Как найти валентность азота в азотной кислоте

Каковы валентность и степень окисления азота в азотной кислоте?



Профи

(550),
закрыт



14 лет назад

Евгения Френкель

Гений

(57608)


14 лет назад

Валентность – число ковалентных связей, которые образует данный атом. Ковалентные связи образуются путём пересечения электронных облаков. А у атома азота ЧЕТЫРЕ электронных облака, на котоых могут находиться ВАЛЕНТНЫЕ электроны. поэтому валентность атома азота в азотной кислоте = 4 (одна из связей между атомами азота и кислорода образуется по донорно-акцепторному механизму) . А вот степень окисления +5 (участвуют в процессе все 5 валентных электрона).

MaratПросветленный (25907)

14 лет назад

Вообще “валентность” – на редкость архаичный термин, представляющий интерес разве что для истории химии. Для качественного обсуждения химической связи в молекулах (ионах) вполне достаточно таких понятий как “степень окисления”, “число валентных электронов (максимальная степень окисления)”, “локализованные электронные пары”, ” делокализованная пи-связь” – как видите, “валентность”, в общем-то, и не нужна.

MaratПросветленный (25907)

14 лет назад

Я думаю, Вы не совсем правы. Понятие “валентность” возникло в те далёкие времена, когда о природе хим. связи были весьма смутные представления. С качественным смыслом валентности я согласен, но КОЛИЧЕСТВЕННОЕ использование этого понятия в наше время не оправдано и приводит исключительно к ПУТАНИЦЕ. Например,
1) Вы пишете: “Валентность – число ковалентных связей, которые образует данный атом”. Но ведь сосчитать можно только ЛОКАЛИЗОВАННЫЕ сигма-связи (электронные пары). Не представляю, как можно (без хитрых трюков) сосчитать количество ДЕЛОКАЛИЗОВАННЫХ пи-связей для МНОГОАТОМНЫХ (!) молекул ?! Двухатомные молекулы составляют исключение.
2) Вы утверждаете: “Ковалентные связи образуются путём пересечения электронных облаков. А у атома азота ЧЕТЫРЕ электронных облака, на которых могут находиться ВАЛЕНТНЫЕ электроны”. Так почему же нельзя просто вести речь о КОЛИЧЕСТВЕ ВАЛЕНТНЫХ ОРБИТАЛЕЙ ? Это естественное понятие намного логичнее, понятнее и проще мудрёной “валентности” 🙂

Азотная кислота

Строение молекулы и физические свойства

Азотная кислота HNO3 – это сильная одноосновная кислота-гидроксид. При обычных условиях бесцветная, дымящая на воздухе жидкость, температура плавления −41,59 °C, кипения +82,6 °C ( при нормальном атмосферном давлении). Азотная кислота смешивается с водой во всех соотношениях. На свету частично разлагается.

Валентность азота в азотной кислоте равна IV, так как валентность V у азота отсутствует. При этом степень окисления атома азота равна +5. Так происходит потому, что атом азота образует 3 обменные связи и одну донорно-акцепторную, является донором электронной пары.

Поэтому строение молекулы азотной кислоты можно описать резонансными структурами:

Обозначим дополнительные связи между азотом и кислородом пунктиром. Этот пунктир по сути обозначает делокализованные электроны. Получается формула:

Способы получения

В лаборатории азотную кислоту можно получить разными способами:

1. Азотная кислота  образуется при действии концентрированной серной кислоты на твердые нитраты металлов. При этом менее летучая серная кислота вытесняет более летучую азотную.

Например, концентрированная серная кислота вытесняет азотную из кристаллического нитрата калия:

KNO3    +    H2SO4(конц)    →    KHSO4    +    HNO3

2. В промышленности азотную кислоту получают из аммиака. Процесс осуществляется постадийно.

1 стадия. Каталитическое окисление аммиака.

4NH3    +   5O2    →    4NO  +   6H2O

2 стадия. Окисление оксида азота (II)  до оксида азота (IV) кислородом воздуха.

2NO   +    O2   →    2NO2

3 стадия. Поглощение оксида азота (IV) водой в присутствии избытка кислорода.

4NO2   +   2H2O   +  O2   →  4HNO3

Химические свойства

Азотная кислота – это сильная кислота. За счет азота со степенью окисления +5 азотная кислота проявляет сильные окислительные свойства.

1. Азотная кислота практически полностью диссоциирует в водном растворе.

 HNO→ H+ + NO3

2. Азотная кислота реагирует с основными оксидами, основаниями, амфотерными оксидами  и амфотерными гидроксидами

Например, азотная кислота взаимодействует с оксидом меди (II):

CuO   +   2HNO3   →   Cu(NO3)2   +   H2O

Еще пример: азотная кислота реагирует с гидроксидом натрия:

HNO3   +   NaOH   →   NaNO3   +   H2O

3. Азотная кислота вытесняет более слабые кислоты из их солей (карбонатов, сульфидов, сульфитов). 

Например, азотная кислота взаимодействует с карбонатом натрия:

2HNO3   +   Na2CO3   →  2NaNO3   +   H2O   +   CO2

4. Азотная кислота частично разлагается при кипении или под действием света:

4HNO3  →   4NO2   +   O2   +   2H2O

5. Азотная кислота активно взаимодействует с металлами. При этом  никогда не выделяется водород! При взаимодействии азотной кислоты с металлами окислителем всегда выступает азот +5. Азот в степени окисления +5 может восстанавливаться до степеней окисления -3, 0, +1, +2 или +4 в зависимости от концентрации кислоты и активности металла.

металл + HNO3 → нитрат металла + вода + газ (или соль аммония)

С алюминием, хромом и железом на холоду концентрированная HNO3  не реагирует – кислота «пассивирует» металлы, т.к. на их поверхности образуется пленка оксидов, непроницаемая для концентрированной азотной кислоты. При нагревании реакция идет. При этом азот восстанавливается до степени окисления +4:

Fe    +   6HNO3(конц.)  →   Fe(NO3)3   +   3NO2  +   3H2O

 Al   +   6HNO3(конц.)   →  Al(NO3)3   +   3NO2  +   3H2O

Золото и платина не реагируют с азотной кислотой, но растворяются в «царской водке» – смеси концентрированных азотной и соляной кислот в соотношении 1 :  3 (по объему):

HNO3      +   3HCl   +   Au   →   AuCl3   +   NO   +   2H2O

Концентрированная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (IV), азот восстанавливается минимально:

4HNO3(конц.)    +    Cu   →    Cu(NO3)2    +    2NO2   +   2H2O

С активными металлами (щелочными и щелочноземельными) концентрированная азотная кислота реагирует с образованием оксида азота (I):

10HNO3       +  4Ca   →    4Ca(NO3)2    +    N2O   +   5H2O

Разбавленная азотная кислота взаимодействует с неактивными металлами и металлами средней активности (в ряду электрохимической активности после алюминия). При этом образуется оксид азота (II).

8HNO3 (разб.)     +    3Cu   →    3Cu(NO3)2    +    2NO   +   4H2O

С активными металлами (щелочными и щелочноземельными), а также оловом и железом разбавленная азотная кислота реагирует с образованием молекулярного азота:

12HNO3(разб)     +  10Na   →    10NaNO3    +    N2   +   6H2O

При взаимодействии кальция и магния с азотной кислотой любой концентрации (кроме очень разбавленной) образуется оксид азота (I):

10HNO3       +  4Ca    →   4Ca(NO3)2    +    2N2O   +   5H2O

Очень разбавленная азотная кислота реагирует с металлами с образованием нитрата аммония:

10HNO3         +  4Zn   →    4Zn(NO3)2    +    NH4NO3   +   3H2O

Таблица. Взаимодействие азотной кислоты с металлами.

Азотная кислота
Концентрированная Разбавленная
с Fe, Al, Cr с неактивными металлами и металлами средней активности (после Al) с щелочными и щелочноземельными металлами  с неактивными металлами и металлами средней активности (после Al) с металлами до Al в ряду активности, Sn, Fe 
пассивация при низкой Т образуется NO2 образуется N2O  образуется NO  образуется N2

6. Азотная кислота окисляет и неметаллы (кроме кислорода, водорода, хлора, фтора и некоторых других). При взаимодействии с неметаллами HNOобычно восстанавливается до NO  или NO2, неметаллы окисляются до соответствующих кислот, либо оксидов (если кислота неустойчива).

Например, азотная кислота окисляет серу, фосфор, углерод, йод:

6HNO3       +   S     →   H2SO4   +   6NO2    +    2H2O

Безводная азотная кислота – сильный окислитель. Поэтому она легко взаимодействует с красным и белым фосфором. Реакция с белым фосфором протекает очень бурно. Иногда она сопровождается взрывом.

5HNO3      +    P   →    H3PO4     +   5NO2    +    H2O

5HNO3      +    3P     +    2H2O   →    3H3PO4     +   5NO

Видеоопыт взаимодействия фосфора с безводной азотной кислотой можно посмотреть здесь.

4HNO3     +    C   →   CO2    +    4NO2    +    2H2O

Видеоопыт взаимодействия угля с безводной азотной кислотой можно посмотреть здесь.

10HNO3   +   I2  →   2HIO3   +   10NO2   +   4H2O

7. Концентрированная азотная кислота окисляет сложные вещества (в которых есть элементы в отрицательной, либо промежуточной степени окисления): сульфиды металлов, сероводород, фосфиды, йодиды, соединения железа (II) и др. При этом азот восстанавливается до NO2, неметаллы окисляются до соответствующих кислот (или оксидов), а металлы окисляются до устойчивых степеней окисления.

Например, азотная кислота окисляет оксид серы (IV):

2HNO3     +   SO2  →   H2SO4     +   2NO2

Еще пример: азотная кислота окисляет иодоводород:

6HNO3   +   HI   →  HIO3   +   6NO2   +   3H2O

Сера в степени окисления -2 окисляется без нагревания до простого вещества, при нагревании до серной кислоты. 

Например, сероводород окисляется азотной кислотой без нагревания до молекулярной серы:

2HNO3     +   H2S     →  S    +    2NO2   +   2H2O

При нагревании до серной кислоты:

2HNO3     +   H2S     →  H2SO4    +    2NO2   +   2H2O

8HNO3     +    CuS   →   CuSO4    +   8NO2    +   4H2O

Соединения железа (II) азотная кислота окисляет до соединений железа (III):

4HNO3     +    FeS   →   Fe(NO3)3  +   NO    +   S    +   2H2O

8. Азотная кислота окрашивает белки в оранжево-желтый цвет («ксантопротеиновая реакция«).

Ксантопротеиновую реакцию проводят для обнаружения белков, содержащих в своем составе ароматические аминокислоты. К раствору белка прибавляем концентрированную азотную кислоту. Белок свертывается. При нагревании белок желтеет. При добавлении избытка аммиака окраска переходит в оранжевую.

Видеоопыт обнаружения белков с помощью азотной кислоты можно посмотреть здесь.

Наиболее важное с практической точки зрения соединение азота – это азотная кислота. Данный урок посвящен изучению  свойств азотной кислоты. В ходе урока вы также познакомитесь с основными областями применения азотной кислоты.

I. Строение молекулы 


HNO3  – Азотная кислота

Химические формулы

Опытным путём доказано, что в молекуле азотной кислоты между двумя атомами кислорода и атомом азота две химические связи абсолютно одинаковые – полуторные связи. Степень окисления азота +5, а валентность равна IV.

II. Физические свойства


Азотная кислота HNO3 в чистом виде – бесцветная жид­кость с резким удушливым запахом, неограниченно растворимая в воде; t°пл.= -41°C; t°кип.= 82,6°С, r = 1,52 г/см3. В небольших количествах она образуется при грозовых разрядах и присутствует в дождевой воде.

Под действием света азотная кислота частично разлагается с выделением NО2 и за cчет этого приобретает светло-бурый цвет:

N2 + O2 грозовые эл.разряды→ 2NO

2NO + O2 → 2NO2

4НNО3 свет→ 4NО2(бурый газ) + 2Н2О + О2

Азотная кислота высокой концентрации выделяет на воздухе газы, которые в закрытой бутылке обнаруживаются в виде коричневых паров (оксиды азота). Эти газы очень ядовиты, так что нужно остерегаться их вдыхания. Азотная кислота окисляет многие органические вещества. Бумага и ткани разрушаются вследствие окисления образующих эти материалы веществ. Концентрированная азотная кислота вызывает сильные ожоги при длительном контакте и пожелтение кожи на несколько  дней  при  кратком  контакте.  Пожелтение кожи свидетельствует о разрушении белка и выделении серы (качественная реакция на концентрированную азотную кислоту – жёлтое окрашивание из-за выделения элементной серы при действии кислоты на белок – ксантопротеиновая реакция). То есть – это ожог кожи. Чтобы предотвратить ожог, следует работать с концентрированной азотной кислотой в резиновых перчатках.

III. Получение


1. Лабораторный способ 

KNO3 + H2SO4(конц)  → KHSO4 + HNO3­ (при нагревании) 

2. Промышленный способ

Осуществляется в три этапа: 

a) Окисление аммиака на платиновом катализаторе до NO 

4NH3 + 5O2 → 4NO + 6H2O (условия: катализатор – Pt, t = 500˚С) 

б) Окисление кислородом воздуха NO до NO2 

2NO + O2 → 2NO2 

в) Поглощение NO2 водой в присутствии избытка кислорода 

4NO2 + О2 + 2H2O ↔ 4HNO3

или  3NO2 + H2O ↔ 2HNO3+NO (без избытка кислорода)

Тренажёр: “Получение азотной кислоты”

IV. Химические свойства


Для азотной кислоты характерны свойства: общие с другими кислотами и специфические.

1. Химические свойства общие с другими кислотами

1. Очень сильная кислота.  

Опыт: “Действие индикаторов”                                                                                          

Диссоциирует в водном растворе практически нацело:

 HNO3 → H+ + NO3

Опыт: “Изменение цветов индикаторов в кислотах”

2. Реагирует с основными оксидами

K2O + 2HNO3 → 2KNO3 + H2O

K2O + 2H+ + 2NO3 → 2K+ + 2NO3 + H2O

K2O + 2H+ → 2K+ + H2O

3. Реагирует с основаниями

HNO3 + NaOH → NaNO3 + H2O

H+ + NO3 + Na+ + OH → Na+ + NO3 + H2O

H+ + OH → H2O

4. Реагирует с солями, вытесняет слабые кислоты из их солей

 2HNO3 + Na2CO3 → 2NaNO3 + H2O + CO2­

2H+ + 2NO3 + 2Na+ + СO32- → 2Na+ + 2NO3 + H2O + CO2­

2H+ + СO32- → H2O + CO2­

 2. Специфические свойства азотной кислоты

 Азотная кислота – сильный окислитель

N+5 → N+4→ N+2→ N+1→ No → N-3

N+5 + 8eN-3 окислитель, восстанавливается.

 1. Разлагается на свету и при нагревании

 4HNO3  t˚C→ 2H2O + 4NO2­ + O2­

 Образуется бурый газ

2. При взаимодействии с металлами никогда не выделяется водород

HNO3 + Me = соль + H2O + Х

 

Щелочные и щелочноземельные

Fe, Cr,  Al,   Ni,  Co

Металлы до водорода

Металлы после водорода

(Cu и др)

Благородные

Au, Pt, Os, Ir,Ta

HNO3(конц.ω>60%)

N2O

пассивация (при обычных условиях);

NO2 (при нагревании)

Опыт:  ”Взаимодействие азотной кислоты с железом”
 

NO2

NO2

Опыт: ”Взаимодействие азотной кислоты с медью”

Нет реакции

HNO3(разбавл.)

NH3, NH4NO3

Основной NO, но в зависимости от разбавления могут образовываться N2, N2O, NH3,NH4NO3. Чем больше разбавлена кислота, тем ниже степень окисления азота.

NO

Таблица. Продукты реакции взаимодействия азотной кислоты с металлами

Опыт: “Взаимодействие меди с азотной кислотой”
Упрощенная схема «Продукты реакции взаимодействия азотной кислоты с металлами»

 

Царская водка: V(HNO3) : V(HCl) = 1 : 3 растворяет благородные металлы.

HNO3 + 4HCl + Au = H[AuCl4] + NO + 2H2O

4HNO3 + 18HCl + 3Pt = 3H2[PtCl6] + 4NO + 8H2O

Тренажёр:  “Взаимодействие азотной кислоты с металлами”

3. Реагирует с неметаллами

Азотная кислота превращается в NO (или в NO2); неметаллы окисляются до соответствующих кислот:

Видео: “Взаимодействие азотной кислоты с углем”

S+ 6HNO3(конц) → H2S+6O4 + 6NO2 + 2H2O

B+ 3HNO3 → H3B+3O3 + 3NO2

3P+ 5HNO3 + 2H2O → 5NO + 3H3P+5O4

HNO3  (конц.) + неметалл = окисление неметалла до кислоты в высшей степени окисления + NO2 + вода

HNO3 (разбав.) + неметалл + вода = окисление неметалла до кислоты в высшей степени окисления + NO

V. Применение

  • в производстве минеральных удобрений;
  • в военной промышленности;
  • в фотографии — подкисление некоторых тонирующих растворов;
  • в станковой графике — для травления печатных форм (офортных досок, цинкографических типографских форм и магниевых клише).
  • в производстве взрывчатых и отравляющих веществ

V. Тест


№1. Степень окисления атома азота в молекуле азотной кислоты

a. +4   

            b. +3   

            c. +5   

            d. +2

№2. Атом азота в молекуле азотной кислоты имеет валентность равную –

            a. II    

            b. V    

            c. IV   

            d. III

№3. Какими физическими свойствами характеризуют чистую азотную кислоту?

a. без цвета   

            b. не имеет запаха   

            c. имеет резкий раздражающий запах      

            d. дымящая жидкость         

            e. окрашена в жёлтый цвет

№4. Установите соответствие между исходными веществами и продуктами реакции:

a) NH3 + O2

1)  NO2 

b) KNO3 + H2SO4

2)  NO2 + О2 + H2O

c) HNO3

3)  NO + H2O

d) NO + O2

4)  KHSO4 + HNO3­

№5. Расставьте коэффициенты методом электронного баланса, покажите переход электронов, укажите процессы окисления (восстановления; окислитель (восстановитель):

NO2 + О2 + H2O ↔ HNO3

VI. Закрепление


Задание №1.

Осуществите превращения по схеме, назовите вещества, для УХР со * составить ОВ баланс, а для** разбор РИО:

NH4Cl**→ NH3* → N2 → NO → NO2 → HNO3 → NO2

Задание №2.

Осуществить превращения по схеме (внимательно посмотрите, куда направлены стрелки):

Соль аммония←Аммиак←Нитрид Лития ←Азот → Оксид азота (II)←Азотная кислота

Для ОВР составить е-баланс, для РИО полные, ионные уравнения.

Задание №3.

Напишите уравнения реакций взаимодействия азотной кислоты со следующими веществами в молекулярном и ионном виде:
a) Al2O3
б) Ba(OH)2
в) Na2S

Задание №4.

Запишите уравнения, составьте электронный баланс, укажите процессы окисления и восстановления, окислитель и восстановитель:
а) Сa + HNO3 (конц.)
б) Сa + HNO3 (paзбавл.)

Задание №5.

Осуществите переход по ссылке, изучите информацию на странице и      посмотрите видео , нажмите “посмотреть опыт”.
Напишите в молекулярном и ионном виде уравнения реакций, с помощью которых можно различить азотную, серную и соляную кислоту.

ЦОРы


Анимация: “Химические формулы”

Анимация: ”Промышленный способ получения азотной кислоты” 

Опыт: ”Изменение цвета индикаторов в растворе азотной кислоты”

Опыт: ”Взаимодействие азотной кислоты с железом”

Опыт: ”Взаимодействие азотной кислоты с медью”

Видео: “Взаимодействие азотной кислоты с углем”

Видео – Эксперимент: “Действие азотной кислоты на бумагу и солому”

Видео – Эксперимент: “Взаимодействие меди с азотной кислотой”

Видео – Эксперимент: “Свойства азотной кислоты”

Видео – Эксперимент: “Взаимодействие азотной кислоты с металлами”

Видео – Эксперимент: “Взаимодействие безводной азотной кислоты с белым фосфором”

Видео – Эксперимент: “Взаимодействие безводной азотной кислоты с углем”

Видео – Эксперимент: “Взаимодействие безводной азотной кислоты со скипидаром”

Видео – Эксперимент: “Окислительные свойства азотной кислоты”

1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов.

Электроотрицательность

Электроотрицательность  — способность атома какого-либо химического элемента в соединении оттягивать на себя электроны связанных с ним атомов других химических элементов.

Электроотрицательность, как и прочие свойства атомов химических элементов, изменяется с увеличением порядкового номера элемента периодически:

зависимость электроотрицательности от порядкового номера элемента

График выше демонстрирует периодичность изменения электроотрицательности элементов главных подгрупп в зависимости от порядкового номера элемента.

При движении вниз по подгруппе таблицы Менделеева электроотрицательность химических элементов уменьшается, при движении вправо по периоду возрастает.

Электроотрицательность отражает неметалличность элементов: чем выше значение электроотрицательности, тем более у элемента выражены неметаллические свойства.

Степень окисления

Степень окисления – условный заряд атома химического элемента  в соединении, рассчитанный исходя из предположения, что все связи в его молекуле ионные, т.е. все связывающие электронные пары смещены к атомам с большей электроотрицательностью.

Как рассчитать степень окисления элемента в соединении?

1) Степень окисления химических элементов в простых веществах всегда равна нулю.

2) Существуют элементы, проявляющие в сложных веществах постоянную степень окисления:

Элементы, проявляющие постоянную СО

Значение постоянной СО этого элемента

Щелочные металлы, т.е. все металлы
IA группы — Li, Na, K, Rb, Cs, Fr
+1
Все элементы II группы, кроме ртути:
Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd
+2
Алюминий Al +3
Фтор F -1

3) Существуют химические элементы, которые проявляют в подавляющем большинстве соединений постоянную степень окисления. К таким элементам относятся:

4) Алгебраическая сумма степеней окисления всех атомов в молекуле всегда равна нулю. Алгебраическая сумма степеней окисления всех атомов в ионе равна заряду иона.

5) Высшая (максимальная) степень окисления равна номеру группы. Исключения, которые не попадают под это правило, — элементы побочной подгруппы I группы, элементы побочной подгруппы VIII группы, а также кислород и фтор.

Химические элементы, номер группы которых не совпадает с их высшей степенью окисления (обязательные к запоминанию)

Химический элемент

Номер группы

Высшая степень окисления

Кислород VI +2 (в OF2)
Фтор VII 0
Медь I +2
Железо VIII  +6 (например K2FeO4)

6) Низшая степень окисления металлов всегда равна нулю, а низшая степень окисления неметаллов рассчитывается по формуле:

низшая степень окисления неметалла = №группы − 8

Отталкиваясь от представленных выше правил, можно установить степень окисления химического элемента в любом веществе.

Нахождение степеней окисления элементов в различных соединениях

Пример 1

Определите степени окисления всех элементов в серной кислоте.

Решение:

Запишем формулу серной кислоты:

H2SO4

Степень окисления водорода во всех сложных веществах +1 (кроме гидридов металлов).

Степень окисления кислорода во всех сложных веществах равна  -2 (кроме пероксидов и фторида кислорода OF2). Расставим известные степени окисления:

электроотрицательность

Обозначим степень окисления серы как x:

как определять степени окисления

Молекула серной кислоты, как и молекула любого вещества, в целом электронейтральна, т.к. сумма степеней окисления всех атомов в молекуле равна нулю. Схематически это можно изобразить следующим образом:

расчет степеней окисления в H2SO4

Т.е. мы получили следующее уравнение:

уравнение для установления степени окисления серы

Решим его:

степень окисления

Таким образом, степень окисления серы в серной кислоте равна +6.

Пример 2

Определите степень окисления всех элементов в дихромате аммония.

Решение:

Запишем формулу дихромата аммония:

(NH4)2Cr2O7

Как и в предыдущем случае, мы можем расставить степени окисления водорода и кислорода:

степени окисления

Однако мы видим, что неизвестны степени окисления сразу у двух химических элементов — азота и хрома. Поэтому найти степени окисления аналогично предыдущему примеру мы не можем (одно уравнение с двумя переменными не имеет единственного решения).

Обратим внимание на то, что указанное вещество относится к классу солей и, соответственно, имеет ионное строение. Тогда справедливо можно сказать, что в состав дихромата аммония входят катионы NH4+ (заряд данного катиона можно посмотреть в таблице растворимости). Следовательно, так как в формульной единице дихромата аммония два положительных однозарядных катиона NH4, заряд дихромат-иона равен -2, поскольку вещество в целом электронейтрально. Т.е. вещество образовано катионами NH4+ и анионами Cr2O72-.

Мы знаем степени окисления водорода и кислорода. Зная, что сумма степеней окисления атомов всех элементов в ионе равна заряду, и обозначив степени окисления азота и хрома как x и y соответственно, мы можем записать:

степени окисления элементов в катионе аммония и дихромат-ионе

Т.е. мы получаем два независимых уравнения:

установление степеней окисления элементов в дихромате аммония

Решая которые, находим x и y:

нахождение степеней окисления азота и хрома в дихромате аммония

Таким образом, в дихромате аммония степени окисления азота -3, водорода +1, хрома +6, а кислорода -2.

Как определять степени окисления элементов в органических веществах можно почитать здесь.

Валентность

Валентность — число химических связей, которые образует атом элемента в химическом соединении.

Валентность атомов обозначается римскими цифрами: I, II, III и т.д.

Валентные возможности атома зависят от количества:

1) неспаренных электронов орбиталь с неспаренным электроном

2) неподеленных электронных пар на орбиталях валентных уровней орбиталь с неподеленной парой электронов

3) пустых электронных орбиталей валентного уровня вакантная орбиталь

Валентные возможности атома водорода

Изобразим электронно-графическую формулу атома водорода:

электронно-графическая формула атома водорода

Было сказано, что на валентные возможности могут влиять три фактора — наличие неспаренных электронов, наличие неподеленных электронных пар на внешнем уровне, а также наличие вакантных (пустых) орбиталей внешнего уровня. Мы видим на внешнем (и единственном) энергетическом уровне один неспаренный электрон. Исходя из этого, водород может точно иметь валентность, равную I. Однако на первом энергетическом уровне есть только один подуровень — s, т.е. атом водорода на внешнем уровне не имеет как неподеленных электронных пар, так и пустых орбиталей.

Таким образом, единственная валентность, которую может проявлять атом водорода, равна I.

Валентные возможности атома углерода

Рассмотрим электронное строение атома углерода. В основном состоянии электронная конфигурация его внешнего уровня выглядит следующим образом:

строение внешнего уровня атома углерода

Т.е. в основном состоянии на внешнем энергетическом уровне невозбужденного атома углерода находится 2 неспаренных электрона. В таком состоянии он может проявлять валентность, равную II. Однако атом углерода очень легко переходит в возбужденное состояние при сообщении ему энергии, и электронная конфигурация внешнего слоя в этом случае принимает вид:

строение внешнего уровня атома углерода в возбужденном состоянии

Несмотря на то что на процесс возбуждения атома углерода тратится некоторое количество энергии, траты с избытком компенсируются при образовании четырех ковалентных связей. По этой причине валентность IV намного более характерна для атома углерода. Так, например, валентность IV углерод имеет в молекулах углекислого газа, угольной кислоты и абсолютно всех органических веществ.

Помимо неспаренных электронов и неподеленных электронных пар на валентные возможности также влияет наличие вакантных ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) орбиталей валентного уровня. Наличие таких орбиталей на заполняемом уровне приводит к  тому, что атом может выполнять роль акцептора электронной пары, т.е. образовывать дополнительные ковалентные связи по донорно-акцепторному механизму. Так, например, вопреки ожиданиям, в молекуле угарного газа CO связь не двойная, а тройная, что наглядно показано на следующей иллюстрации:

образование молекулы угарного газа

Резюмируя информацию по валентным возможностям атома углерода:

1) Для углерода возможны валентности II, III, IV

2) Наиболее распространенная валентность углерода в соединениях IV

3) В молекуле угарного газа CO связь тройная (!), при этом одна из трех связей образована по донорно-акцепторному механизму

Валентные возможности атома азота

Запишем электронно-графическую формулу внешнего энергетического уровня атома азота:

внешний энергетический уровень атома азота

Как видно из иллюстрации выше, атом азота в своем обычном состоянии имеет 3 неспаренных электрона, в связи с чем логично предположить о его способности проявлять валентность, равную III. Действительно, валентность, равная трём, наблюдается в молекулах аммиака (NH3), азотистой кислоты (HNO2), треххлористого азота (NCl3) и т.д.

Выше было сказано, что валентность атома химического элемента зависит не только от количества неспаренных электронов, но также и от наличия неподеленных электронных пар. Связано это с тем, что ковалентная химическая связь может образоваться не только, когда два атома предоставляют друг другу по одному электрону, но  также и тогда, когда один атом, имеющий неподеленную пару электронов — донор( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) предоставляет ее другому атому с вакантной ( 1.3.2. Электроотрицательность. Степень окисления и валентность химических элементов. ) орбиталью валентного уровня (акцептору). Т.е. для атома азота возможна также валентность IV за счет дополнительной ковалентной связи, образованной по донорно-акцепторному механизму. Так, например, четыре ковалентных связи, одна из которых образована по донорно-акцепторному механизму, наблюдается при образовании катиона аммония:

образование катиона аммония

Несмотря на то что одна из ковалентных связей образуется по донорно-акцепторному механизму, все связи N-H в катионе аммония абсолютно идентичны и ничем друг от друга не отличаются.

Валентность, равную V, атом азота проявлять не способен. Связано это с тем, что для атома азота невозможен переход в возбужденное состояние, при котором происходит распаривание двух электронов с переходом одного из них на свободную орбиталь, наиболее близкую по уровню энергии. Атом азота не имеет d-подуровня, а переход на 3s-орбиталь энергетически настолько затратен, что затраты энергии не покрываются образованием новых связей. Многие  могут задаться вопросом, а какая же тогда валентность у азота, например, в молекулах азотной кислоты HNO3 или оксида азота N2O5? Как ни странно, валентность там тоже IV, что видно из нижеследующих структурных формул:

строение молекул азотной кислоты и N2O5

Пунктирной линией на иллюстрации изображена так называемая делокализованная π-связь. По этой причине концевые связи NO можно назвать «полуторными». Аналогичные полуторные связи имеются также в молекуле озона O3, бензола C6H6 и т.д.

em>Резюмируя информацию по валентным возможностям атома азота:

1) Для азота возможны валентности I, II, III и IV

2) Валентности V у азота не бывает!

3) В молекулах азотной кислоты и оксида азота N2O5 азот имеет валентность IV, а степень окисления +5 (!).

4) В соединениях, в которых атом азота четырехвалентен, одна из ковалентных связей образована по донорно-акцепторному механизму (соли аммония NH4+, азотная кислота и д.р).

Валентные возможности фосфора

Изобразим электронно-графическую формулу внешнего энергетического уровня атома фосфора:

валентные возможности фосфора

Как мы видим, строение внешнего слоя у атома фосфора в основном состоянии и атома азота одинаково, в связи с чем логично ожидать для атома фосфора так же, как и для атома азота, возможных валентностей, равных I, II, III и IV, что и наблюдается на практике.

Однако в отличие от азота, атом фосфора имеет на внешнем энергетическом уровне еще и d-подуровень с 5-ю вакантными орбиталями.

В связи с этим он способен переходить в возбужденное состояние, распаривая электроны 3s-орбитали:

электроотрицательность

Таким образом, недоступная для азота валентность V для атома фосфора возможна. Так, например, валентность, равную пяти, атом фосфора имеет в молекулах таких соединений, как фосфорная кислота, галогениды фосфора (V), оксид фосфора (V) и т.д.

Валентные возможности атома кислорода

Электронно-графическая формула внешнего энергетического уровня атома кислорода имеет вид:

внешний электронный уровень атома кислорода

Мы видим на 2-м уровне два неспаренных электрона, в связи с чем для кислорода возможна валентность II. Следует отметить, что данная валентность атома кислорода наблюдается практически во всех соединениях. Выше при рассмотрении валентных возможностей атома углерода мы обсудили образование молекулы угарного газа. Связь в молекуле CO тройная, следовательно, кислород там трехвалентен (кислород — донор электронной пары).

Из-за того что атом кислорода не имеет на внешнем уровне d-подуровня, распаривание электронов s и p-орбиталей невозможно, из-за чего валентные возможности атома кислорода ограничены по сравнению с другими элементами его подгруппы, например, серой.

Таким образом, кислород практически всегда имеет валентность, равную II, однако в некоторых частицах он трехвалентен, в частности, в молекуле угарного газа C≡O. В случае, когда кислород имеет валентность III, одна из ковалентных связей образована по донорно-акцепторному механизму.

Валентные возможности атома серы

Внешний энергетический уровень атома серы в невозбужденном состоянии:

внешний электронный уровень невозбужденного атома серы

У атома серы, как и у атома кислорода, в обычном состоянии два неспаренных электрона, поэтому мы можем сделать вывод о том, что для серы возможна валентность, равная двум. И действительно, валентность II сера имеет, например, в молекуле сероводорода  H2S.

Как мы видим, у атома серы на внешнем уровне появляется d-подуровень с вакантными орбиталями. По этой причине атом серы способен расширять свои валентные возможности в отличие от кислорода за счет перехода в возбужденные состояния. Так, при распаривании неподеленной электронной пары 3p-подуровня атом серы приобретает электронную конфигурацию внешнего уровня следующего вида:

валентность серы 4

В таком состоянии атом серы имеет 4 неспаренных электрона, что говорит нам о возможности проявления атомами серы валентности, равной IV. Действительно, валентность IV сера имеет в молекулах SO2, SF4, SOCl2 и т.д.

При распаривании второй неподеленной электронной пары, расположенной на 3s-подуровне, внешний энергетический уровень приобретает конфигурацию:

валентность серы VI

В таком состоянии уже становится возможным проявление валентности VI. Примером соединений с VI-валентной серой являются SO3, H2SO4, SO2Cl2 и т.д.

Аналогично можно рассмотреть валентные возможности остальных химических элементов.

Добавить комментарий