Как найти в прямоугольнике периметр треугольников

Содержание:

  • Формула
  • Примеры вычисления периметра прямоугольного треугольника

Формула

Чтобы найти периметр прямоугольного треугольника нужно найти сумму длин его сторон.

Таким образом, если $ABC$ – прямоугольный треугольник, в
котором
$a$ и
$b$ – длинны катетов, а
$c$ – длина гипотенузы, то периметр находится по формуле:

$$P_{Delta A B C}=a+b+c$$

Примеры вычисления периметра прямоугольного треугольника

Пример

Задание. В прямоугольном треугольнике катеты равны 3 дм и 4 дм, а гипотенуза –
5 дм. Найти его периметр.

Решение. Найдем периметр этого треугольника по формуле

$$P_{Delta A B C}=a+b+c$$

Подставляя заданные длины сторон, получим:

$P_{Delta A B C}=a3+4+5=12$ (дм)

Ответ. $P_{Delta A B C}=12$ (дм)

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. В прямоугольном треугольнике
$ABC$ длина гипотенузы и одного из катетов соответственно равны
13 м и 12 м. Найти периметр $Delta A B C$.

Решение. Введем обозначение
$a$ и
$b$ – дины катетов,
$c$ – длина гипотенузы. По условию
$c=13$ м и
$a=12$ м. Длину
$b$ второго катета найдем по теореме Пифагора:

$$b=sqrt{c^{2}-a^{2}}$$

Подставляя заданные длины сторон, получим

$b=sqrt{13^{2}-12^{2}}=sqrt{169-144}=sqrt{25}=5$ (м)

Теперь по формуле

$$P_{Delta A B C}=a+b+c$$

можем найти искомый периметр:

$P_{Delta A B C}=13+12+5=30$ (м)

Ответ. $P_{Delta A B C}=30$ (м)

Читать дальше: как найти периметр равнобедренного треугольника.

Периметр прямоугольного треугольника


Периметр прямоугольного треугольника

4.3

Средняя оценка: 4.3

Всего получено оценок: 74.

4.3

Средняя оценка: 4.3

Всего получено оценок: 74.

Нахождение периметра прямоугольного треугольника мало чем отличается от нахождения периметра любой другой фигуры. Здесь не существует специализированной формулы, разница только лишь в подходах к решению задач.

Формула для нахождения периметра прямоугольного треугольника

Как уже говорилось ранее, специализированных формул периметра прямоугольного треугольника нет. Чтобы найти периметр нужно просто просуммировать длины всех трех сторон.

Рис. 1. Произвольный треугольник

Но для треугольника действуют тригонометрические отношения, теорема Пифагора и ряд специальных формул площади. Эти формулы открывают целый набор подходов к решению задач, которые не характерны для произвольной фигуры. Рассмотрим несколько вариантов нахождения периметра прямоугольного треугольника.

Рис. 2. Периметр прямоугольного треугольника

Задача 1

  • В прямоугольном треугольнике площадь равняется 24, а один из катетов равен 6. Найти периметр треугольника.

Рис. 3. Рисунок к задаче 1

Площадь прямоугольного треугольника можно найти как половину произведения катетов. Значение площади уже есть, значит, нужно найти второй катет и гипотенузу. Обозначим катеты латинскими буквами a и b, а гипотенузу буквой c. Пусть а=6.

Тогда: $$S={1over 2}*a*b=24$$

$$S={1over 2}*6*b=24$$

$$3b=24$$

b=8

Две из трех сторон известны, а гипотенузу всегда можно найти через теорему Пифагора.

$$c^2=a^2+b^2$$

$$c=sqrt{a^2+b^2}$$

$$c=sqrt{36+64}=10$$

Найдем периметр, как сумму длин всех сторон:

P=a+b+c=10+8+6=24

Задача 2

  • В прямоугольном треугольнике АВС катет АВ=8, а острый угол равен 30 градусам. Найти периметр прямоугольного треугольника.

Если в задаче дается острый угол прямоугольного треугольника, значит в любом случае в решении нужно использовать тригонометрические функции. Иначе для нахождения результата просто не хватит данных.

В этой задаче есть два возможных варианта. Острый угол может быть расположен у известного катета, а может противолежать ему. В любом случае придется использовать тригонометрические функции, но результаты могут разница. Обычно в задаче этот момент прописывается, но иногда от решающего требуется предоставить оба варианта решения. Это ясно из условия, в котором не говорится, какой из острых углов дан.

Рассмотрим вариант, при котором дан острый угол при известном катете. Тогда воспользуемся функцией косинуса:

$$Cos(BAC)={ABover AC}={sqrt{3}over2}$$

$$AC={ABover {cos(BAC)}}$$

$$AC={8over{sqrt{3}over 2}}={16oversqrt{3}}=9,24$$ – значение округлим до сотых

BC найдем через значение тангенса.

$$tg(BAC)={BCover AB}={1oversqrt{3}}$$

$$BC=AB*{1oversqrt{3}}={ABoversqrt{3}}$$

$$BC={8oversqrt{3}}=4,62$$

Вычисление периметра произведем по общей формуле:

P=8+9,24+4,62=21,86

Если острый угол противолежит известному катету, то решение будет выглядеть немного иначе.

Найдем BC через значение тангенса.

$$tg(ACB)={ABover BC}={1oversqrt{3}}$$

$$BC={ABover {1oversqrt{3}}}=AB*sqrt{3}=8*sqrt{3}=13,86$$

Гипотенузу найдем через значение синуса.

$$sin(ACB)={ABover AC}={1over 2}$$

$$AC={ABover sin(ACB)}={ABover {1over 2}}=2*AB=2*8=16$$

Если в расчетах присутствуют округления, то лучше округленный результат не использовать в дальнейших вычислениях. То есть, если мы посчитали BC, то AC лучше найти через синус, а не через косинус или теорему Пифагора, если есть такая возможность. Использование точных значений избавляет от больших погрешностей в результатах.

Заключение

Что мы узнали?

Мы узнали, что отличия между формулой периметра для прямоугольного и произвольного треугольника нет. Разница в пути решения. Найти периметр прямоугольного треугольника можно через теорему Пифагора, площадь или тригонометрические функции, можно комбинировать различные методы между собой. Главное, это возможность решения задачи без дополнительных построений.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 74.


А какая ваша оценка?

Как найти периметр прямоугольного треугольника

Прямоугольным треугольником считается такой треугольник, один из углов которого равен 90 градусам, а два других являются острыми углами. Расчет периметра такого треугольника будет зависим от количества известных о нем данных.

Прямоугольный треугольник

Вам понадобится

  • В зависимости от случая, знание двух из трех сторон треугольника, а также одного из его острых углов.

Инструкция

Способ 1.Если известны все три стороны треугольника, то, независимо от того, прямоугольный ли треугольник или нет, его периметр будет рассчитан так:
P = a + b + c, где, допустим,
c – гипотенуза;
a и b – катеты.

Способ 2. Если в прямоугольнике известны только 2 стороны, то, используя теорему Пифагора, периметр этого треугольника можно рассчитать по формуле:
P = v(a2 + b2) + a + b, или
P = v(c2 – b2) + b + с.

Способ 3. Пусть в прямоугольном треугольнике даны гипотенуза c и острый угол ?, то найти периметр можно будет таким образом:
P = (1 + sin ? + cos ?)*с.

Способ 4. Дано, что в прямоугольном треугольнике длина одного из катета равна a, а напротив него лежит острый угол ?. Тогда расчет периметра этого треугольника будет вестись по формуле:
P = a*(1/tg ? + 1/sin ? + 1)

Способ 5. Пускай нам известен катет a и прилежащий к нему угол ?, тогда периметр будет рассчитан так:
P = a*(1/сtg ? + 1/cos ? + 1)

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Выбирайте формулу в зависимости от известных величин.

1. Как найти периметр треугольника, зная три стороны

Просто посчитайте сумму всех сторон.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b, c — стороны треугольника.

2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности

Умножьте площадь треугольника на 2.

Разделите результат на радиус вписанной окружности.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • S — площадь треугольника;
  • r — радиус вписанной окружности.

3. Как вычислить периметр треугольника, зная две стороны и угол между ними

Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:

  • Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
  • Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
  • Найдите корень из результата.

Теперь прибавьте к найденной стороне две ранее известные стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • b, c — известные стороны треугольника;
  • ɑ — угол между известными сторонами;
  • a — неизвестная сторона треугольника.

4. Как найти периметр равностороннего треугольника, зная одну сторону

Умножьте сторону на 3.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).

5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание

Умножьте боковую сторону на 2.

Прибавьте к результату основание.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
  • b — основание треугольника (это сторона, которая отличается длиной от остальных).

6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту

Найдите квадраты боковой стороны и высоты.

Отнимите от первого числа второе.

Найдите корень из результата и умножьте его на 2.

Прибавьте к полученному числу две боковые стороны.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — боковая сторона треугольника;
  • h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).

7. Как вычислить периметр прямоугольного треугольника, зная катеты

Найдите квадраты катетов и посчитайте их сумму.

Извлеките корень из полученного числа.

Прибавьте к результату оба катета.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a, b — катеты треугольника (стороны, которые образуют прямой угол).

8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу

Посчитайте квадраты гипотенузы и катета.

Отнимите от первого числа второе.

Найдите корень из результата.

Прибавьте катет и гипотенузу.

Иллюстрация: Лайфхакер
  • P — искомый периметр;
  • a — любой катет прямоугольника;
  • c — гипотенуза (сторона, которая лежит напротив прямого угла).

Основные определения

Наверное, каждый из нас сталкивался с треугольником. Это могло быть в школе, вузах, колледжах, на работе, во время помощи детям. Треугольник – это одна из самых простых геометрических фигур, но в то же время она выполняет очень важную роль. Множество свойств хранит треугольник. Но сегодня не будем вдаваться в подробности, а поговорим про периметр и порешаем задачи по нахождению его.

Если мы отметим на плоскости 3 точки и проведём к ним линии, то как раз получим треугольник.

Понятия

Треугольник – это геометрическая фигура, состоящая из трёх точек, которые соединены отрезками – сторонами. В зависимости от отношений между сторонами фигуры, то они бывают равносторонними, разносторонними и равнобедренными (р/б – равнобедренный, р/с – равносторонний).

Вершины треугольника – это точки, где соединяются 2 стороны фигуры.

Р/б треугольник – это треугольник у которого две стороны равны, но не равны третьей.

Р/с треугольник – это треугольник, у которого все стороны равны между собой.

Разносторонний треугольник – это треугольник, у которого все стороны не равны между собой.

Прямоугольный треугольник — это треугольник, у у которого один угол равен 90о. Самая длинная сторона называется гипотенузой, а две другие катетами.

Виды треугольников

Формула нахождения периметра

Из определения следует, что периметр геометрической фигуры – это сумма длин всех сторон, и треугольник не стал исключением. Общая формула имеет вид: Р = а + b + с. Периметр будет обозначаться Р. а, b и с — стороны треугольника. Решим задачу №1.

Задача 1

Пусть нам дан треугольник со сторонами 13 см, 15 см, 12 см. Нужно найти периметр данного треугольника.

Решение: [P=13+15+12=40] см.

Ответ: 40 см.

Периметр разностороннего треугольника

В прошлой задаче мы как раз нашли периметр разностороннего треугольника. Решим похожую задачу №2

Задача 2

Дан треугольник со сторонами 25 дм, 30 дм, 15 дм. Найдите периметр треугольника. Ответ выразите в метрах.

Решение:

P = 30 + 25 + 15 = 70 дм

70 : 10 = 7 м

Ответ: 7 м.

Периметр равнобедренного треугольника

Так как в р/б треугольнике 2 стороны равны (боковые), то формулу нахождения можно представить как: P = 2a + b. Решим 2 задачи.

Задачи 3 — 4

Дан равнобедренный треугольник АВС с биссектрисой, проведённой к основанию и равной 4 см, а также с боковой
стороной, равной 5 см. Найдите периметр данного треугольника.

Нахождение периметра равнобедренного треугольника

Решение:

Так как ВН – биссектриса р/б треугольника АВС, то она является как высотой, так и медианой. Следовательно, ΔАВН прямоугольный и АН = НС.

В ΔАВН по теореме Пифагора [A H^{2}=A B^{2}-B H^{2}=25-16=9]см

АН = НС = √9 = 3 см

АС = АН + НС = 3 + 3 = 6 см

Р = 6 + 2*5 = 16 см

Ответ: 16 см.


Нахождение периметра треугольника

В треугольнике ДСВ ДС = СВ = 15 см, высота СК = 9 см. Найдите периметр этого треугольника.

Решение:

В ΔСКД по теореме Пифагора:

[text { ДК² }=text { ДС }^{2}-mathrm{CK}^{2}=225-81=144]см

ДК = √144 = 12 см.

Так как СК — высота в р/б треугольнике, проведённая к основанию, то она является медианой, следовательно, ДВ = ДК + КВ = 12 + 12 = 24 см.

Р = ДС + СВ + ДВ = 15 + 15 + 24 = 54 см.

Ответ: 54 см.

Нет времени решать самому?

Наши эксперты помогут!

Периметр равностороннего треугольника

А это один из самых “хороших” треугольников, его ещё называют правильным, так как все стороны и углы равны между собой. Формула нахождения периметра будет иметь вид: P = 3a.

Задачи 5 — 6

Дан равносторонний треугольник со стороной а = 13. Найдите периметр этого треугольника.

Решение:

Р = 3а = 3 * 13 = 39

Ответ: 39.


В равностороннем треугольнике АВС есть стороны: АВ = АС = СВ = 15 см, Найдите периметр данного треугольника.

Решение:

Р = 3АВ = 15 * 3 = 45 см.

Ответ: 45 см.

Периметр прямоугольного треугольника

Вычисляем по стандартной формуле: Р = а + в + с. Но у такого вида треугольников есть огромное преимущество – применение теоремы Пифагора.

Задачи 7 — 8

Дан прямоугольный треугольник с катетами а = 6 и в = 8. Найдите периметр.

Решение:

По теореме Пифагора: [c^{2}=в^{2}+a^{2}=64+36=100]

с = √100 = 10

Р = а + в + с = 6 + 8 + 10 = 24

Ответ: 24.


В прямоугольном треугольнике АВС, [angle mathrm{A}=90^{circ}, mathrm{AB}=9 mathrm{~см}, mathrm{AC} = 12см]. Надо найти периметр и площадь АВС.

Решение

По теореме Пифагора в ΔАВС:

[mathrm{CB}^{2}=mathrm{AC}^{2}+A mathrm{C}^{2}=144+81=225 mathrm{~см}]

СВ = √225 = 15 см

S = (АС * АВ) : 2 = (9 * 12) : 2 = 54 см

P = 15 + 9 + 12 = 36 см

Ответ: 36 см; 54 см.

Нахждение периметра треугольника 1

Добавить комментарий