Как найти в окружности длину меньше других

Длина окружности

Длина окружности

Длина любой окружности больше своего диаметра в одно и то же число раз, а именно, приблизительно в 3,14 раза. Для обозначения этой величины используется маленькая (строчная) греческая буква π (пи):

Таким образом, длину окружности (C) можно вычислить, умножив константу π на диаметр (D), или умножив π на удвоенный радиус, так как диаметр равен двум радиусам. Следовательно, формула длины окружности будет выглядеть так:

где C — длина окружности, π — константа, D — диаметр окружности, R — радиус окружности.

Так как окружность является границей круга, то длину окружности можно также назвать длиной круга или периметром круга.

Задачи на длину окружности

Задача 1. Найти длину окружности, если её диаметр равен 5 см.

Решение: Так как длина окружности равна π умноженное на диаметр, то длина окружности с диаметром 5 см будет равна:

C ≈ 3,14 · 5 = 15,7 (см).

Задача 2. Найти длину окружности, радиус которой равен 3,5 м.

Решение: Сначала найдём диаметр окружности, умножив длину радиуса на 2:

теперь найдём длину окружности, умножив π на диаметр:

C ≈ 3,14 · 7 = 21,98 (м).

Задача 3. Найти радиус окружности, длина которой равна 7,85 м.

Решение: Чтобы найти радиус окружности по её длине, надо длину окружности разделить на 2π:

следовательно, радиус будет равен:

R 7,85 = 7,85 = 1,25 (м).
2 · 3,14 6,28

Задачи на площадь круга

Задача 1. Найти площадь круга, если его радиус равен 2 см.

Решение: Так как площадь круга равна π умноженное на радиус в квадрате, то площадь круга с радиусом 2 см будет равна:

S ≈ 3,14 · 2 2 = 3,14 · 4 = 12,56 (см 2 ).

Ответ: 12,56 см 2 .

Задача 2. Найти площадь круга, если его диаметр равен 7 см.

Решение: Сначала найдём радиус круга, разделив его диаметр на 2:

теперь вычислим площадь круга по формуле:

S = πr 2 ≈ 3,14 · 3,5 2 = 3,14 · 12,25 = 38,465 (см 2 ).

Данную задачу можно решить и другим способом. Вместо того чтобы сначала находить радиус, можно воспользоваться формулой нахождения площади круга через диаметр:

S = π D 2 ≈ 3,14 · 7 2 = 3,14 · 49 =
4 4 4
= 153,86 = 38,465 (см 2 ).
4

Ответ: 38,465 см 2 .

Задача 3. Найти радиус круга, если его площадь равна 12,56 м 2 .

Решение: Чтобы найти радиус круга по его площади, надо площадь круга разделить π, а затем из полученного результата извлечь квадратный корень:

Длина окружности

О чем эта статья:

6 класс, 9 класс, ЕГЭ/ОГЭ

Если вы не знаете, как обозначается длина окружности, то знак окружности выглядит вот так – l

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Как найти длину окружности через диаметр

Хорда — это отрезок, который соединяет две точки окружности.

Диаметр — хорда, которая проходит через центр окружности. Формула длины окружности через диаметр:

π— число пи — математическая константа, примерно равная 3,14

d — диаметр окружности

Как найти длину окружности через радиус

Радиус окружности — отрезок, который соединяет центр окружности с точкой на окружности. Формула длины окружности через радиус:

π — число пи, примерно равное 3,14

r – радиус окружности

Это две основные формулы для вычисления длины окружности. Ниже мы покажем еще несколько формул, которые вы сможете доказать самостоятельно, пользуясь основными формулами и свойствами геометрических фигур.

Как вычислить длину окружности через площадь круга

Если вам известна площадь круга, вы также можете узнать длину окружности:

π — число пи, примерно равное 3,14

S — площадь круга

Как найти длину окружности через диагональ вписанного прямоугольника

Как измерить окружность, если в нее вписан прямоугольник:

π — число пи, примерно равное 3,14

d — диагональ прямоугольника

Как вычислить длину окружности через сторону описанного квадрата

Давайте рассмотрим, как найти длину окружности, если она вписана в квадрат и нам известна сторона квадрата:

π – математическая константа, примерно равная 3,14

a – сторона квадрата

Как найти длину окружности через стороны и площадь вписанного треугольника

Можно найти, чему равна длина окружности, если в нее вписан треугольник и известны все три его стороны, а также известна его площадь:

π — математическая константа, она примерно равна 3,14

a — первая сторона треугольника

b — вторая сторона треугольника

c — третья сторона треугольника

S — площадь треугольника

Как найти длину окружности через площадь и полупериметр описанного треугольника

Можно определить, чему равна длина окружности, если круг вписан в треугольник, и известны следующие параметры: площадь треугольника и его полупериметр.

Периметр — это сумма всех сторон треугольника. Полупериметр равен половине этой суммы, то есть чтобы его найти, вам нужно рассчитать периметр и поделить его на два.

π — математическая константа, примерно равная 3,14

S — площадь треугольника

p — полупериметр треугольника

Как вычислить длину окружности через сторону вписанного правильного многоугольника

Разбираемся, как в этом случае измерить окружность. Для этого необходимо посчитать, сколько сторон у многоугольника, а также знать длину стороны многоугольника. Напомним, что у правильного многоугольника все стороны равны, как у квадрата.

Формула вычисления длины окружности:

π — математическая константа, примерно равная 3,14

a — сторона многоугольника

N — количество сторон многоугольника

Задачи для решения

Давайте тренироваться! Двигаемся от простого к сложному:

Задача 1. Найти длину окружности, диаметр которой равен 5 см.

Решение. Итак, нам известен диаметр окружности, значит для вычисления длины заданной окружности берем формулу:

Подставляем туда известные переменные и получается, что длина окружности равна

Задача 2. Чему равна длина окружности, описанной около правильного треугольника со стороною a = 4√3 дм

Решение. Радиус окружности равен Подставим туда наши переменные и получим

Теперь, когда нам известен радиус окружности и есть формула длины окружности через радиус l=2πr, мы можем подставить наши данные и получить решение задачи.

Обучение на курсах по математике поможет закрепить полученные знания на практике.

Урок 25 Бесплатно Длина окружности и площадь круга

На этом уроке мы рассмотрим одни из самых древнейших геометрических фигур: окружность и круг.

Определим, какими элементами характеризуются круг и окружность, в чем сходство и различие этих фигур.

Узнаем, как рассчитать длину окружности и площадь круга.

Окружность и круг

Мы часто встречаем такие понятия, как окружность и круг.

Давайте попробуем разобраться, что называют окружностью, а что кругом.

Окружность – это замкнутая плоская кривая, все точки которой удалены на одинаковые расстояния от заданной точки, называемой центром окружности.

Центр окружности– это точка, которая находится на одинаковом расстоянии (равноудаленная) от любой точки окружности, ее обозначают обычно заглавной буквой О.

По сути, окружность – это изогнутая линия. Наглядно представить данную геометрическую фигуру можно, обведя стакан или блюдце карандашом, – оставшийся нарисованный след и будет окружностью.

Круг – это часть плоскости, ограниченная окружностью. Можно также сказать что это часть плоскости, которая находится внутри линии окружности.

Круг – плоская фигура, ее можно получить, закрасив окружность или вырезав его из бумаги по контуру окружности.

Свои имена окружность и круг приобрели не сразу.

В древние времена специальных названий для этих фигур не существовало. Люди пытались описать различные геометрические формы, сравнивая объекты. Например, говоря про что-то круглое, говорили: «такой, как солнце» или «такой, как орех» и т.п.

Только в Древней Греции окружность и круг приобрели себе свои названия.

Круг всегда привлекал к себе внимание как самая простая фигура из кривых, но самая загадочная.

У меня есть дополнительная информация к этой части урока!

Древние греки считали круг и окружность символом бесконечности и совершенства. Поражало то, что в каждой своей точке окружность устроена одинаково, представляя собой бесконечную линию, которая движется сама по себе.

У древних славян еще за долго до христианства круг был символом солнца.

В Древнем Египте и Греции круг изображали в виде змея Уробороса, который кусает свой хвост, образуя тем самым, окружность – этот символ обозначал бесконечность и цикличность во всей вселенной (смена дня и ночи, жизни и смерти т.д.).

Символика круга в различных религиях сопоставляется с целостностью, вечностью и бесконечной мудростью.

Например, в масонских учениях круг как форма без начала и конца – это источник бесконечного времени и пространства, в котором заключена тайна творения.

У буддистов круг символизирует единство внутреннего и внешнего мира.

В дзен-буддизме круг – это символ высшей степени просветления и совершенства. На основе этого представления построены принципы инь и янь (в виде круга, разделенного на две части, – символа взаимодействия и борьбы двух начал).

В христианстве круг служит эталоном божественного и духовного совершенства.

В живой и неживой природе круги и окружности встречаются как на макроуровнях, так и на микроуровнях. Например, движение электронов вокруг атомного ядра; вращение планет вокруг солнца; распространение волн на воде от упавшего груза; образование солнечного и лунного гало; срез дерева; зрачок глаза у человека и многое другое.

Рассмотрим подробней элементы, характерные для окружности.

Радиус окружности– это отрезок, соединяющий центр окружности и любую другую точку, расположенную на линии окружности.

С латинского радиус (radius)- луч, спица колеса. Радиус не сразу приобрел себе такое название.

Слово радиус впервые встречается в 1569 году у французского ученого П. Рамуса, а общепризнанным становится к концу XVII века.

Радиус обозначается маленькой латинской буквой (r) или заглавной (R).

В окружности можно провести столько же радиусов, сколько точек имеет линия окружности; все эти радиусы равны.

Диаметр – это отрезок прямой, проходящий через центр окружности и соединяющий две точки на этой окружности.

Диаметр в переводе с греческого (diametros) – поперечник.

Обычно диаметр обозначают латинской маленькой буквой d или заглавной D.

По величине диаметр равен двум радиусам, лежащим на одной прямой.

d = 2r

Следовательно, радиус- это половина диаметра.

r = d: 2

Пример 1

Радиус окружности равен 6 см.

Чему равен диаметр окружности?

r = 6 см

d – ?

Решение:

d = 2r

d = 2r= 2*6 = 12 (см) диаметр окружности

Ответ: d= 12 см

Пример 2

Диаметр окружности равен 12 см.

Чему равен радиус окружности?

d = 12 см

r – ?

Решение:

r = d : 2

r = 12 : 2 = 6 (см) радиус окружности

Ответ: r = 6 см

У меня есть дополнительная информация к этой части урока!

Секущая окружности – это прямая, пересекающая окружность в двух точках. В результате окружность делится на дуги.

Точки А и В – точки пересечения секущей с окружностью.

Образовались две дуги: (mathbf<cup AB и cup BA>)

Отрезок, который соединяет любые две точки на окружности (отрезок секущей), называется хордой.

Отрезок АВ (отрезок секущей) на рисунке – хорда окружности.

Хорда в переводе с греческого – струна, тетива.

На рисунке отрезок MN является хордой.

Если хорда проходит через центр окружности, то она является самой большой хордой для этой окружности. По своей сути она является диаметром для данной окружности и делит окружность на две равные дуги.

По мере удаления хорды от центра размеры ее уменьшаются, а дуги делятся на большую и малую.

АВ– самая большая хорда окружности- диаметр окружности.

CD, N1M1, NM, FE– хорды окружности.

Хорды окружности, удаленные на равные расстояния от центра, равны.

Хорды NM и N1M1 равны.

Если две хорды пересекаются в точке, то их отрезки пропорциональны.

Важно отметить, что все рассмотренные элементы окружности одинаковы и для круга.

Пройти тест и получить оценку можно после входа или регистрации

Длина окружности и площадь круга

Давайте выясним, что такое длина окружности и как ее определить.

Представьте, что окружность обернута нитью.

Если разрезать эту нить в некоторой точке и размотать ее, то длина нитки будет равна длине окружности.

Обычно длина окружности обозначается заглавной буквой С

Длина окружности (С) зависит от длины ее диаметра (d)

Обратите внимание на рисунок.

Вы можете заметить, что чем больше диаметр, тем больше длина окружности.

Из этого следует, что длина окружности прямо пропорционально зависит от диаметра окружности.

А значит, для любых окружностей отношение длины окружности (С) к длине диаметра (d) является числом постоянным.

Это число (коэффициент пропорциональности) обозначают греческой буквой (mathbf<pi>), читается «пи».

С– это длина окружности

d– диаметр окружности

запишем отношение (mathbf)

отсюда следует, что длина окружности равна

Так как диаметр окружности вдвое больше радиуса d = 2r, получим еще одну формулу для вычисления длины окружности

Выясним, чему равна постоянная величина – число (mathbf<pi>)

Число (mathbf<pi>)- это иррациональное число, т.е. число, которое представлено в виде бесконечной непериодической десятичной дроби.

У меня есть дополнительная информация к этой части урока!

История числа (mathbf< pi>) насчитывает около 4 тысячелетий.

Одно из первых доказательств древнего существования этого числа (mathbf< pi>) заключено в папирусе Ахмеса, в одном из старейших задачников (1650 год до н.э.), найденного в Древнем Египте.

В папирусе дано достаточно точное, особенного для того времени, значение числа, равного 3,1605.

Точнее число (mathbf< pi>) рассчитал древнегреческий математик Архимед. Он приближенно представил значение константы в виде обыкновенной дроби (mathbf<frac <22><7>>)

Архимеду удалось найти точное приближение числа (mathbf< pi>) (т.е. узкий числовой промежуток к которому принадлежит число (mathbf< pi>)).

Пройти тест и получить оценку можно после входа или регистрации

Решения задач по теме «Длина окружности и площадь круга»

Рассмотрим примеры решения задач

Задача 1

Найдите длину окружности, если ее радиус равен 4 см.

Число (mathbf<<pi>>) округлите до сотых.

r = 4 см

Длину окружности С – ?

Решение:

Подставив в формулу известные значения радиуса и постоянной (mathbf<pi>), получим:

Ответ: (mathbf)(см)

Задача 2

Длина окружности надувного бассейна 15,7м.

Найдите диаметр этого бассейна.

Число (mathbf<pi>) округлите до сотых.

C = 15,7 м

Диаметр d – ?

Решение:

Подставив в формулу известные значения длины окружности и постоянной (mathbf<pi>), получим:

Ответ: (mathbf) (м)

Задача 3

Диаметр окружности равен 6 см.

Найдите площадь круга, ограниченного этой окружностью.

Значение числа (mathbf<pi>) округлить до сотых.

d = 6 cм

Площадь круга S – ?

Решение:

Подставим в формулу известные значения диаметра окружности и постоянной , получим:

(mathbf<4><cdot>3,14<cdot>6^2 = frac <3,14<cdot>36> <4>> = 3,14<cdot>9=28,26) (cм 2 ) площадь круга

Ответ: (mathbf) (см 2 )

Задача 4

Вычислите площадь полукруга, если радиус круга равен 5 см.

Значение (mathbf<pi >) округлить до целых.

r = 5 cм

Площадь полукруга Sп – ?

Решение:

Площадь круга найдем по формуле:

Площадь полукруга будет равна половине площади всего круга.

Следовательно, формула для расчета площади полукруга получится вида:

Подставим в формулу известные значения радиуса круга и постоянной (mathbf<pi>), получим:

(mathbf <2>=37,5>) (cм 2 ) площадь полукруга

Ответ: (mathbf) (см 2 )

Задача 5

Найдите площадь круга, если известна длина окружности С.

Длина окружности С

Площадь круга S – ?

Решение:

Длина окружности выражается формулой:

Выразим неизвестный радиус окружности через длину окружности:

Площадь круга определяем по формуле:

Подставим, полученные выражения для радиуса окружности, в формулу площади круга, получим:

Сократим полученную дробь:

У меня есть дополнительная информация к этой части урока!

Кроме вычислительных задач, существуют задачи на построение окружности и круга.

Окружность и круг можно начертить с помощью чертежного инструмента, который называется циркуль.

В переводе с латинского языка circulus означает «окружность», «круг».

Циркуль использовали еще с древности, много тысяч лет назад, об этом свидетельствуют найденные на раскопках находки, изображения.

Циркуль представляет собой две одинаковые по длине «ножки». На конце одной из них игла, а на второй- грифель.

Есть циркуль, у которого вместо «ножки» с грифелем помещается карандаш.

Рассмотрим, как построить окружность (круг) на бумаге с помощью циркуля и линейки.

Если задан радиус окружности (круга), то в нулевую отметку на линейке ставим иголку циркуля, другая «ножка» циркуля с грифелем в точку на линейке, равной по значению заданному радиусу.

Ставим точку на листе бумаги – это будет центр окружности (круга), в эту точку ставим иголку циркуля.

Не отрывая грифеля второй «ножки» циркуля от бумаги проводим окружность с заданным радиусом.

Если в задаче задан диаметр, то, прежде чем совершать замер по линейке, необходимо диаметр разделить пополам.

Таким образом, устанавливаем раствор циркуля по линейке на расстояние d:2 = r и чертим окружность по выше изложенной схеме.

Чтобы начертить окружность на местности, пользуются колышком и веревкой. Колышек вбивают в землю – предполагаемый центр окружности; веревка одним концом закрепляется к этому колышку, второй конец веревки туго натягивается; далее очерчивают окружность.

Данный способ построения окружности (круга) может быть применен и на бумаге, если под рукой не оказалось циркуля.

В качестве колышка берется кнопка, к ней привязывается нить определенной длинны (длина нити равна значению заданного радиуса), ко второму концу привязывается карандаш

Пройти тест и получить оценку можно после входа или регистрации

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/dlina-okruzhnosti

http://ladle.ru/education/matematika/6class/dlina-okruzhnosti

[/spoiler]

Как посчитать длину окружности

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как посчитать длину окружности

Чтобы посчитать длину окружности (круга) просто воспользуйтесь нашим удобным онлайн калькулятором:

Онлайн калькулятор

окружность Для того чтобы определить длину окружности вам необходимо знать её радиус или диаметр, либо её площадь. Зная хотя бы один из этих параметров, введите его в соответствующие поле и получите результат в виде длины окружности (длины дуги в 360 градусов).

Как посчитать длину окружности зная диаметр

Какая длина у окружности если

её диаметр ?

Ответ:

0

Какова длина окружности (С) если её диаметр d?

Формула

С = π⋅d, где π ≈ 3.14

Пример

Если диаметр круга равен 1 см, то его длина примерно равна 3.14 см.

Как посчитать длину окружности зная радиус

Какая длина у окружности если

её радиус ?

Ответ:

0

Какова длина окружности (С) если её радиус r?

Формула

С = 2⋅π⋅r, где π ≈ 3.14

Пример

Если радиус круга равен 0.5 см, то его длина примерно равна 3.14 см.

Как посчитать длину окружности зная её площадь

Какая длина у окружности если

её площадь ?

Ответ:

0

Какова длина окружности (С) если её площадь S?

Формула

С = 2π⋅S/π, где π ≈ 3.14

Пример

Если площадь круга равна 6 см2, то его длина примерно равна 8.68 см.

См. также

План урока:

Длина окружности и число пи

Длина дуги

Площадь круга

Площадь сектора

Площадь кольца и других сложных фигур

Длина окружности и число пи

Окружность представляет собой линию, а значит, у нее есть длина. Действительно, представим себе нить, опоясывающую какой-нибудь круглый предмет. Если эту нить разрезать, то ее можно будет развернуть на плоскости в отрезок. Её длина и будет длиной окружности.

1 dlina okruzhnosti

Однако определить точно эту длину довольно сложно, так как окружность является «кривой» линией, а до этого в курсе геометрии мы рассматривали только длины отрезков. Для приближенной оценки длины окружности можно использовать правильные многоугольники.

Возьмем произвольную окружность и впишем в нее правильный n-угольник, и одновременно ещё один n-угольник опишем около окружности. Можно считать, что периметры этих n-угольника приближенно равны длине окружности, причем периметр вписанного многоугольника – это приближение с округлением в меньшую сторону (оценка снизу), а периметр описанного многоугольника – это уже оценка сверху.

Обычно длину окружности обозначают буквой С. Обозначим периметры вписанного и описанного многоугольника как Рв и Ро. Тогда можно записать двойное неравенство:

2 dlina okruzhnosti

Далее будем увеличивать число n. При этом n-угольник будет всё плотнее «прилегать» к окружности, и тем самым его периметр будет являться все более точным приближением длины окружности.

3 dlina okruzhnosti

Напомним две формулы, которые мы вывели, изучая правильные многоугольники:

4 dlina okruzhnosti

Здесь аn – это сторона n-угольника, R – радиус описанной окружности, r – радиус вписанной окружности. Из второй формулы можно выразить R и подставить это выражение в первую формулу:

5 dlina okruzhnosti

Здесь R радиус окружности, ав и ао – стороны вписанного и описанного многоугольника соответственно. Умножим эти равенства на n, чтобы в левой части получился периметр многоугольников:

6 dlina okruzhnosti

Это неравенство позволяет для любой окружности оценить отношение длины ее окружности к ее диаметру (2R – это как раз диаметр окружности).

Можно доказать, что при увеличении n величина

7 dlina okruzhnosti

при росте n, наоборот, убывает, но также стремится к пределу. Более того, оказывается, что эти пределы у обоих выражений одинаковы, то есть являются одним и тем же числом. Это значит, что и само отношение длины окружности к диаметру является этим же числом, которое традиционно обозначается буквой π. Записать этот факт можно так:

8 dlina okruzhnosti

Ещё раз обратите внимание, что число π (читается как «число пи») не зависит от диаметра окружности или расположения ее центра, это некоторое постоянное число. Обычно его определяют так:

9 dlina okruzhnosti

Чем большее n мы сюда подставим, тем более точную оценку числа π мы получим. Ещё Архимед использовал в этом неравенстве n = 96 (это значение было удобно взять, так как соответствующие значения синуса и тангенса угла 180°/96 уже умели вычислять в Древней Греции). Если мы воспользуемся калькулятором, то при n = 96 получим:

10 dlina okruzhnosti

Вы можете и сами найти более точную оценку числа пи, используя неравенство (1) и калькулятор, умеющий высчитывать синусы и тангенсы. Попробуйте, например, подставить в него n = 1 000 000.

Используя метод многоугольников, Людольфу ван Цейлену в 1596 г. удалось вычислить 20 верных десятичных знаков числа пи после запятой:

11 dlina okruzhnosti

Дальнейший прогресс в этой области был связан уже с использованием более сложных методов, основанных на бесконечных рядах чисел. Также в XVIII в. было доказано, что число π – иррациональное, то есть оно является бесконечной непериодической десятичной дробью. На сегодня даже на обычном персональном компьютере можно вычислить триллионы цифр после запятой в числе π. В большинстве школьных задач число π принимается равным 3,14. Однако если в задаче не просят округлить ответ, то вместо числа π вообще не надо ничего подставлять.

Из определения числа π вытекает формула для вычисления длины окружности c радиусом R или диаметром D:

12 dlina okruzhnosti

Задание. Найдите длину окружности, если ее радиус составляет 5 см.

Решение. Просто подставляем в формулу число 5:

13 dlina okruzhnosti

Обратите внимание, что вместо числа π НЕ надо подставлять его приближенное значение, так как в условии не говорится, что ответ надо округлять. Только та запись, в которой число π оставлено как есть, является точным, а не приближенным ответом.

Ответ: 10π см.

Задание. Диаметр окружности составляет 40 см. Вычислите приближенно ее длину, принимая число π примерно равным 3,14.

Решение. Так как ответ надо будет округлить, то вместо числа π подставим значение 3,14:

14 dlina okruzhnosti

Ответ: 125,6 см.

Задание. Длина окружности составляет 100 см. Вычислите приближенно её радиус.

Решение. Из формулы для длины окружности легко получить формулу и для вычисления радиуса:

15 dlina okruzhnosti

Ответ: 15,9 см.

Задание. Вычислите радиус Земли, если известно, что длина экватора составляет 40 000 км.

Решение. Задача аналогична предыдущей, только вместо длины окружности надо подставить 40 000 км:

16 dlina okruzhnosti

Ответ: ≈ 6369 км.

Задание. Автомобиль проехал 1978 метров, при этом одно из его колес совершило 1000 оборотов. Вычислите приближенно диаметр этого колеса.

Решение. В таких задачах неявно предполагается, что колесо плавно катится по дороге, а не скользит по нему. Можно посчитать, какое передвижение соответствует 1 обороту колеса:

1978 м : 1000 обор. = 1,978 м/об

Это величина как раз является длиной окружности колеса. Тогда легко найти и диаметр:

17 dlina okruzhnosti

Ответ: 63 см.

Длина дуги

Иногда требуется вычислить не длину всей окружности, а только лишь длину ее части, то есть дуги.

18 dlina okruzhnosti

Напомним, что дуги имеют такую характеристику, как градусную меру, которая равна величине центрального угла, на который дуга опирается. Оказывается, что длина дуги окружности и ее градусная мера связаны. Для начала попытаемся найти длину дуги величиной в 1°. Напомним, что вся окружность составляет 360°. Значит, ее можно разбить на 360 маленьких дуг по 1°. Так как все эти дуги одинаковы, то длина каждой из них будет в 360 раз меньше длины все окружности:

19 dlina okruzhnosti

Теперь предположим, что нам надо найти длину дуги с градусной мерой α, причем α – это целое число. Тогда мы можем разбить эту дугу на α маленьких дуг по 1°, и ее длина будет равна сумме их длин:

20 dlina okruzhnosti

Задание. На окружности с радиусом 6 см отмечена дуга величиной в 30°. Найдите ее длину.

Решение. Просто подставляем в формулу числа:

21 dlina okruzhnosti

Ответ: π см.

Задание. На железнодорожном пути есть закругленный участок радиусом 5 км, а его длина составляет 400 м. Какова градусная мера этого закругления? Дайте приближенный ответ без использования числа π.

Решение. Выведем из формулы выражение для угла α:

22 dlina okruzhnosti

Ответ: 4,6°.

Задание. Длина дуги окружности равна 20 см, ей соответствует центральный угол в 60°. Каков радиус окружности? Ответ не округляйте.

Решение. Теперь из формулы выражаем радиус окружности:

23 dlina okruzhnosti

Ответ: 60/π см.

Задание. Точки А и В разбивают окружность на две дуги. Длина меньшей дуги равна 63, а опирается она на центральный угол в 28°. Какова длина большей дуги?

Решение. Сначала найдем радиус окружности:

24 dlina okruzhnosti

Вся окружность составляет 360°. Если градусная мера меньшей дуги – это 28°, то у большей дуги градусная мера (обозначим ее как β) определяется так:

25 dlina okruzhnosti

Ответ: 747 см.

Задание. Какой должна быть градусная мера дуги, чтобы ее длина в точности совпадала с длиной радиуса?

Решение. Запишем формулу:

26 dlina okruzhnosti

Ответ: ≈ 57,32°.

Площадь круга

Напомним, что кругом называется часть плоскости, ограниченная окружностью. Для нахождения площади круга можно использовать все тот же метод многоугольников, который мы применили для нахождения длины окружности и вычисления числа π.

Возьмем окружность и впишем в нее n-угольник. В свою очередь в него впишем окружность.

27 dlina okruzhnosti

Выпишем изученные нами ранее две формулы:

28 dlina okruzhnosti

Здесь r и R – радиусы вписанной и описанной окружности соответственно, Р – периметр многоугольника, Sмног. – площадь многоугольника. С ростом n периметр многоугольника приближается к длине описанной окружности, что можно записать в таком виде

29 dlina okruzhnosti

Одновременно с этим и площадь многоугольника приближается к площади круга (имеется ввиду больший, то есть описанный круг), что позволяет вычислить ее:

30 dlina okruzhnosti

Задание. Определите площадь круга, ограниченного окружностью 10 см.

Решение. В этой задаче надо просто подставить числа в формулу:

31 dlina okruzhnosti

Ответ: 100π см2.

Задание. Площадь круглого бассейна составляет 10 м2. Каков его радиус? При расчете примите число π равным 3,14.

Решение. Здесь надо из формулы площади получить выражение для вычисления радиуса:

32 dlina okruzhnosti

Ответ: ≈ 1,8 м.

Задание. Во сколько раз увеличится площадь круга, если его радиус увеличится в 2 раза?

Решение. Пусть радиус исходного круга – это R. Тогда его площадь рассчитывается так:

33 dlina okruzhnosti

Ответ: в 4 раза.

Примечание. В общем случае увеличение радиуса круга в k раз приводит к увеличению его площади в k2 раз.

Задание. Ваня и Петя решили купить пиццу. Сначала Ваня заметил пиццу диаметром 30 см, цена которой – 300 рублей. Но тут же Петя обнаружил на витрине такую же пиццу диаметром 40 см, которая стоила уже 450 рублей, и предложил ее купить. Ваня сказал, что этот невыгодная покупка, ведь радиус у второй пиццы больше только на треть, а цена больше уже наполовину. Прав ли Ваня?

Решение. Масса пиццы пропорциональна их площади. У второй пиццы радиус больше в 4/3 раза (так как 40/30 = 4/3), значит, площадь у нее больше в

34 dlina okruzhnosti

Получается, что вторая пицца больше в 1,78 раза, а цена у нее выше только в 1,5 раза. То есть выгодней купить именно вторую, то есть большую пиццу.

Ответ: Ваня не прав, лучше купить пиццу диаметром 40 см.

Примечание. В этой задаче можно было посчитать площадь каждой пиццы, а потом поделить их стоимость на площадь и получить цену 1 см2 пиццы в каждом варианте. Ответ бы при этом не изменился.

Задание. Завод изготавливает круглые столы радиусом 1,5 метра. Их поверхность надо покрывать лаком, причем на каждый 1 м2 поверхности необходимо тратить 20 г лака. Лак закупается раз в месяц, и в течение ближайшего месяца завод должен изготовить 5000 столов. Сколько лака должен закупить завод на ближайший месяц?

Решение. Считаем площадь поверхности каждого стола:

35 dlina okruzhnosti

Ответ: 706,5 кг.

Площадь сектора

Напомним, что сектором называется часть круга, образованная двумя его радиусами. Если же в круге проведена хорда, то она отсекает от него сегмент:

36 dlina okruzhnosti

Проведем из центра окружности 360 радиусов, причем угол между соседними радиусами будет ровно 1°. В результате мы разобьем окружность на 360 одинаковых секторов, площадь каждого такого сектора будет в 360 раз меньше площади круга:

37 dlina okruzhnosti

Теперь рассмотрим сектор, который образован дугой величиной в α градусов. Если α – целое число, то такой сектор можно составить из α секторов, каждый из которых составляет по 1°. Тогда площадь сектора круга будет определяться формулой:

38 dlina okruzhnosti

39 dlina okruzhnosti

Задание. Круговой сектор опирается на дугу в 45°, а его радиус составляет 40. Определите площадь этого сектора.

Решение. Используем выведенную формулу:

40 dlina okruzhnosti

Ответ: 12,5π.

Задание. Площадь сектора равна 200 см2. Он опирается на дугу в 30°. Каков радиус кругового сектора? При решении примите π равным 3,14.

Решение. Из формулы площади сектора выразим радиус окружности:

41 dlina okruzhnosti

Ответ: ≈ 27,6 см.

Задание. На сторонах произвольного прямоугольника построены полукруги:

42 dlina okruzhnosti

Докажите, что площадь полукруга, опирающегося на полуокружность, равна сумме площадей полукругов, опирающихся на катеты.

Решение. Полукруг представляет собой сектор с центральным углом α = 180°, поэтому его площадь может быть рассчитана так:

43 dlina okruzhnosti

Заметим, что эти стороны являются диаметрами полукругов. Обозначим как D1 диаметр полукруга, опирающегося на гипотенузу, а два других диаметра как D2 и D3. Тогда можно выполнить преобразования:

44 dlina okruzhnosti

Именно это равенство нам и требовалось доказать.

Теперь рассмотрим более сложную задачу, в которой необходимо определить площадь сегмента.

Задание. В окружности радиусом 20 проведена хорда длиной 12. Она разбивает окружность на два круговых сегмента. Найдите площадь каждого из них. При расчете примите π ≈3,14.

45 dlina okruzhnosti

Чтобы найти площадь меньшего сегмента, можно вычесть из площади кругового сектора площадь треугольника АВО. Для нахождения обоих площадей в любом случае надо сначала определить величину угла ∠АОВ. Это можно сделать, применив теорему косинусов:

46 dlina okruzhnosti

Далее надо рассчитать площадь ∆АВС. Это можно сделать с помощью разных формул, мы используем формулу с синусом угла. Для этого предварительно вычислим синус ∠АОВ, применив основное тригонометрическое тождество:

47 dlina okruzhnosti

Осталось вычесть из площади сектора площадь ∆АВС, чтобы найти площадь кругового сегмента S1:

48 dlina okruzhnosti

Примечание. В подобных задачах ответы и промежуточные ответы могут немного отличаться в зависимости от того, с какой точностью берется число π, вычисляется ∠АОВ и его синус, и как именно округляются промежуточные результаты и т. п. Более точные расчеты показывают, что в описанной задаче величины S1 и S2 примерно равны:

49 dlina okruzhnosti

Площадь кольца и других сложных фигур

Если какая-либо фигура образована с помощью нескольких окружностей, то найти ее площадь можно, представив ее в виде суммы площадей нескольких более простых фигур. В качестве простейшего примера можно привести кольцо. По сути оно представляет собой круг, в котором есть круговое отверстие:

50 dlina okruzhnosti

Если обозначить наружный радиус кольца буквой R, а радиус отверстия буквой r, то площадь кольца можно найти, вычтя из площади большего круга площадь отверстия:

51 dlina okruzhnosti

Задание. Внешний радиус кольца составляет 20 см, а радиус отверстия в нем равен 15 см. Определите площадь кольца.

Решение. Подставляем числа в формулу:

52 dlina okruzhnosti

Ответ: 175π.

Задание. Есть диск радиусом 1 метр. Необходимо вырезать в нем отверстие так, чтобы масса диска уменьшилась в два раза. Какой радиус должен быть у отверстия?

Решение. Можно считать, что масса диска пропорциональна его площади, поэтому нам надо, чтобы площадь диска уменьшилась вдвое. Начальная площадь диска определяется так:

53 dlina okruzhnosti

Площадь кольца должна быть вдвое меньше, то есть она будет составлять π/2. Если радиус отверстия мы обозначим как r, то можно составить уравнение:

54 dlina okruzhnosti

Ответ: ≈ 70,7 см.

В прямоугольной плите с габаритами 180 и 60 см сделано 27 отверстий диаметром 10 см. Вычислите площадь этой плиты. Считайте, что π ≈ 3,1416, и округлите ответ до целых.

55 dlina okruzhnosti

Решение. Надо найти площадь плиты без учета отверстий, а потом вычесть из нее площадь всех отверстий. Площадь плиты равна произведению ее сторон

56 dlina okruzhnosti

Ответ: ≈ 8679 см2.

Задание. Из вершин квадрата со стороной а проведены дуги радиусом а/2. В результате получили следующую фигуру:

57 dlina okruzhnosti

Найдите заштрихованную площадь.

Решение. Площадь заштрихованной области может быть получена, если из площади квадрата мы вычтем площади 4 секторов. Площадь квадрата рассчитывается так:

58 dlina okruzhnosti

Задание. В квадрате, сторона которого обозначается буквой а, из вершин провели дуги, чей радиус совпадает со стороной квадрата. В результате в центре квадрата получили следующую фигуру:

59 dlina okruzhnosti

Определите, какую долю квадрата занимает эта центральная фигура. Ответ дайте в процентах и округлите его до десятых.

Решение. Задача решается в несколько действий, причем нам потребуется составить формулы для вычисления площадей вспомогательных фигур. Сначала найдем площадь маленького треугольника с «кривыми» сторонами, для чего используем такое построение:

60 dlina okruzhnosti

Площадь, которую мы пытаемся найти, обозначена здесь как S1. Ее можно получить, просто вычтя из площади квадрата (она составляет а2) площади двух секторов и площадь треугольника. Треугольник на рисунке – равносторонний, ведь и сторона квадрата, и радиусы окружностей равны величине а. Тогда каждый его угол составляет 60°, и его площадь можно найти так:

61 dlina okruzhnosti

Также мы можем найти центральные углы обоих секторов. Так как углы в квадраты составляют 90°, а в равностороннем треугольнике 60°, то эти углы окажутся равными 90° – 60° = 30°. Тогда площадь сектора вычисляется по формуле:

62 dlina okruzhnosti

На следующем шаге вычислим площадь другой фигуры:

63 dlina okruzhnosti

Попытаемся выразить величину S2. Для этого из площади квадрата надо вычесть площадь сектора, у которого центральный угол составляет 90°. Найдем площадь этого сектора:

64 dlina okruzhnosti

Здесь мы ищем площадь S3. Обратите внимание, что ее можно выразить через уже найденные нами величины S1 и S2:

65 dlina okruzhnosti

Мы составили выражения для всех необходимых нам вспомогательных фигур. Теперь вернемся к исходному рисунке и отметим на нем эти вспомогательные фигуры:

66 dlina okruzhnosti

Итак, мы составили выражение для вычисления площади центральной фигуры. По условию надо указать, сколько процентов она составляет от площади всего квадрата. Для ответа на этот вопрос поделим площадь фигуры на площадь квадрата и умножив это отношение на 100%:

67 dlina okruzhnosti

Ответ: 31,5%.

В рамках этого урока мы узнали, как вычислять длину окружности и дуги, площади круга, сектора, сегмента, кольца и других фигур, одна или несколько сторон которых представляют собой дуги окружности. Эти навыки могут пригодиться и в реальной жизни, так как именно от площади многих предметов часто зависит потребность в краске, лаке, клее и т. п.

Как найти длину меньшей дуги круга


0 голосов


294 просмотров

Как найти длину меньшей дуги круга


  • найти
  • длину
  • меньшей
  • круга
  • 5 – 9 классы
  • математика








Математика


Lglch3_zn


11 Сен, 18


|

294 просмотров





Дан 1 ответ


0 голосов

от 360 отнять большую дугу круга








231asd31_zn


11 Сен, 18



Похожие задачи

  • 14x=-10 решение уравнения пожалуйста.
  • Помогите пожалуйста!!! Фото ниже
  • В трёх школах учится 3600 человек. В первой школе учиться 1265 чел,а во второй школе – на…
  • В школе 33 класса, 1160 учеников. В этой школе обязательно есть класс, в котором…
  • Витя идет со скоростью 5 км/ч,а Леня со скоростью 4 км/ч. На сколько больше времени…

Задания

Версия для печати и копирования в MS Word

Тип 16 № 349689

i

На окружности с центром O отмечены точки A и B так, что angle AOB = 120 градусов. Длина меньшей дуги AB равна 67. Найдите длину большей дуги.

Спрятать решение

Решение.

Пусть длина большей дуги AB равна x. Длина дуги прямо пропорциональна её градусной мере, поэтому имеет место отношение:

 дробь: числитель: 120 градусов, знаменатель: 360 градусов минус 120 градусов конец дроби = дробь: числитель: 67, знаменатель: x конец дроби равносильно x= дробь: числитель: 67 умножить на 240, знаменатель: 120 конец дроби =134.

Ответ: 134.

Аналоги к заданию № 333117: 339904 348493 348698 … Все

Раздел кодификатора ФИПИ: 5.1 Пла­ни­мет­рия. На­хож­де­ние гео­мет­ри­че­ских ве­ли­чин.

Спрятать решение

·

Прототип задания

·

Помощь

Добавить комментарий