Как найти в пирамиде диагональ основания равна

ГлавнаяЕГЭ. Стереометрия

В правильной четырехугольной пирамиде найти диагональ основания

Автор: Ирина Гайкова

 

Комментариев нет

441

Telegram

VK

OK

В правильной четырехугольной пирамиде SABCD точка O — центр основания, S — вершина, SD = 10, SO = 6.  Найдите длину отрезка AС.

Интересная статья? Поделитесь ею пожалуйста с другими:

Facebook

Хотите обучаться математике индивидуально?
Запишитесь на консультацию.

Мы храним ваши данные в тайне

Похожие записи:

  • В сосуд, имеющий форму правильной треугольной призмы, налили воду

  • Диагональ куба равна √12.  Найдите его объем.

  • В правильной треугольной пирамиде найти высоту боковой грани

Оставьте свой комментарий:

  • на Блоге
  • в Вконтакте
  • в Фейсбук

=) 8) :( ;) :P :-D =-O *IN LOVE* %) *CRAZY* Еще смайлы

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Комментарий

Имя *

Email *

Вебсайт

Получать новые комментарии по электронной почте. Вы можете подписаться без комментирования.

Нажимая на кнопку “Отправить комментарий”, я соглашаюсь с политикой обработки персональных данных

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия, задачи о пирамиде). Если Вам необходимо решить задачу по геометрии, которой здесь нет – пишите об этом в форуме. В задачах вместо символа “квадратный корень” применяется функция sqrt(), в которой sqrt – символ квадратного корня, а в скобках указано подкоренное выражение. Для простых подкоренных выражений может использоваться знак “√”.

Задача.

Диагональ основания правильной четырехугольной пирамиды равна 4 см, а боковая грань образует с основанием угол 60 градусов. найдите объем пирамиды.

Решение.

Объем пирамиды найдем по формуле:

V=1/3 Sh

Зная диагональ основания пирамиды, найдем сторону основания.

d2 = a2 + a2

42 = 2a2

16 = 2a2

a= √8 = 2√2

Соответственно, площадь основания

S = 8 см2 .

Проведем через вершину правильной четырехугольной пирамиды вертикальное сечение. Поскольку боковые грани пирамиды наклонены к основанию под углом 60 градусов, то сечение образует равносторонний треугольник.

Основание равностороннего треугольника равно 2√2. Откуда высота будет равна

h = √3/2 a

h = √3/2 * 2√2 = √6

Откуда объем правильной пирамиды с четырехугольником в основании равен

V=1/3 Sh

V = 1/3 * 8 * √6 = 8√6 / 3

Ответ:  8√6 / 3 см3.

Задача.

Сторона основания правильной четырехугольной пирамиды равна а. Двугранные углы при основании равны

α. Найти площадь полной поверхности пирамиды.

Правильная четырехугольная пирамида

Решение.

Поскольку пирамида правильная, то ее высота проецируется в центр основания.

Значит KN = a/2

Соответственно, треугольник OKN – прямоугольный. Значит

ON = KN / cos α = a / 2cos α

Поскольку пирамида правильная, то треугольник DOC – равнобедренный. Значит его площадь равна

Sт = DC * ON / 2

Sт = ( a * a / 2cos

α) / 2 = a2 / 4cos α

Откуда площадь боковой поверхности правильной пирамиды будет равна площади всех ее боковых граней

Sб = 4a2 / 4cos

α

Sб = a2 / cos α

Откуда площадь полной поверхности равна

Sп = a2 / cos

α + a2 = a2 ( 1 + 1 / cos α )

Ответ: площадь полной поверхности правильной четырехугольной пирамиды равна a2 ( 1 + 1 / cos α )


0
 

 Правильная пирамида с четырехугольником в основании |

Описание курса

| Нахождение боковой поверхности и высоты правильной пирамиды с четырехугольником в основании 

Вы уже знакомы с пирамидой, т. е. многогранником, одна грань которого является многоугольником, а остальные грани-треугольники имеют общую вершину.

Треугольные грани пирамиды, имеющие общую вершину, называют боковыми гранями, а эту общую вершину — вершиной пирамиды. Ребра боковых граней, сходящиеся в вершине пирамиды, называют боковыми ребрами пирамиды. Многоугольник, которому не принадлежит вершина пирамиды, называют основанием пирамиды (рис. 107).

Пирамиды разделяют на треугольные, четырехугольные, пятиугольные и т. д. в зависимости от количества сторон их оснований. Пирамида, изображенная на рисунке 107, — пятиугольная, а на рисунке 108, — восьмиугольная. Треугольную пирамиду называют еще тетраэдром. У тетраэдра все грани являются треугольниками (рис. 109).

Пирамида в геометрии - элементы, формулы, свойства с примерами

Перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания, называется высотой пирамиды. На рисунке 108 показана высота Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Плоскость, проходящая через два боковых ребра пирамиды, не принадлежащие одной грани, называется диагональной плоскостью, а сечение пирамиды диагональной плоскостью — диагональным сечением. На рисунке 111 показано диагональное сечение шестиугольной пирамиды.

Пирамида, основанием которой является правильный многоугольник, а основание ее высоты совпадает с центром этого многоугольника, называется правильной пирамидой (рис. 112).

Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется апофемой пирамиды.

Отметим, что в правильной пирамиде:

  • боковые ребра равны;
  • боковые грани равны;
  • апофемы, равны;
  • двугранные углы при основании равны;
  • двугранные углы при боковых ребрах равны;
  • каждая точка высоты равноудалена от вершин основания;
  • каждая точка высоты равноудалена от ребер основания;
  • каждая точка высоты равноудалена от боковых граней.

Отметим, что если в пирамиде равны все:

  • боковые ребра, то около ее основания можно описать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 113);
  • двугранные углы при основании, то в это основание можно вписать окружность, и центр этой окружности совпадает с основанием высоты пирамиды (рис. 114).

Пирамида в геометрии - элементы, формулы, свойства с примерами Пирамида в геометрии - элементы, формулы, свойства с примерами

Боковые грани составляют боковую поверхность пирамиды, а боковые грани вместе с основанием — полную поверхность пирамиды.

Вы знаете, что боковая поверхность правильной пирамиды равна произведению полупериметра ее основания и апофемы.

Теорема 1.

Если пирамиду пересечь плоскостью, параллельной основанию, то:

  • а) боковые ребра и высота разделяются на пропорциональные части;
  • б) в сечении получается многоугольник, подобный основанию;
  • в) площади сечения и основания относятся как квадраты их расстояний от вершины пирамиды.

Используя рисунок 115, докажите эту теорему самостоятельно.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Секущая плоскость, параллельная основанию пирамиды, разделяет ее на две части (рис. 116). Одна из этих частей также является пирамидой, а другая — многогранником, который называется усеченной пирамидой.

Параллельные грани усеченной пирамиды называются ее основаниями (рис. 117). Основания усеченной пирамиды — подобные многоугольники, стороны которых попарно параллельны, поэтому ее боковые грани являются трапециями.

Высотой усеченной пирамиды называется перпендикуляр, проведенный из какой-либо точки одного основания пирамиды к плоскости другого основания.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Усеченная пирамида называется правильной, если она является частью правильной пирамиды. Высота боковой грани правильной усеченной пирамиды называется апофемой усеченной пирамиды. На рисунке 118 показана четырехугольная правильная усеченная пирамида и одна из ее апофем.

Теорема 2.

Боковая поверхность правильной усеченной пирамиды равна произведению полусуммы периметров ее оснований и апофемы:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть правильная Пирамида в геометрии - элементы, формулы, свойства с примерами-угольная усеченная пирамида (рис. 119). Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — соответственно периметры нижнего и верхнего оснований и Пирамида в геометрии - элементы, формулы, свойства с примерами — апофема пирамиды.

Боковая поверхность данной пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами равных трапеций. Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — основания одной из этих трапеций, тогда ее площадь равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Учитывая, что боковая поверхность пирамиды состоит из Пирамида в геометрии - элементы, формулы, свойства с примерами таких трапеций, получим, что

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теперь установим формулу для вычисления объема пирамиды.

Тела, имеющие равные объемы, называются равновеликими.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Теорема 3.

Треугольные пирамиды с равновеликими основаниями и равными высотами равновелики.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть две треугольные пирамиды с равновеликими основаниями и равными высотами (рис. 120). Разделим высоты одной и другой пирамид на Пирамида в геометрии - элементы, формулы, свойства с примерами долей и через точки деления проведем плоскости, параллельные основаниям. Этим самым пирамиды разделяются на Пирамида в геометрии - элементы, формулы, свойства с примерами частей. Для каждой части первой пирамиды построим наибольшие по объему призмы, целиком содержащиеся в пирамиде, а для каждой части другой пирамиды — наименьшие по объему призмы, целиком содержащие эту часть.

Пусть Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — объемы первой и второй пирамид, a Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — суммарные объемы призм, построенных для этих пирамид. При счете от оснований пирамид призма в Пирамида в геометрии - элементы, формулы, свойства с примерами-й части первой пирамиды равновелика призме для Пирамида в геометрии - элементы, формулы, свойства с примерами-й части второй пирамиды, так как у этих призм равновелики основания и равные высоты. Поэтому объем Пирамида в геометрии - элементы, формулы, свойства с примерами больше объема Пирамида в геометрии - элементы, формулы, свойства с примерами на объем первой призмы, у которой основанием является основание второй пирамиды, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — высота пирамиды (см. рис. 120), т.е. Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами, где Пирамида в геометрии - элементы, формулы, свойства с примерами — площадь основания пирамиды. Теперь учтем, что Пирамида в геометрии - элементы, формулы, свойства с примерами, a Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому Пирамида в геометрии - элементы, формулы, свойства с примерами, или Пирамида в геометрии - элементы, формулы, свойства с примерами. При увеличении значения переменной Пирамида в геометрии - элементы, формулы, свойства с примерами значение выражения Пирамида в геометрии - элементы, формулы, свойства с примерами стремится к нулю, а это означает, что Пирамида в геометрии - элементы, формулы, свойства с примерами, или

Пирамида в геометрии - элементы, формулы, свойства с примерами

Такие же рассуждения можно провести, если первую и вторую пирамиды поменять ролями. В результате получим неравенство

Пирамида в геометрии - элементы, формулы, свойства с примерами

Из неравенств (1) и (2) следует, что Пирамида в геометрии - элементы, формулы, свойства с примерами.

Теорема 4.

Объем пирамиды равен третьей доле произведения площади ее основания и высоты:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Доказательство:

Пусть есть треугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 121). Достроим ее до призмы Пирамида в геометрии - элементы, формулы, свойства с примерами с основанием Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122). Отделим от призмы данную пирамиду, получится четырехугольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 122 и 123). Диагональная плоскость Пирамида в геометрии - элементы, формулы, свойства с примерами разделяет ее на две пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, у которых одна и та же высота, проведенная из вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, и равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами. Поэтому, в соответствии с теоремой 3, пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Сравним пирамиду Пирамида в геометрии - элементы, формулы, свойства с примерами с данной пирамидой Пирамида в геометрии - элементы, формулы, свойства с примерами. У них равные основания Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты, проведенные из вершин Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, поэтому эти пирамиды также равновелики. Получается, что все три пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами равновелики. Поскольку объем призмы Пирамида в геометрии - элементы, формулы, свойства с примерами равен произведению Пирамида в геометрии - элементы, формулы, свойства с примерами площади Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами и высоты призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, которая равна высоте пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, то объем пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами, т. е. третьей части призмы Пирамида в геометрии - элементы, формулы, свойства с примерами, равен третьей доле этого объема, т. е. Пирамида в геометрии - элементы, формулы, свойства с примерами.

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пусть теперь есть произвольная пирамида Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 124). Через диагонали Пирамида в геометрии - элементы, формулы, свойства с примерами основания Пирамида в геометрии - элементы, формулы, свойства с примерами, выходящие из одной вершины Пирамида в геометрии - элементы, формулы, свойства с примерами, проведем диагональные сечения, они разделят данную пирамиду на треугольные пирамиды Пирамида в геометрии - элементы, формулы, свойства с примерами. Поскольку все они имеют общую высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, то

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пирамида в геометрии - элементы, формулы, свойства с примерами

Пример:

Найдем объем усеченной пирамиды, нижнее и верхнее основания которой имеют площади Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами, а высота равна Пирамида в геометрии - элементы, формулы, свойства с примерами (рис. 125).

Для этого достроим данную усеченную пирамиду до полной. Пусть высота дополнительной пирамиды равна Пирамида в геометрии - элементы, формулы, свойства с примерами. Искомый объем Пирамида в геометрии - элементы, формулы, свойства с примерами можно найти как разность объемов полной и дополнительной пирамид:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Чтобы найти высоту Пирамида в геометрии - элементы, формулы, свойства с примерами, используем установленное в теореме 1 утверждение о том, что площади сечений пирамиды относятся как квадраты их расстояний от вершины:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Решим это уравнение, учитывая, что Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами — положительные числа:

Пирамида в геометрии - элементы, формулы, свойства с примерами

Таким образом, объем Пирамида в геометрии - элементы, формулы, свойства с примерами усеченной пирамиды равен третьей доле произведения высоты Пирамида в геометрии - элементы, формулы, свойства с примерами пирамиды и суммы площадей Пирамида в геометрии - элементы, формулы, свойства с примерами и Пирамида в геометрии - элементы, формулы, свойства с примерами оснований пирамиды и их среднего геометрического Пирамида в геометрии - элементы, формулы, свойства с примерами.

  • Конус в геометрии
  • Сфера в геометрии
  • Шар в геометрии
  • Правильные многогранники в геометрии
  • Возникновение геометрии
  • Призма в геометрии
  • Цилиндр в геометрии
  • Стереометрия – формулы, определение и вычисление

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 29 сентября 2022 года; проверки требуют 4 правки.

Пирами́да (от др.-греч. πυραμίς, род. п. πυραμίδος) — многогранник, одна из граней которого (называемая основанием) — произвольный многоугольник, а остальные грани (называемые боковыми гранями) — треугольники, имеющие общую вершину[1]. По числу углов основания различают пирамиды треугольные (тетраэдр), четырёхугольные и т. д.
Пирамида является частным случаем конуса[2].

История развития пирамиды в геометрии[править | править код]

Начало геометрии пирамиды было положено в Древнем Египте и Вавилоне, однако активное развитие получило в Древней Греции. Объём пирамиды был известен древним египтянам. Первым греческим математиком, кто установил, чему равен объём пирамиды, был Демокрит
[3], а доказал Евдокс Книдский. Древнегреческий математик Евклид систематизировал знания о пирамиде в XII томе своих «Начал», а также вывел первое определение пирамиды: телесная фигура, ограниченная плоскостями, которые от одной плоскости сходятся в одной точке (книга XI, определение 12[4]).

Элементы пирамиды[править | править код]

SO — высота
SF — апофема
OF — радиус вписанной в основание окружности

  • вершина пирамиды — общая точка боковых граней, не лежащая в плоскости основания;
  • основание — грань, которой не принадлежит вершина пирамиды;
  • боковые грани — треугольные грани, сходящиеся в вершине;
  • боковые рёбра — рёбра, являющиеся сторонами двух боковых граней (и, соответственно, не являющиеся сторонами основания);
  • высота пирамиды — перпендикуляр из вершины пирамиды на её основание;
  • апофема — высота боковой грани правильной пирамиды, проведённая из её вершины;
  • диагональное сечение пирамиды — сечение пирамиды, проходящее через её вершину и диагональ основания.

Развёртка пирамиды[править | править код]

Развёртка правильной пятиугольной пирамиды:
1. в плоскости основания («звезда»)
2. в плоскости одной из боковых граней

Развёрткой называется плоская фигура, полученная при совмещении поверхности геометрического тела с одной плоскостью (без наложения граней или иных элементов поверхности друг на друга).
Приступая к изучению развёртки поверхности, последнюю целесообразно рассматривать как гибкую, нерастяжимую плёнку. Некоторые из представленных таким образом поверхностей можно путём изгибания совместить с плоскостью. При этом, если отсек поверхности может быть совмещён с плоскостью без разрывов и склеивания, то такую поверхность называют развёртывающейся, а полученную плоскую фигуру — её развёрткой.

Свойства[править | править код]

Если все боковые рёбра равны, то:

  • вокруг основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр;
  • боковые рёбра образуют с плоскостью основания равные углы;
  • также верно и обратное, то есть если боковые рёбра образуют с плоскостью основания равные углы, или если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые рёбра пирамиды равны.

Если боковые грани наклонены к плоскости основания под одним углом, то:

  • в основание пирамиды можно вписать окружность, причём вершина пирамиды проецируется в её центр;
  • высоты боковых граней равны;
  • площадь боковой поверхности равна половине произведения периметра основания на высоту боковой грани.

Теоремы, связывающие пирамиду с другими геометрическими телами[править | править код]

Описание сферы вокруг правильной пирамиды:
SD — высота пирамиды.
AD — радиус окружности, описывающей основание.
В — середина ребра боковой грани
С — точка пересечения плоскостей проходящих через середину рёбер перпендикулярно им.
AC=CS — радиус сферы описывающей пирамиду

Сфера, вписанная в правильную пирамиду:
D — центр основания
SF — апофема
ASD — биссекторная плоскость угла между боковыми гранями
BCE — биссекторная плоскость угла между основанием и боковой гранью
С — точка пересечения всех биссекторных плоскостей
CK=CD — радиус сферы вписанной в пирамиду

Сфера[править | править код]

  • около пирамиды можно описать сферу тогда, когда в основании пирамиды лежит многоугольник, вокруг которого можно описать окружность (необходимое и достаточное условие)[5]. Центром сферы будет точка пересечения плоскостей, проходящих через середины рёбер пирамиды перпендикулярно им. Из этой теоремы следует, что как около любой треугольной, так и около любой правильной пирамиды можно описать сферу;
  • в пирамиду можно вписать сферу тогда, когда биссекторные плоскости внутренних двугранных углов пирамиды пересекаются в одной точке (необходимое и достаточное условие). Эта точка будет центром сферы.

Конус[править | править код]

  • Конус называется вписанным в пирамиду, если вершины их совпадают, а его основание вписано в основание пирамиды. Причём вписать конус в пирамиду можно только тогда, когда апофемы пирамиды равны между собой (необходимое и достаточное условие);[6]
  • Конус называется описанным около пирамиды, когда их вершины совпадают, а его основание описано около основания пирамиды. Причём описать конус около пирамиды можно только тогда, когда все боковые рёбра пирамиды равны между собой (необходимое и достаточное условие);
  • Высоты у таких конусов и пирамид равны между собой.

Цилиндр[править | править код]

  • Цилиндр называется вписанным в пирамиду, если одно его основание совпадает с окружностью вписанной в сечение пирамиды плоскостью, параллельной основанию, а другое основание принадлежит основанию пирамиды.
  • Цилиндр называется описанным около пирамиды, если вершина пирамиды принадлежит его одному основанию, а другое его основание описано около основания пирамиды. Причём описать цилиндр около пирамиды можно только тогда, когда в основании пирамиды — вписанный многоугольник (необходимое и достаточное условие).

Формулы, связанные с пирамидой[править | править код]

  • Объём пирамиды может быть вычислен по формуле:
V={frac {1}{3}}Sh,
где  S — площадь основания и  h — высота;[7]
V={frac {1}{6}}V_{p},
где {textstyle  V_{p}} — объём параллелепипеда;
  • Также объём треугольной пирамиды (тетраэдра) может быть вычислен по формуле[8]:
V={frac {1}{6}}a_{1}a_{2}dsin varphi ,
где a_{1},a_{2} — скрещивающиеся рёбра , d — расстояние между a_{1} и a_{2} , varphi  — угол между a_{1} и a_{2};
  • Боковая поверхность — это сумма площадей боковых граней:
S_{b}=sum _{i}^{}S_{i}
  • Полная поверхность — это сумма площади боковой поверхности и площади основания:
 S_{p}=S_{b}+S_{o}
  • Для нахождения площади боковой поверхности в правильной пирамиде можно использовать формулы:
{displaystyle S_{b}={frac {1}{2}}Pa={frac {n}{2}}b^{2}sin alpha }
где a — апофема ,  P — периметр основания,  n — число сторон основания,  b — боковое ребро, alpha  — плоский угол при вершине пирамиды.

Особые случаи пирамиды[править | править код]

Правильная пирамида[править | править код]

Пирамида называется правильной, если основанием её является правильный многоугольник, а вершина проецируется в центр основания.
Тогда она обладает такими свойствами:

Прямоугольная пирамида[править | править код]

Пирамида называется прямоугольной, если одно из боковых рёбер пирамиды перпендикулярно основанию. В данном случае, это ребро и является высотой пирамиды.

Тетраэдр[править | править код]

Тетраэдром называется треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды. Кроме того, существует большое различие между понятиями «правильная треугольная пирамида» и «правильный тетраэдр». Правильная треугольная пирамида — это пирамида с правильным треугольником в основании (грани же должны быть равнобедренными треугольниками). Правильным тетраэдром является тетраэдр, у которого все грани являются равносторонними треугольниками.

См. также[править | править код]

  • Усечённая пирамида
  • Бипирамида

Примечания[править | править код]

  1. Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  2. Математика в понятиях, определениях и терминах. Ч. 1. Пособие для учителей. Под ред. Л. В. Сабинина. М., Просвещение, 1978. 320 с. С. 253.
  3. Б. Л. ван дер Варден. Пробуждающаяся наука. Математика Древнего Египта, Вавилона и Греции. — 3-е изд.. — М.: КомКнига, 2007. — 456 с. — ISBN 978-5-484-00848-3.
  4. М. Е. Ващенко-Захарченко. Начала Евклида с пояснительным введением и толкованиями. — Киев, 1880. — С. 473. — 749 с.
  5. Саакян С. М., Бутузов В. Ф. Изучение геометрии в 10—11-х классах: книга для учителя. — 4-е изд., дораб.. — М.: Просвещение, 2010. — 248 с. — (Математика и информатика). — ISBN 978-5-09-016554-9.
  6. Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.
  7. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, §357.
  8. Кушнир И. А. Триумф школьной геометрии. — К.: Наш час, 2005. — 432 с. — ISBN 966-8174-01-1.
  9. Готман Э. Свойства правильной пирамиды, вписанной в сферу Архивная копия от 22 января 2012 на Wayback Machine // Квант. — 1998. — № 4.

Литература[править | править код]

  • Александров А. Д., Вернер А. Л. Геометрия. Учебник для 10—11 классов общеобразовательных учреждений. — 2-е изд. — М.: Просвещение, 2003. — 271 с. — ISBN 5-09-010773-4.
  • Калинин А. Ю., Терешин Д. А. Стереометрия. 11 класс. — 2-е изд. — М.: Физматкнига, 2005. — 332 с. — ISBN 5-89155-134-9.
  • А. П. Киселёв, Геометрия по Киселёву, arΧiv:1806.06942 [math.HO].
  • Погорелов А. В. Геометрия: Учебник для 10—11 классов общеобразовательных учреждений. — 8-е изд. — М.: Просвещение, 2008. — 175 с. — 60 000 экз. — ISBN 978-5-09-019708-3.

Ссылки[править | править код]

  • Бумажные модели пирамид Архивная копия от 4 января 2010 на Wayback Machine (англ.)
  • «Начала» Евклида.

Добавить комментарий