицательны.

Решаем систему уравнений относительно
напряжений.

Теперь определяем токи в ветвях, учитывая
направление узловых напряжений и
источников ЭДС: если направление
источника ЭДС и узлового напряжения
совпадают с направлением тока в ветви,
то оно берётся со знаком «плюс», если
противоположны – со знаком «минус».

I1
= (E1+U1)/R1=
(E1+U1)G1

I2
= (E2 -U1)/R2
= (E2-U1)G2

I3
= (U1-U2)/R3=
(U1
-U2)G3

I4 = U2/R4
= U2G4

I5 = J
– это очевидно

Порядок расчёта методом узловых
напряжений

1) Выбираем направления токов в ветвях;

2)
Выбираем узел, потенциал которого будем

считать нулевым;

3) Для остальных узлов определяем
собственные и

общие проводимости;

4) Определяем узловые токи;

5) Составляем и решаем уравнения;

6) Находим токи в ветвях.

Методы контурных токов и узловых
потенциалов являются основными методами
расчёта сложных цепей. Оба этих метода
получены из законов Кирхгофа и достоинством
их является меньшее число уравнений: в
методе контурных токов их число такое
же, как по второму закону Кирхгофа, а в
методе узловых напряже-ний – такое же,
как по 1-му закону. Исходя из числа
уравнений, и выбирают обычно метод
расчёта.

Если количество уравнений одинаково,
то всё же проще использовать метод
контурных токов. Во-первых, так значительно
легче определить токи после решения
уравнений, во-вторых, – обычно в условии
заданы сопротивления резисторов, а не
их проводимости, что влечёт дополнительные
вычисления при решении методом узловых
напряжений.

Метод
двух узлов

Метод двух узлов является частным
случаем метода узловых напряжений. Как
очевидно из названия, он используется
в схемах, имеющих только два узла –
тогда этот метод будет оптимальным. В
этом случае составляется только одно
уравнение. Для примера рассмотрим схему
на рисунке 1.24.

Считаем нулевым потенциал узла 0. В
данном случае никаких общих проводимостей
нет, есть только собственная проводимость
и узловой ток узла 1.

G11
= G1 +
G2 +
G3 +
G4

J11
= – E1G1
+ J + E2G4

Уравнение: U1G11
= J11

Затем определяем токи в ветвях. Подсчитайте
для сравнения: сколько уравнений будет
в системе при расчёте схемы методом
контурных токов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий