В своей мастерской я часто пользуюсь мультиметром, когда ремонтирую электронику, вещь достаточно полезная и удобная. Но когда дело касается обрыва провода, то найти точное место практически невозможно, если нет видимых повреждений снаружи.
Но выход есть и в данной статье я покажу, как найти обрыв провода при помощи мультиметра без использования дорогих приборов.
Для начала понадобится сам кабель, в моем случае он состоит из трех проводов, один из которых находится в обрыве.
Первым делом нужно найти провод, который находится в обрыве. С помощью мультиметра это сделать легко в режиме прозвонки.
Теперь ясно какой провод оборван, но нужно найти точное место обрыва и для этого необходимо подключить его в фазу домашней сети 220 вольт. Я использовал удлинитель, где определил фазу при помощи того же мультиметра плюсовым щупом, там где значения будут выше 50 вольт находится фаза, все что в районе 5-6 вольт, это ноль.
На мультиметре необходимо выбрать режим измерения переменного напряжения.
Затем начинаем водить плюсовым щупом поверх проводов.
Водим по проводу и внимательно следим за значениями напряжения, нужно найти такой момент, где оно начнет заметно падать.
Для наглядности я снял короткий ролик, где хорошо видно перепад напряжения. Нажмите на картинку для воспроизведения.
Данный перепад и означает обрыв провода, так как ток по нему уже не идет и мультиметр не улавливает индукцию от провода. Чтобы в этом убедиться достаточно слегка подрезать изоляцию и осмотреть провод.
Провод внутри оборван вместе с жилами и растянута изоляция, что обычно бывает, когда сильно тянешь за провод.
Главное, что обрыв найдет, а значит способ работает даже без дорогих приборов, достаточно иметь лишь простой мультиметр.
Кому понравилась статья, ставьте лайки, пишите комментарии и подписывайтесь на канал.
Довольно неприятная ситуация, знакомая многим – без каких-либо видимых причин свет в квартире (доме) или в некоторых комнатах вдруг гаснет, бытовая техника отключается. И вместе с тем явно видно, что у соседей с подачей электричества — все нормально. Первая реакция у всех, наверное, одинаковая – хозяева проверяют, не выбило ли автомат или не перегорела ли пробка-предохранитель.
Если это действительно так, и при перезапуске автомата (замене пробки) работоспособность домашней электросети восстанавливается, то задача упрощается. Безусловно, с причиной срабатывания защиты разобраться надо — возможно, была превышена допустимая нагрузка. Но, во всяком случае, проводка исправна. Но если напряжение на выходе с предохранителей есть, а в помещениях отсутствует – где-то случился обрыв. И предстоит непростая задача восстановления домашней сети.
Один из самых сложных вопросов в этом случае будет – как найти обрыв провода в стене. Его и рассмотрим в настоящей публикации.
Возможные причины неисправностей проводки
Чтобы легче было выявлять участок, на котором произошло несанкционированное размыкание цепи питания, необходимо представлять, какие причины могут вызвать подобные неисправности. Следует сразу заметить, что чаще всего они обусловлены ошибками в монтаже домашней электрической сети или нарушениями правил ее эксплуатации. Сама по себе проводка, да еще замурованная в стены, обрывается крайне редко, хотя и такого варианта полностью исключать нельзя.
- Очень часто контакт пропадает на клеммных соединениях – начиная от автоматов в распределительном щите и заканчивая розетками, выключателями или даже конечными приборами потребления. Плохо затянутая или ослабшая со временем клемма начинает греться, искрить, отчего дефект «прогрессирует», что рано или поздно заканчивается полным исчезновением электрического контакта.
- Соединения в монтажных коробках, если они выполнены с нарушениями или недостаточно качественно – еще одно уязвимое место. Особую опасность представляют кустарные скрутки проводов, которые горе-мастера просто закрывают сверху слоем изоленты – и считают, что этого достаточно. Нет, безусловно, и скрутка может быть надежной и долговечной, но иногда встречаются такие картины, что лучше бы их не видеть. Например, наличие в одной скрутке медных и алюминиевых проводов, что категорически запрещено, попытка соединения одножильного толстого жёсткого проводника с гибким многопроволочным. Или использование клемм, которые явно не подходят по токовой нагрузке для данной линии. Скажем, клеммы Wago — очень удобны в монтаже, но все же их предназначение, скорее — коммутация линий, выделенных под освещение помещений. А вот на участках проводки, от которых питается мощная бытовая техника, они вполне могут и подвести.
Кстати, перечисленные выше причины, хотя и неприятны сами по себе, все же довольно легко диагностируются и устраняются. Кроме того, обычно такие обрывы не происходят совсем уж внезапно – как правило, они начинают «сигнализировать» хозяевам о нарастании проблемы — мерцаем света, явными признаками искрения, запахом подгоревшей изоляции или пластика. То есть при внимательном отношении к своему электрохозяйству владельцам дома или квартиры предоставляется «гандикап» на обнаружение и устранение неполадок.
Типичные неполадки в домашней электросети и их устранение
Понятно, что если вообще нет никакого понятия об электромонтажных работах, нечего и браться за такое дело самостоятельно – лучше вызвать специалиста. Но все же хорошему хозяину многое по силам исправить и самому. На страницах нашего портала можно найти подробные инструкции по ремонту розеток, по выявлению причин срабатывания УЗО или частого выбивания автоматического выключателя.
Гораздо сложнее справиться с дефектами скрытого характера, с разрывами электрической цепи на участках проводки, спрятанных в стене.
- Они, кстати, тоже очень часто появляются по причинам, так сказать, субъективного характера. «Классический» пример – сверление стены или забивание гвоздя без предварительной «разведки» на предмет прохождения на этом участке скрытой проводки.
Сложно назвать это удачей, но если после сверления сразу пропадает напряжение в сети, то, по крайней мере, причина становится очевидной. Но бывает и иначе – сверло или гвоздь задевают провод по касательной, нарушая изоляцию и лишь слегка повреждая проводник. В таких случаях не исключено, что проводка еще будет служить, причем иногда – весьма немало. Но в месте нарушения целостности провоцируются токи утечки (а если нет УЗО, то выявить их удается не сразу), снижается нормальная проводимость, возрастает сопротивление на локальном участке, не исключается постепенное плавление изоляции с последующим коротким замыканием. То есть окончательный разрыв может случиться в любой момент, даже через довольно продолжительное время, и его непросто будет сопоставить с проводимыми когда-то сверлильными работами.
В идеале, хозяин квартиры (дома) должен точно знать трассы прокладки проводки в своих владениях и расположение монтажных коробок. Задача упрощается, если электромонтажные работы выполнялись в строгом соответствии с правилами и рекомендациями. То есть все участки скрытой проводки расположены строго горизонтально и вертикально. Однако, картины, сходные с той, что показана на иллюстрации ниже, видели, наверное, многие электрики, которых вызывали для устранения аварий. Понятно, что при такой «схеме» разводки домашней электросети любое сверление стены или забивание гвоздя превращается в «лотерею»: повезет – не повезет.
- Сама по себе проводка, замурованная в стены, дает обрыв не столь часто. Но и эту вероятность нельзя сбрасывать со счетов. Такими дефектами особо могут «грешить» старые провода, проложенные много десятилетий назад. И в особенности – если в доме все еще используется алюминиевая проводка.
Со временем проводка, безусловно, стареет. Это, прежде всего, выражается в том, что пластиковая изоляция теряет свою эластичность, становится хрупкой, трескается. Мелкие трещины могут стать причиной вначале, казалось бы, незначительных утечек тока. Ну а о том, что такие утечки имеют свойство возрастать — выше уже говорилось.
При прокладке проводки мог получиться залом проводника. Он тоже вполне способен проявиться не сразу, а спустя время, причем, исчисляемое годами. То есть проложить какую-то логическую связь с внезапно появившимся обрывом – практически невозможно. Просто на таком локальном участке за счет повреждения нормальной кристаллической структуры металла может значительно возрасти сопротивление, что вызывает перегрев, еще большую деструктуризацию проводника, плавление изоляции, короткое замыкание и прочие «радости».
Такие аварии – самые сложные в диагностике и определении конкретного места разрыва цепи. Внешних признаков – практически не бывает. И если даже почувствуется какой-то отдаленный «аромат» подгоревшей изоляции, отыскать источник запаха – вряд ли удастся.
Все перечисленное выше может, конечно, случиться с любой проводкой. Но если в доме (квартире) все еще используются алюминиевые провода – вероятность аварийных ситуаций возрастает в разы. Этот металл значительно уступает меди и проводимостью, и коррозионной устойчивостью, и механической прочностью. Мало того, алюминий, как выражаются многие электрики, «плывет» в клеммах или скрутках. То есть даже качественно обжатый контакт со временем вполне может потерять надежность, начать греться и искрить.
Это – еще один довод при любой возможности избавляться от старой алюминиевой проводки и переходить на качественные медные кабели.
Какие кабели приобретать для прокладки домашней проводки?
Если говорить о материале – то, конечно, исключительно медные. А если о конкретной марке и сечении – то здесь требуется владеть некоторой важной информацией. Подробнее о типах кабелей для проводки в доме или квартире – читайте в специальной публикации нашего портала.
Как отыскать обрыв провода в стене
Первые шаги и проверка распределительного щита
Итак, пока по неизвестным причинам в комнате (одной, нескольких или всех сразу) погас свет, перестали работать электроприборы. Первое естественное действие хозяев – проверить, не общее ли это выключение по улице (подъезду городского дома). Если нет – обращается внимание на распределительный щит – не выбило ли автоматы или не перегорели ли плавкие предохранители — пробки (кое –где еще встречается и такой анахронизм).
Если и здесь все в норме – предстоит поиск неисправностей уже в своих владениях.
С чего начинают. Прежде всего – с «включения логики». Стоит сразу же проанализировать, не проводилось ли недавно в квартире работ, связанных со сверлением стен. Не было ли за последнее время других чрезвычайных происшествий, например, потопа от соседей сверху.
Надо постараться припомнить, были ли какие-то «симптомы заболевания» проводки – моргание света, характерный треск искрения контактов, запах подгоревшей изоляции. Иногда даже такой информации бывает достаточно, чтобы с большой долей точности быстро обнаружить место аварии.
Поиск неисправностей начинают всегда вести от распределительного щитка. Первое – визуальный контроль. Если авария произошла именно здесь, она может выдать себя выскочившим из клеммы или почерневшим контактом на автомате (УЗО). Рекомендуется сразу, вооружившись мультиметром, установленным на измерение переменного напряжения более 250 вольт, проверить, имеется ли напряжение на вводном автомате. Если показания измерения – в норме, однозначно грешить на подачу не нужно, и причина точно находится внутри квартиры.
Проверить, конечно, можно и индикаторной отверткой, но она способна показать только наличие фазы. А это – неоднозначная картина, так как обрыв может быть и по нулевому проводу.
Некоторые советуют использовать для проведения подобной диагностики простейший прибор, состоящий из патрона с лампой и двух проводов. Действительно, таким способом, пожалуй, легче всего определить, имеется ли в данном месте (на клемме автомата, в распределительной коробке, в розетке и т.п.) нужное напряжение в 220 вольт. Однако, работа с подобным самодельным «тестером» является весьма небезопасной, и правилами охраны труда — категорически запрещена. И автор, как «законопослушный гражданин», тоже не рекомендует таких способов проверки.
Отсутствие мультитестера не должно являться оправданием. В наше время приобрести совсем недорогой, но в то же время вполне «дееспособный» тестер сможет каждый. И такой прибор должен, наряду с индикаторной отвёрткой, быть у любого хорошего хозяина. Так что будем исходить из посыла, что мультиметр в наличии есть.
После проверки вводной автомат выключается, равно, как и все другие автоматы. И следующим шагом проверяется надежность зажатия проводников в клеммах на всех АВ и УЗО, а также в шинах нуля и заземления. При необходимости – производится подтяжка. Случается и так, что на этом устранение аварии и заканчивается – все, оказывается, крылось в плохом контакте на одной из клемм.
Кстати, уместно, наверное, будет сразу заострить внимание на некоторых распространенных ошибках, которые частенько допускаются неопытными мастерами при подключении проводов к клеммам автомата (УЗО).
- В клемме зажимается медный многопроволочный гибкий проводник без оконцовки. Даже при, казалось бы, качественной обтяжке, контакт со временем может сильно ослабнуть. Или даже вовсе исчезнуть – пережатые тонкие проволочки могут обламываться. В щите вообще лучше не использовать такие провода – надежнее будет одножильный нужного сечения. Но если уж некуда деваться, то провод в обязательно порядке должен заканчиваться клеммным наконечником. Стоят такие детали недорого, их установка – труда не составляет, но контакт получится надежным.
- При подключении провода его зачищенный конец слишком глубоко заводится в клемму. И при затяжке контактная площадка начинает упираться в слой изоляции. Понятно, что обжим самого проводника получается при этом ненадежным, что становится предпосылкой для искрения, нагрева, пропадания контакта.
- В одну клемму подключается два провода разного сечения. Контактная площадка при затяжке клеммы упирается в больший по сечению проводник, а контакт на меньшем при этом очень часто становится крайне ненадежным
Чтобы уже полностью закончить со щитом, можно, включив автомат на вводе, последовательно проверить работоспособность всех остальных автоматических выключателей, дифавтоматов и УЗО. Понятно, что с каждого из них, если тот находится во включённом положении, должна выходить фаза. Здесь для проверки будет достаточно индикаторной отвертки. Или опять же применяется мультитестер – замеряется напряжение между выходом автомата (УЗО, АВДТ) и общей шиной нуля.
Убедившись в том, что с распределительным щитом – все в норме, можно переходить к поиску аварийного участка уже в самой квартирной разводке.
Локализация места аварии
Все перечисленные выше действия будут уместны, если напряжение пропало разом во всем помещениях. Но при обрыве провода на каком-то конкретном участке чаще всего и исчезновение питания также ограничивается какой-то областью квартиры или дома. Безусловно, если распределительный щит был смонтирован грамотно, с разветвлением общей подачи после счетчика по отдельным линиям.
У хорошего хозяина так обычно и бывает – выделяется несколько розеточных групп, в том числе — и на отдельные розетки для мощной бытовой техники (стиральные машины, электроплиты, духовки, насосное оборудование и т.п.). Освещение также может быть разделено на группы, например, по помещениям. Если все организовано именно так, на автоматах имеются подписи (или нумерация с «легендой»), то задача существенно упрощается.
То есть если пропало напряжение на какой-то определенной розеточной группе, но проверка остальных показывает, что все в норме, то сразу ясно – обрыв на конкретной линии. Аналогично и с освещением, если оно погасло только в отдельной комнате (группе комнат), но в других свет горит, и розетки работают.
Узнайте, как рассчитать освещение по площади помещения, изучив алгоритм и удобные калькуляторы онлайн, в специальной статье на нашем портале.
Но часто бывает и так, что все распределение сводится к одному-двум автоматам, и картина поучается неясной. Кроме того, некоторые хозяева могут просто не знать «легенды» своего щита, если они приобрели квартиру или дом с уже проложенной электросетью, и до текущего момента их этот вопрос пока не занимал. И настоятельно рекомендуется посвятить этому время, чтобы опытным путем все же добиться ясности, какой прибор в щитке за что отвечает.
Поиск же участка обрыва ведется от щита к точке, где выявлено пропадание напряжения (розетке, осветительному прибору). Участки могут быть следующими:
- Трасса от щита до распределительной коробки.
- Участок от распределительной коробки до розетки (выключателя).
- Участок между выключателем или коробкой и осветительным прибором.
Нередко встречаются разводки, в которых проводка к розеточным группам не предусматривает распределительных коробок, то есть провод идет непосредственно от щита к конечной точке. Причем, от одной розеточной группы к последующей также может быть протянут кабель. Это сразу бывает заметно, когда к розетке подходит два кабеля: один из них идет от щита, другой – далее на следующую группу.
Итак, следующая задача – точно определить участок, на котором произошел обрыв.
Поиск участка проводки с обрывом
Задача эта непростая и довольно утомительная, особенно если отсутствует схема проложенной проводки. Но все же после первичной локализации аварии, хотя бы по помещению или линии, выполнить ее будет проще.
Поиск начинают вести от распределительного щита. Каким образом это можно сделать?
Индикаторная отвёртка помогает определить, есть ли фаза там, где ей положено быть. Например, фаза есть на выходе с соответствующего автомата, далее – в распределительной коробке, но уже отсутствует на размещенной снизу розетке. Вывод напрашивается сам собой – место аварии находится между распределительной коробкой и розеткой.
Казалось бы – все просто, если бы не несколько «но»:
— Во-первых, такой метод помогает определиться исключительно с разрывами фазного провода. Но если оборван нулевой – результата получено не будет. Фаза может на розетке или осветительном приборе иметься, но сами приборы — оставаться в нерабочем состоянии.
— Во-вторых, такая проверка подразумевает работу со всклоченным напряжением в сети. Скажем честно – не лучший вариант для проводки, на которой явно есть авария, и тем более, если мастер не имеет достаточного опыта работы в электрике. Для проверки придется вскрывать распределительные коробки, разбираться со скрутками или клеммными соединениями в них, и по неопытности можно «наделать делов».
Кстати, индикаторная отвертка, помимо всего прочего, способна еще и исказить реальную картину. Случается, что свечение индикатора вовсе не говорит о наличии полноценной фазы, а только о каком-то потенциале, который вполне может быть обусловлен током утечки из другого «источника».
То же самое касается и замера напряжения с помощью мультиметра. И работа под напряжением – опасна, и показания напряжения могут быть весьма противоречивыми.
Как быть?
Самый надежный способ – это прозвон участков. Он сразу покажет целостность провода или наличие разрыва на нем. Используется для этого все тот же мультиметр, но только переведенный в режим измерения сопротивления, в позицию Ω. Во многих тестерах для такой цели вообще предусмотрен специальный режим: если участок цепи обладает нормальной проводимостью — прибор издает звуковой сигнал. Сопротивление медного провода невелико (при сечении 2,5 мм² – всего 0,7 Ома на 100 метров длины), то есть в масштабах дома или квартиры будет крайне несущественными — на индикаторе станет высвечиваться значение «0» или близкое к нему.
Для проведения такой ревизии, понятное дело, линию следует обесточить. После этого на щите отключаются все провода проверяемой линии – фазный от автомата, нулевой и заземления – от соответствующих шин.
Безусловно, просто так штатными проводами мультиметра прозвонку провести не удастся – тестируемые участки могут быть весьма длинными. Например, щит расположен в прихожей у входной двери, а распределительная коробка – в комнате. Значит, необходимо заранее подготовить «удлинитель» — отрезок гибкого медного провода нужной длины, чтобы хватало до самой удаленной точки, подлежащей проверке. Большого сечения не требуется — достаточно 1,0÷1,5 мм². Этот удлинитель, понятно, следует тоже заранее проверить на целостность, то есть прозвонить.
А чтобы соединения с концами проверяемых участков проводов не вызывало сложностей, удлинитель можно оснастить зажимом-«крокодилом» или, что даже проще и удобнее — клеммой WAGO с рычажным фиксатором. Не будет никаких проблем с подключением удлинителя к проверяемому проводу. Такую же клемму можно расположить и на втором конце удлинителя – свободное гнездо отлично подходит для вставки щупа тестера.
Первым начинают прозванивать участок от щита до распределительной коробки. Для этого в коробке иногда приходится разбирать выполненные там контактные соединения. Важно – перед разборкой необходимо запомнить (зарисовать, снять на камеру мобильника) то, как провода были подключены. Все это будет не столь сложно, если изоляция проводов имеет цветовую маркировку (синий – всегда нулевой, зелено-желтый – заземление, фаза может иметь различный цвет, но обязательно отличающийся от указанных). Если цветовой маркировки нет, то придется подписать провода, например, наклеив на них полоски малярного скотча.
Качественно, по всем правилам выполненные скрутки, конечно, лучше не разбирать – достаточно просто найти место, которого можно коснуться щупом при прозвонке.
Прозвонку каждого из проводов кабеля производят отдельно – получается, чтобы проверить участок предстоит выполнить два или три (при наличии заземляющего проводника РЕ) промера. Если все провода в норме, участок принимается за исправный. Желательно сразу, параллельно с прозвонкой, составлять схему, если ее ранее дома не было – она может еще пригодиться впоследствии. На схеме отмечается, что участок исправен, и переходят к следующему.
Обычно следующим идет кабель от распределительной коробки к розетке. Понятно, что розетку лучше заранее разобрать, чтобы получить доступ к контактам. Заодно – проверить и подтянуть контакты на клеммах.
Если же подключение розеток выполнено, минуя распределительные коробки, то получается и вовсе один прозвон, чтобы убедиться в целостности линии. Правда, если к розетке подходят два кабеля, то один из них, как уже говорилось выше, уходит на другую розеточную группу. Его следует отсоединить, чтобы проверить этот участок отдельно.
При проверке линии освещения приходится прозванивать чуть больше. Отдельно – линию питания от щита до коробки. Далее – нулевой провод от коробки до светильника (и провод РЕ, если он имеется). Затем – фазный провод от коробки до выключателя, затем – участок от выключателя до светильника.
Но в любом случае, как правило, вся проверка на ранее локализованной аварийной линии ограничивается прозвонкой двух-трех участков кабеля. И рано или поздно будет выявлен тот провод, на котором произошел обрыв. Следует проверить его несколько раз, чтобы убедиться в правоте своих умозаключений. Например, отсутствие проводимости может быть вызвано просто плохим прижимом щупа мультиметра к оголенному концу провода. Но после нескольких попыток «упрямое молчание» прибора все же докажет, что оборванный проводник найден.
Поиск точного места обрыва
Это, пожалуй, наиболее сложный этап проведения диагностики. И без специальных приборов зачастую желаемого результата не добиться.
Участок стены, в котором находится поврежденный кабель, необходимо тщательно обследовать визуально. Не исключено, что причиной стало механическое повреждение проводки – об этом уже говорилось.
Следует и сразу принять решение – будет ли заменяться весь участок проводки, либо в планах – отыскать место обрыва и постараться срастить проводник.
В том случае, если дефект, с большой долей вероятности, образовался по причине ветхости давно проложенных проводов, то лучше даже не морочить голову, а менять весь поврежденный участок (в идеале – и вовсе всю проводку в доме или квартире, но это уже требует капитального подхода). Нет никакой гарантии, что после проведения восстановительных работ аналогичный дефект не появится вновь, рядом с местом выполненного сращивания.
Поиск с помощью специальных детекторов проводки
Понятно, что для того, чтобы найти точку обрыва, необходимо для начала как минимум знать, где же конкретно в толще стены проходит кабель. Иными словами – знать, где искать. О правилах прокладки проводки уже вкратце говорилось выше. Даже расположение распределительных коробок, розеток и выключателей может стать подсказкой – вмурованные кабели должны располагаться вертикально и горизонтально.
Что важно знать о прокладке скрытой проводки в доме или квартире
Если в планах – обновление всей домашней проводки с переустановкой розеток и выключателей, следует заранее ознакомиться с основными правилами ее прокладки. Подробнее об этом рассказывается в специальной статье нашего портала «На какой высоте устанавливать розетки».
Однако, если ясности нет, то придется для начала обнаружить эту «трассу». Для этого используются специальные приборы – детекторы проводки. Кстати, некоторые из них способны сразу показать и тот локальный участок, на котором произошел обрыв фазы. То есть разом решается две задачи.
Понятно, что такие приборы есть далеко не у каждого хозяина. Что ж, можно или приобрести (если это видится доступным по стоимости – он наверняка еще пригодится в будущем), или поискать возможность краткосрочной аренды. Кстати, если уж на какое-то время в руки попал такой прибор – не поленитесь, «просканируйте» все свои жилые владения и составьте схему расположения скрытой проводки – эта информация никогда не будет лишней.
Одним из наиболее популярных среди домашних мастеров является детектор «Eltes Дятел Е121». Прибор способен обнаружить находящуюся под напряжением (и только!) проводку под слоем штукатурки толщиной до 20 мм. Обычно этого бывает достаточно.
Четыре разных порога чувствительности позволяют выявить место прохождения кабеля с довольно высокой точностью. «Дятел» также широко используется и в роли обычного бесконтактного фазного индикатора, например, при проверке правильности подключения проводов в распределительном щите или при выполнении других электромонтажных работ.
Как недостаток – не может точно выявить проводку, расположенную в гильзах или закрытую слоем бетона. Не стоит полагаться на него и при поиске проводки, временно не подключенной к сети – фаза должна быть обязательно.
Видео: Как пользоваться детектором скрытой проводки «Eltes Дятел Е121»
Более совершенными являются приборы, представляющие собой комплект из генератора сигнала и приёмника. С помощью подобного оборудования, подавая на участок срытой проводки, отключённой от сети, сгенерированный сигнал заданной частоты, можно очень точно определить точку обрыва провода.
Ну а в режиме работы без генератора приемник способен определить расположение скрытой проводки, находящейся под напряжением. Типичный пример подобных приборов – отечественный комплект «Лис М» или, более совершенный, «Лис 100».
Видео: Комплект для поиска расположения и дефектов скрытой проводки «Лис М»
Разнообразие детекторов скрытой проводки с возможностью обнаружения дефектных участков в наше время – весьма широкое. Наверное, понятно, что многие из таких устройств позволяют и вовсе обходиться без предварительных этапов поиска участков обрыва – при наличии схемы проводки можно сразу переходить к поиску точки размыкания цепи.
Проблема лишь в том, что качественные приборы с высокой чувствительностью и точностью определения – весьма дорогие. Кроме того, они требуют определенных навыков в работе. И далеко не каждый электрик рискнет дать даже на короткий срок свое оборудование в пользование дилетанту. А так как наша публикация рассчитана именно на начинающих, приходится объяснять простейшие методы диагностики.
Использование подручных или самодельных приборов
Что делать, если нет возможности хотя бы на время обзавестись детектором скрытой проводки?
- При неглубоком залегании кабеля в стене можно попробовать «нащупать» фазу, то есть, при удачном раскладе — и место, где она пропадает (точку обрыва) с помощью обычной индикаторной отвертки. Взяв ее примерно так, как показано на иллюстрации ниже, начинают «сканировать» предполагаемый участок расположения кабеля. Если повезёт, то наличие фазы проявится свечением индикатора. Хотя, если честно, вероятность удачного исследования, скажем так, невысока.
- Более чувствительным, а значит – и более точным может при подобном поиске стать бесконтактный индикатор фазы. Кроме того, он обычно оснащается еще и звуковым сигналом, что облегчает обнаружение скрытого провода. А «технология» поиска – такая же, как и с индикаторной отверткой.
- Встречаются советы – воспользоваться обычным портативным радиоприемником. Его настраивают на частоту примерно в 100 кГц и ведут вдоль стены на предполагаемом участке прохождения кабеля и локализации обрыва. При этом наличие фазы и ее отсутствие должны проявиться наличием и отсутствием явно наводимых помех – шумов.
- Примерно таким же образом – появлением наведенного фона или шумов на фазу может реагировать чувствительный микрофон, подключенный к усилителю (например, старому магнитофону, включенному на режим записи).
- Некоторые пользователи рекомендуют самостоятельно изготовить простейшие детекторы проводки. Набор радиоэлементов требуется совсем небольшой, да и схема сложностью в монтаже не отличается. Вполне можно обойтись даже без изготовления печатной платы.
Вот парочка примеров:
Схема №1
Первую схему можно назвать, пожалуй, самой простой. В элементарную базу входят:
- VT1 – полевой транзистор КП103 (вне зависимости от последующего буквенного обозначения).
- BF1 – акустический индикатор – это может быть динамик, но удобнее использовать наушники.
- SA1 – любой удобный (имеющийся) микровыключатель.
- GB1 – источник питания в качестве, которого достаточно батарейки АА (ААА) напряжением в 1.5 вольта.
В качестве антенны в данном случае может служить сам металлический корпус полевого транзистора. Чем ближе к проводу, в котором имеется фазное напряжение, тем будет громче раздаваться звук в наушниках (частотой около 50 Гц). При определенном старании можно довольно точно обнаружить и месторасположение кабеля, и точку, начиная с которой фаза пропадает.
Схема №2
Этот вариант – несколько понадежней и почувствительней. В нем, кроме полевого транзистора, применено еще и усиление полученного сигнала.
Элементы VT1, BF1, SA1 и GB1 – точно такие же, как и в предыдущей схеме. Кроме того, используются:
VT2 – транзистор, выполняющий роль усилителя. Подойдут КТ3102 или КТ3107 с любыми буквенными индексами.
R1 – резистор 5.1 МОм.
R2 – резистор 3,6 кОм.
Антенной в данном случае выступает отрезок медного провода длиной от 20 до 50 мм. Точность поиска расположения кабеля от этого только выигрывает. А сама «технология» поиска – такая же, как и со схемой №1.
Обратите внимание – все перечисленные способы поиска обрыва рассчитаны на обнаружение фазного напряжения. И, кстати, большинство приборов-детекторов заводской сборки, не оснащенных генераторами сигналов, работают также по этому принципу. То есть, походят для случаев, если обрыв, как показывает предварительная прозвонка участков проводки, был именно на фазном проводе. При этом, конечно, автомат на щитке должен быть включен, и работу, соответственно, следует проводить с соблюдением всех необходимых требований безопасности.
А как быть, или предварительная прозвонка показывает, что повреждён нулевой проводник? Как тогда найти место его обрыва? Ведь прибор попросту не даст ясной картины – он будет реагировать на идущую параллельно фазу.
Поступают таким образом.
- Вначале обесточивают участок.
- Затем вынимают все провода из клемм в щитке, отключают их и на противоположном конце тестируемого участка (в розетке, выключателе или монтажной коробке, если обрыв обнаружен межу нею и щитком). Одним словом, тестируемый участок должен быть гарантировано отключен с обеих сторон.
- Далее, нулевой провод, на котором ищется обрыв, временно подключают со стороны щита к фазному контакту. После этого – включают автомат.
- Производится поиск обрыва по методикам обнаружения фазного напряжения.
- После обнаружения обрыва сразу же, не откладывая (чтобы не забыть!), отключают питание и убирают нулевой провод с фазного контакта.
- После проведения ремонта повреждения все подключается по нормальной схеме.
После того как место обрыва определено, остается заняться ремонтом.
Для этого аккуратно с помощью молотка и зубила, удаляется участок штукатурки, закрывающий проводку. Чтобы не повредить кабель, тем более, если диагностика проводилась приборами со, скажем, не выдающейся точностью, лучше выбирать штрабу с отступом от предполагаемой линии прохождения провода влево – вправо (или вверх – вниз, на горизонтальном участке) на 50 мм. Длина выбираемой штрабы берется такой, чтобы ее было достаточно и для удаления поврежденного участка кабеля, и для зачистки концов с обеих сторон, и для вставки перемычек с их качественным припаиванием (скрутки здесь явно нежелательны), и для последующей надежной изоляции как минимум в два слоя.
Алюминий, конечно, тоже можно паять. Но для этого требуется специальные составы (флюс) и, конечно, умение выполнять подобные соединения. Да и вообще (ИМХО) – от поврежденного участка алюминиевого провода лучше вообще избавиться, заменив его на медь. «Зарывать» же в штукатурку клемму или скрутку — дело весьма рискованное.
Останавливаться на проблемах ремонта поврежденного участка – не станем, так как эта тема все же требует более широкого рассмотрения, и ей лучше уделить внимание в отдельной статье. Но чтобы понятие и о поиске участка аварии, и о ликвидации обрыва стала еще более полным, предлагаем посмотреть интересную видеоподборку, в которой показан один из вариантов выполнения подобных работ.
Видео: Поиск обрыва скрытой проводки и проведение ремонта поврежденного участка
Как правило, соединения потребителей с источниками электроэнергии (трансформаторными и распределительными подстанциями) осуществляется при помощи кабельных линий (КЛ). Это связано с тем, что у данного способа есть масса преимуществ перед воздушными линиями (ВЛ). Но, если случилась авария на КЛ, то поиск места повреждения кабеля без специальных приборов, практически невозможен. Сегодня мы рассмотрим несколько способов, позволяющих локализовать аварийный участок кабельной трассы, проложенной в земле.
Причины и виды повреждений кабельных линий
Существует много факторов, негативно влияющих на целостность силовых кабелей, к наиболее распространенным из них можно отнести следующие:
- Подвижка грунта, может быть вызвана аварией водопроводных, канализационных или тепловых сетей, а также сезонными явлениями, например, весенним оттаиванием.
- Превышение допустимых норм эксплуатации КЛ, что может привести к термической перегрузки линии, вызванной увеличением токовой нагрузки.
- Образование в КЛ высокого уровня электрического тока от транзитного КЗ.
- Механическое повреждение при земляных работах без учета прохождения подземных коммуникаций и глубины трассы.
- Ошибки при прокладке КЛ. В качестве примера можно привести нарушения технологии соединения жил кабельными муфтами.
- Заводской брак.
Заметим, что при открытой прокладке кабельных трасс некоторые перечисленные выше причины повреждений встречаются крайне редко. В частности, снижается вероятность влияния подвижки грунта и механические воздействия вследствие земляных работ. Помимо этого зоны повреждения открытых КЛ, в большинстве случаев, можно обнаружить при визуальном осмотре, без задействования спецметодов.
Разобравшись с причинами, перейдем к видам повреждений, поскольку от этого напрямую зависит, каким методом будет локализирован аварийный участок КЛ.
Чаще всего ремонтным бригадам приходится сталкиваться со следующими видами неисправностей:
- Дефект, вызванный полным или частичным обрывом КЛ. Чаще всего причиной аварии является проведение земляных работ без определения прохождения кабельных трасс. Несколько реже причиной данного повреждения может стать КЗ в соединительных муфтах.
- В силовых кабелях (более 1кВ), часто встречается пробой одной из жил на землю (однофазное замыкание). Ток утечки, как правило, это вызвано снижением качества изоляции в процессе эксплуатации КЛ.
- Межфазные повреждения, а также виды металлических замыканий, могут возникнуть в любых линиях, причина повреждений такая же, как и в предыдущем пункте.
- Плановое испытание кабеля, при котором задействуется высокий уровень напряжения, показывают низкую надежность изоляции, и приводит к возникновению пробоя. При определенных обстоятельствах такая линия может продолжать эксплуатироваться, но из-за низкого уровня ее надежности, авария может проявиться в любое время.
Кратко о ремонте кабельной линии
Ремонтные работы на кабельных линиях принято классифицировать на плановые и аварийные. Что касается объема таких работ, то у первых он, как правило, капитальный, у вторых – текущий.
При капитальных работах производится плановая замена КЛ, прокладка новых трасс и т.д. При необходимости также выполняется ремонт и/или модернизация сопутствующего оборудования. К последним относятся вентиляционные системы и освещение кабельных туннелей, а также насосы для откачки грунтовых вод. Учитывая специфику плановых работ, при их проведении не требуется локализация дефектных участков.
Совсем иначе обстоит дело при аварийном ремонте. Чтобы не раскапывать всю трассу, следует точно определить место обрыва провода, пробоя изоляции и т.д. Для этой цели применяются различные способы, для которых задействуется спецоборудование. Подробно об этом будет рассказано ниже.
Методики определения повреждения кабеля в земле
Как правило, дефектоскопия кабеля осуществляется в два этапа:
- Устанавливаются границы зоны, в пределах которой находится аварийный участок.
- Производится поиск точного места повреждения в определенной зоне.
Соответственно на первом этапе применяются относительные способы, а на втором широко используются технологии с повышенной точностью поиска повреждений. Перечислим основные методики дефектоскопии и особенности их применения.
Индукционный метод
Эта технология позволяет определить локацию, где произошел пробой изоляционного слоя токопроводящих элементов кабеля. Для этого при помощи специального генератора в КЛ подается переменный ток с силой до 20,0 ампер и частотой от 800,0 до 1200,0 герц. В результате, вокруг КЛ формируется электромагнитное поле определенной интенсивности. Если поместить в него антенную рамку подключенную к наушникам через усилитель, то можно услышать звук определенной частоты над неповрежденными токопроводящими элементами.
По характеру звукового сигнала можно определить не локацию дефекта, позиции муфт для соединения, топографию трассы (трассировку), включая наличие защитных труб. Ниже представлен рисунок, где показан уровень изменения сигнала над различными участками КЛ.
Обозначения:
- Задающий генератор.
- Расположение соединительных элементов.
- Защита кабеля.
- Дефектное место.
Импульсный метод
Как уже упоминалось выше, данный способ относится к относительным, то есть, позволяющим установить дефектную зону повреждения (как правило, межфазное КЗ). Принцип работы заключается в подаче специальным прибором эталонного высоковольтного импульса в КЛ и последующим определением удаленности аварийного участка по отраженному сигналу импульсных токов.
В приведенном на рисунке примере расстояние до дефектного участка определяется следующим образом:
tx – интервал времени между посланным и отраженным электрическим сигналом, измеряется в микросекундах. Как видно из рисунка, он равен 3,5 мкс. Учитывая, что скорость распространения импульса (v) примерно равна 160,0 м/мкс, то для решения необходимо применить следующую формулу: lx = ( tx*v ) / 2, где lx – расстояние от генератора импульсов до поврежденного участка кабеля. В результате мы получим ( 3.5 * 160 ) / 2, то есть, 280,0 метров.
Обратим внимание, что в некоторых приборах по форме отраженного сигнала можно судить о характере дефекта.
Акустический метод
Технология основана на формировании в дефектном участке искровых разрядов, сопровождающимися звуковыми импульсами. Зафиксировать их можно используя обычный стетоскоп, прикладывая акустическую головку к земле, либо применяя специальный акустический приемник. Над дефектным участком разряды звуковых частот будут максимально громкими.
Обозначения:
- Поиск устойчивого короткого замыкания между токоведущей жилой и оболочкой кабеля.
- Схема для поиска заплывающих пробоев.
- Применение работоспособных токопроводящих элементов (задействована емкость жил).
- Схема для поиска обрыва.
Видео по теме:
Емкостной метод
Технология данного метода позволяет проводить поиск повреждения, в частности обрыва токоведущих элементов кабеля, путем измерения емкости жил. Как известно данный параметр напрямую зависит от длины кабеля. С упрощенной схемой высоковольтных колебаний для такого устройства можно ознакомиться ниже.
Обозначения:
- R1, R2, R3 – регулируемые резисторы.
- Cэ – эталонный высоковольтный конденсатор.
- L – расстояние до места обрыва.
- Lк – общая длина КЛ.
- 1 – токоведущие элементы кабеля.
- 2 – защитная оболочка.
- 3 – место обрыва.
Подбирая сопротивление переменных резисторов, добиваются минимального отклонения стрелки прибора Г, что указывает на равновесие между плечами моста, что говорит о следующем соотношении R1 / R2 = Сx / Сэ , это позволяет установить емкость поврежденной жилы Сx = Сэ* (R1 / R2) .
Подобным способом производим определение емкости на другом конце КЛ, то есть, подключаем к нему генератор и повторяем измерения. В результате, вычисляем расстояние до поврежденной зоны: L = Lk * С1 / ( C1 + C2 ), где С1 и С2 – емкости поврежденных токоведущих элементов кабеля, измеренные в начале и конце КЛ.
Метод колебательного разряда
Данный способ позволяет более эффективно определить расстояние до дефекта кабеля, известного, как заплывающий пробой. Для этой цели в поврежденную линию подаются импульсные колебательные разряды, после чего на экран спецприбора (например, ЭМКС58) выводятся данные о расстоянии до дефектного места.
Принципа работы данного метода во многом напоминает импульсный способ дефектоскопии.
Метод петли
Данный способ хорошо работает в тех случаях, когда в месте нарушения изоляции нет обрыва токоведущих элементов кабеля, а переходное сопротивление в месте дефекта не более 5,0 кОм. При несоответствии последнего условия может быть выполнен прожиг кабеля (прожигание изоляции для уменьшения переходного сопротивления). Упрощенный пример электрической схемы для метода петли показан ниже.
Обозначения:
- Г – гальванометр.
- R1 и R2 – переменные резисторы, измерение сопротивления которых осуществляется после уравновешивания моста.
- Lk – длина КЛ.
- L – расстояние до дефектного участка.
- 1 – токопроводящие элементы кабеля.
- 2 – перемычка между целой и дефектной жилой.
После уравновешивания моста, расстояние до обрыва вычисляется по формуле: .
Метод накладной рамки
Данный вариант поиска повреждения в КЛ можно рассматривать в качестве одной из разновидностей индукционного способа, когда необходимо найти пробой между токоведущим элементом кабеля и его металлической оболочкой (броней). Данная технология рассчитана на поиск дефектных мест при открытой прокладке кабельных трасс, но ее можно успешно использовать и КЛ уложенных в грунт. В последнем случае требуется выкопать шурфы в зоне локализации дефекта.
Обозначения:
- Накладные рамки.
- Место пробоя изоляции.
Поиск обрыва кабеля в бетонной стене и под гипсокартоном с помощью трассоискателя
В быту также найдется применение для методик дефектоскопии кабеля, особенно когда необходимо определить точное место повреждения скрытой проводки. Вскрытие трассы, особенно, когда речь идет о бетонных стенах, допустимо только при общем ремонте. Поэтому наиболее щадящим способом в данном случае будет применение специальных приборов — трассоискателей. Чтобы не повторятся, рекомендуем к прочтению статью https://www.asutpp.ru/iskatel-skrytoj-provodki.html, где подробно рассматривается данная тема.
Фото: © кадр из видео на Youtube-канале «Сами с усамИ»
Специалист показал на примере удлинителя, как быстро найти
место обрыва в проводе, используя индикаторную светодиодную отвёртку и маркер.
«Если провод длинный, грязный, найти визуально место повреждения
бывает совсем непросто. Но с помощью индикаторной отвёртки мы найдем место
обрыва», — отметил автор видеоролика на Youtube-канале «Сами с усамИ».
Сначала мастер индикаторной светодиодной отвёрткой проверил отсутствие
короткого замыкания между проводами. Чтобы выяснить на каком из контактов вилки
оборванный провод, он коснулся рукой первого контакта вилки, а индикаторной
отвёрткой дотронулся до обоих контактов розетки переноски. Ни на одном из
контактов розетки индикатор не зажегся.
Тоже самое он повторил со вторым контактом вилки, и так
нашёл целый провод. Автор ролика пометил маркером контакт повреждённого
провода. После нахождения расположения «фазы» в розетке, он также отметил
маркером верхний контакт.
Затем он подключил переноску, совместив отметки. Так, он
подал «фазу» на повреждённый провод. Индикаторной отвёрткой мастер провёл вдоль
провода. Светодиод светился до тех пор,
пока не попал на повреждённый участок.
Поиск повреждения кабеля приносит результат при правильном использовании методик поиска повреждений и грамотном выборе приборов для поиска повреждений. Начинать поиск дефекта стоит с выяснения базовых параметров кабельной линии: марка кабеля, длина кабеля, способ прокладки кабеля. Отталкиваясь от этих знаний можно переходить к измерениям.
Порядок выполнения измерений
Для начала стоит измерить длину кабеля с помощью импульсного рефлектометра. Импульсные рефлектометры “ЭРСТЕД” различного ценового диапазона способны облегчить задачу поиска повреждения кабеля. Определение места повреждения кабеля осуществляется с точностью до 12,5 см для топ-моделей класса РИ-307, а также для нижнего ценового диапазона – модели РИ-303Т.
Надёжные приборы, проверенные временем и заслужившие положительные отзывы – рефлектометры РИ-10М1 и РИ-10М2 – находятся в среднем ценовом диапазоне, позволяя проводить поиск повреждения кабеля с точностью до 1 м.
С помощью рефлектометра можно определить следующие типы повреждений:
- обрыв кабеля;
- межфазный пробой;
- короткое замыкание.
Кроме этого, импульсный рефлектометр используется для определения длины кабеля на барабане. Так же с его помощью удаётся вычислить место несанкционированной врезки в кабель. Импульсный рефлектометр — современный прибор, используемый для диагностики состояния систем ОДК.
Измерение сопротивления изоляции
Измерение сопротивления изоляции кабеля – следующий этап в поиске повреждения кабеля. В качестве прибора для измерения сопротивления изоляции можно использовать мегомметр либо кабельный мост. Современный кабельный мост может не только заменить мегомметр, но и значительно расширить возможности поиска повреждения кабеля за счёт использования методики мостового измерения.
Кабельный мост позволяет не только оценить качество изоляции кабеля, но и рассчитать расстояние до места утечки, оценить ёмкость кабеля, измерить сопротивление шлейфа и омическую асимметрию. Именно поиск утечки, наряду с поиском обрыва кабеля, являются наиболее частыми повреждениями кабельной линии. Таким образом, импульсный рефлектометр и кабельный мост, объединённые в единый прибор, значительно повышают шансы найти место повреждения кабеля. РИ-10М2 – лёгкий, портативный и простой в использовании прибор сочетает в себе методики мостовых измерений и импульсного локатора неоднородностей. Сочетание цены и функциональности делает этот прибор для поиска повреждений кабеля популярным у потребителей.
Определение участка повреждения
После того, как дистанционными методами удалось выяснить тип повреждения кабеля и оценить расстояние до места повреждения, наступает следующий этап — указать место повреждения кабеля на местности. Эта задача разбивается на два этапа: поиск трассы и поиск дефекта на кабеле.
Задача поиска трассы решается с помощью трассоискателя. Трассоискатель — прибор для обнаружения проложенной в земле трассы. К трассам относятся:
- силовой кабель;
- связной кабель;
- трубопровод;
- оптический бронированный кабель.
Кабелеискатель фиксирует электромагнитное поле, исходящее от тока, протекающего в кабельной линии. Трассоискатель кабельных линий позволяет не только указать местоположения кабеля, но и оценить глубину его залегания.
Поиск повреждения кабеля на местности выполняется трассодефектоискателем. Определение места повреждения кабеля с помощью трассодефектоискателя выполняется индукционным методом или контактным методом. Индукционный метод кабелеискателя позволяет найти обрыв кабеля и межфазный пробой типа жила — жила, либо жила — броня. Контактный метод трассодефектоискателя позволяет найти утечку в кабеле. Таким образом на местности решается задача поиска повреждения кабеля.
Технические параметры трассоискателей и трассодефектоискателей
Трассоискатель и трассодефектоискатель может иметь различную форму, вес и стоимость. Погоня за миниатюризацией трассоискателя приводит к существенным проблемам в чувствительности и помехозащищённости прибора. Поэтому трассоискатели и трассодефектоискатели фирмы “ЭРСТЕД” сбалансированы по форме, весу и стоимости. Трассоискатель ТИ-05-3 и трассодефектоискатель ТДИ-05М3 нижнего ценового диапазона заслужили положительные отзывы на протяжении всего периода выпуска их серии. Однако наибольшей популярностью пользуется трассодефектоискатель ТДИ-МА среднего ценового диапазона, который осуществляет поиск повреждения кабеля даже в условиях аномальных помех от ЛЭП или железной дороги.
И конечно, поиск повреждения кабеля с помощью трассодефектоискателя затруднён без использования генератора. Генераторы подают в кабель ток согласованной с трассоискателем частоты. Именно поэтому, кабелеискатель может отличать свой кабель от другой трассы. По своей структуре, генераторы делятся на два типа, что удобно показать на примере генераторов фирмы «ЭРСТЕД»:
- портативные генераторы ИЗИ;
- условно портативные генераторы ИЗИ-100.
Преимущества генераторов ИЗИ
Генератор ИЗИ является переносным прибором, которым легко автономно работать в полевых условиях. Генератор развивает мощность до 6 Вт, что является достаточным условием для поиска повреждения кабеля на расстоянии до 5 км. Генератор ИЗИ-100 является также переносным прибором, но он предназначен для работы только от сети 220 В. Развивая мощность до 100 Вт, этот генератор прекрасно подходит для определения места межфазного пробоя и короткого замыкания. Стоит упомянуть, что эти генераторы представлены в нижнем и среднем ценовом сегменте.
В заключении хочется пожелать удачи в поиске повреждения кабеля, поскольку грамотно подобранные приборы способны только облегчить эту задачу, в которой основную роль играет опыт.