Как найти вектор abc

Как найти координаты вектора в базисе

Решение:
Записываем матрицу перехода А:

и находим ее определитель
<>0
Видим, что ранг матрицы С равен трем. Из теоремы о базисном миноре векторы f1 , f2 , f3 линейно независимы, а поэтому могут быть приняты в качестве базиса пространства R 3 .
Находим обратную матрицу А -1 .
Транспонированная матрица:

Обратная матрица А -1

Находим координаты вектора х относительно нового базиса.

Пример №1 . Даны векторы a<1;2;1>, b<2;-2;1>, c <1;-2;0>и d <0;3;1>. Установить, что векторы a , b , c образуют базис, и найти координаты вектора d в этом базисе.
Решение:
Соотношение, записанное для векторов d = αa + βb + γc, справедливо для каждой из проекций:
α*1 + β*2 + γ*1 = 0
α*2 – β*2 – γ*2 = 3
α*1 + β*1 + γ0 = 1 т.е. получена алгебраическая система трёх уравнений с тремя неизвестными. Решение системы удобнее вычислять методом Крамера или методом обратной матрицы:
α = 1/2; β = 1/2; γ = -3/2
следовательно, и вектор d имеет разложение в базисе a, b, c :
d = 1/2a + 1/2b – 3/2c

Пример №2 . Даны векторы . Показать, что векторы образуют базис трехмерного пространства и найти координаты вектора в этом базисе:

Пример №3 . Даны два линейных преобразования:
х’1 = a11x1 + a12x2 + a13x3, х”1 = b11x’1 + b12x’2 + b13x’3,
х’2 = a21x1 + a22x2 + a23x3, х”2 = b21x’1 + b22x’2 + b23x’3,
х’3 = a31x1 + a32x2 + a33x3, х”3 = b31x’1 + b32x’2 + b33x’3,
Средствами матричного исчисления найти преобразование, выражающее х”1, x”2, x”3 через х1, х2, х3.
х’1 = 4x1 + 3x2 + 5x3, х”1 = – x’1 + 3x’2 – 2x’3,
х’2 = 6x1 + 7x2 + x3, х”2 = – 4x’1 + x’2 + 2x’3,
х’3 = 9x1 + x2 + 8x3, х”3 = 3x’1 – 4x’2 + 5x’3,
Решение. Используя калькулятор, получаем:
Обозначим:

Тогда матричное уравнение запишется в виде: A·X = B.
Вычислим определитель матрицы А:
∆ = 4*(7*8 – 1*1) – 6*(3*8 – 1*5) + 9*(3*1 – 7*5) = -182
Определитель матрицы А равен detA=-182
Так как A невырожденная матрица, то существует обратная матрица A -1 . Умножим слева обе части уравнения на A -1 : A -1 ·A·X = A -1 ·B, тогда получим E·X = A -1 ·B, или X = A -1 ·B.
Найдем обратную матрицу A -1 .

A -1 = -1/182
55 -19 -32
-39 -13 26
-57 23 10

Матрицу Х ищем по формуле:

X = A -1 ·B = -1/182
55 -19 -32
-39 -13 26
-57 23 10
* =
75 /182 -1 46 /91 1 9 /13
-13 /14 1 2 /7 -1
5 /182 1 3 /91 -1 2 /13

Пример №4 . В декартовой прямой системе координат даны вершины пирамиды A(3,0,-1), B(-1,-2,-4), C(-1,2,4), D(7,-3,1). Найдите:
а) длину ребра AB;
б) косинус угла между векторами AB и AC ;
в) уравнение ребра AB;
г) уравнение грани ABC;
д) уравнение высоты, опущенной из вершины D на грань ABC;
е) координаты векторов e 1= AB , e 2= AC , e 3= AD и докажите, что они образуют линейную независимую систему;
ж) координаты вектора MN , где M и N – середины ребер AD и DC соответственно;
з) разложение вектора MN по базису ( e 1, e 2, e 3)

Решение. Пункты (а-д) решаются через онлайн калькулятор.

Задание 1 . Разложить вектор d =(8;-5) по векторам a =(1;-2) и b =(2;3).
Решение. Векторы a и b образуют базис на плоскости, так как они не коллинеарны (, то есть соответствующие координаты этих векторов не пропорциональны).
Следовательно, вектор d = α a +β b , где α и β – коэффициенты, которые надо найти.
Таким образом, имеем равенство
8i-5j=α(i-2j)+β(2i+3j)=(α+2β)i+ (-2α+3β)j.
В координатной форме это равенство примет вид
Решим полученную систему уравнений.

Онлайн калькулятор. Модуль вектора. Длина вектора

Этот онлайн калькулятор позволит вам очень просто найти длину вектора для плоских и пространственных задач.

Воспользовавшись онлайн калькулятором, вы получите детальное решение вашей задачи, которое позволит понять алгоритм решения задач на вычисление модуля вектора и закрепить пройденный материал.

Калькулятор для вычисления длины вектора (модуля вектора) по двум точкам

Размерность вектора:

Форма представления вектора:

Инструкция использования калькулятора для вычисления длины вектора

Ввод даных в калькулятор для вычисления длины вектора (модуля вектора)

В онлайн калькулятор можно вводить числа или дроби. Более подробно читайте в правилах ввода чисел..

Дополнительные возможности калькулятора для вычисления длины вектора (модуля вектора)

  • Между полями для ввода можно перемещаться нажимая клавиши “влево” и “вправо” на клавиатуре.

Вычисления длины вектора (модуля вектора)

Например, для вектора a = x; ay; az> длина вектора вычисляется cледующим образом:

Вводить можно числа или дроби (-2.4, 5/7, . ). Более подробно читайте в правилах ввода чисел.

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Как найти вектор по точкам

Формула

Чтобы найти координаты вектора $overline$ на плоскости, если он задан координатами своих начала $Aleft(x_ <1>; y_<1>right)$ и конца $Bleft(x_ <2>; y_<2>right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

Чтобы найти координаты вектора $overline$, заданного в пространстве координатами $Aleft(x_ <1>; y_ <1>; z_<1>right)$ и $Bleft(x_ <2>; y_ <2>; z_<2>right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

Примеры нахождения координат вектора по точкам

Задание. Даны точки $A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline$ и $overline$


Решение. Для вектора $overline$ точка $A$ является началом, а точка $B$ – концом. Тогда координаты вектора $overline$ равны

Для вектора точка $B$ является началом, а точка $A$ – концом. Тогда координаты вектора $overline$ равны


Ответ. $overline=(-2 ; 2), overline=(2 ;-2)$


Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов $overline$, $overline$, $overline$


Решение. Для искомого вектора $overline$ точка $A$ является началом, а точка $B$ – концом. Тогда координаты вектора $overline$ соответственно равны:

$$overline=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline$ точка $A$ является началом, а точка $C$ – концом. Тогда его координаты соответственно равны

Для вектора $overline$ точка $B$ является началом, а точка $C$ – концом. Его координаты равны


Ответ. $overline=(2 ; 4 ; 1), overline=(-1 ; 1 ; 0,5), overline=(-3 ;-3 ;-0,5)$

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/assistance/vector/length/

http://www.webmath.ru/poleznoe/formules_13_0.php

[/spoiler]

Смешанное произведение векторов. Онлайн калькулятор

Данный онлайн калькулятор вычисляет смешанное произведение векторов. Дается подробное решение. Для вычисления смешанного произведения векторов выберите способ представления векторов (по координатам или по двум точкам) введите данные в ячейки и нажимайте на кнопку “Вычислить.”

Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.

Смешанное произведение векторов (теория)

Смешанное произведение трех векторов это число, которое получается при скалярном произведении результата векторного произведения первых двух векторов на третьий вектор. Другими словами, если заданы три вектора a, b и c, то для получения смешанного произведения этих векторов, сначала векторно умножаются первые два вектора и полученный вектор [ab] скалярно умножается на вектор c.

Смешанное произведение трех векторов a, b и c обозначается так: abc или так (a,b,c). Тогда можно записать:

Прежде чем сформулировать теорему, представляющую геометрический смысл смешанного произведения, ознакомьтесь с понятиями правая тройка, левая тройка, правая система координат, левая система координат (определения 2, 2′ и 3 на странице векторное произведение векторов онлайн).

Для определенности, в дальнейшем мы будем рассматривать только правые системы координат.

Теорема 1. Смешанное произведение векторов ([ab],c) равно объему параллелипеда, построенного на приведенных к общему началу векторах a, b, c, взятому со знаком плюс, если тройка a, b, c правая, и со знаком минус, если тройка a, b, c левая. Если векторы a, b, c компланарны, то ([ab],c) равно нулю.

Следствие 1. Имеет место следующее равенство:

Для доказательства следствия заметим, что из переместительного свойства скалярного произведения имеем:

Следовательно нам достаточно доказать, что

Из выражения (3) видно, что левая и правая часть равны объему параллелипеда. Но и знаки правой и левой частей совпадают, так как тройки векторов abc и bca имеют одинаковую ориентацию.

Доказанное равенство (1) позволяет записать смешанное произведение трех векторов a, b, c просто в виде abc, не указывая, какие именно два вектора перемножаются векторно первые два или последние два.

Следствие 2. Необходимым и достаточным условием компланарности трех векторов является равенство нулю их смешанного произведения.

Доказательство вытекает из теоремы 1. Действительно, если векторы компланарны, то смешанное произведение этих векторов равно нулю. Обратное, если смешанное произведение равно нулю, то из теоремы 1 вытекает компланарность этих векторов (так как объем параллелипеда, построенного на приведенных к общему началу векторах равно нулю).

Следствие 3. Смешанное произведение трех векторов, два из которых совпадают, равно нулю.

Действительно. Если два вектора из трех совпадают, то они компланарны. Следовательно, смешанное произведение этих векторов равно нулю.

Смешанное произведение векторов в декартовых координатах

Теорема 2. Пусть три вектора a, b и c определены своими декартовыми прямоугольными координатами

Тогда смешанное произведение abc равняется определителю, строки которого соответственно равны координатам перемножаемых векторов:

Доказательство. Смешанное произведение abc равно скалярному произведению векторов [ab] и c. Векторное произведение векторов [ab] в декартовых координатах вычисляется формулой (подробнее смотрите на странице векторное произведение векторов онлайн):

Тогда скалярное произведение векторов [ab] и c можно записать так:

Последнее выражение можно записать, используя определители второго порядка:

Формулы (6) и (4) эквивалентны, так как (6) является разложением определителя (4) по третьей строке.

Теорема доказана.

Следствие 3. Для компланарности трех векторов

необходимо и достаточно равенство нулю определителя, строки которой заполнены координатами этих векторов, т.е:

Для доказательства следствия достаточно рассмотреть формулу (4) и следствие 2.

Смешанное произведение векторов на примерах

Пример 1. Найти смешанное произведение векторов abс, где

Решение.

Для вычисления смешанного произведения векторов a, b, c составим матрицу, строки которой образуются векторами a, b, c:

Смешанное произведение векторов a, b, c равен определителю матрицы L. Вычислим определитель матрицы L, разложив определитель по строке 1:

Ответ.

Смешанное произведение векторов a, b, c равен :

Пример 2. Найти смешанное произведение векторов abс, где

Начальная точка вектора a:

Конечная точка вектора a:

Вектор b:

Начальная точка вектора c:

Конечная точка вектора c:

Решение.

Переместим вектор a на начало координат. Для этого вычтем из соответствующих координат конечной точки B координаты начальной точки A:

Переместим вектор c на начало координат. Для этого вычтем из соответствующих координат конечной точки F координаты начальной точки E:

Для вычисления смешанного произведения векторов a, b, c составим матрицу, строки которой образуются векторами a, b, c:

Смешанное произведение векторов a, b, c равен определителю матрицы L. Вычислим определитель матрицы L, разложив определитель по строке 1:

Ответ.

Смешанное произведение векторов a, b, c равен :

Смешанное произведение векторов равно определителю матрицы, составленной из этих векторов.

Если векторное произведение является вектором, то смешанное произведение – числом. Обозначается смешанное произведение следующим образом: a⃗⋅b⃗⋅c⃗,a⃗b⃗c⃗,(a⃗,b⃗,c⃗).vec{a} cdot vec{b} cdot vec{c}, vec{a}vec{b}vec{c}, (vec{a},vec{b},vec{c}).

Смешанное произведение векторов a⃗={ax;ay;az},b⃗={bx;by;bz},c⃗={cx;cy;cz}vec{a}=left { a_{x};a_{y};a_{z} right }, vec{b}=left { b_{x};b_{y};b_{z} right }, vec{c}=left { c_{x};c_{y};c_{z} right } можно найти по формуле a⃗⋅b⃗⋅c⃗=∣axayazbxbybzcxcycz∣.vec{a} cdot vec{b} cdot vec{c}=begin{vmatrix}a_{x}&a_{y}&a_{z}\b_{x}&b_{y}&b_{z}\c_{x}&c_{y}&c_{z}end{vmatrix}.

Пример 1

Найти смешанное произведение векторов a⃗={1;2;3},b⃗={−1;−1;−3}vec{a}=left { 1;2;3 right }, vec{b}=left { -1;-1;-3 right } и c⃗={5;3;0}.vec{c}=left { 5;3;0 right }.

Решение

Подставим в формулу a⃗⋅b⃗⋅c⃗=∣axayazbxbybzcxcycz∣vec{a} cdot vec{b} cdot vec{c}=begin{vmatrix}a_{x}&a_{y}&a_{z}\b_{x}&b_{y}&b_{z}\c_{x}&c_{y}&c_{z}end{vmatrix} координаты векторов и вычислим определитель третьего порядка.

Получим: a⃗⋅b⃗⋅c⃗=∣123−1−1−3530∣=1⋅(−1)2⋅∣−1−330∣+2⋅(−1)3⋅∣−1−350∣+3⋅(−1)4⋅∣−1−153∣=0+9−2⋅15+3⋅(−3+5)=9−30+6=−15.vec{a} cdot vec{b} cdot vec{c}=begin{vmatrix}1&2&3\-1&-1&-3\5&3&0end{vmatrix}=1cdot(-1)^2cdotbegin{vmatrix}-1&-3\3&0end{vmatrix}+2cdot(-1)^3cdotbegin{vmatrix}-1&-3\5&0end{vmatrix}+3cdot(-1)^4cdotbegin{vmatrix}-1&-1\5&3end{vmatrix}=0+9-2cdot15+3cdot(-3+5)=9-30+6=-15.

Пример 2

Найти смешанное произведение векторов e⃗={0;4;2},k⃗={−1;2;6}иf⃗={3;0;1}.vec{e}=left {0;4;2 right }, vec{k}=left { -1;2;6 right } и vec{f}=left { 3;0;1 right }.

Решение

Подставим в формулу a⃗⋅b⃗⋅c⃗=∣axayazbxbybzcxcycz∣vec{a} cdot vec{b} cdot vec{c}=begin{vmatrix}a_{x}&a_{y}&a_{z}\b_{x}&b_{y}&b_{z}\c_{x}&c_{y}&c_{z}end{vmatrix} координаты векторов и вычислим определитель третьего порядка.

Получим: e⃗⋅k⃗⋅f⃗=∣042−126301∣=0⋅(−1)2⋅∣2601∣+4⋅(−1)3⋅∣−1631∣+2⋅(−1)4⋅∣−1230∣=0⋅2−4⋅(−1−18)+2⋅(0−6)=0−4⋅(−19)−2⋅6=76−12=64.vec{e} cdot vec{k} cdot vec{f}=begin{vmatrix}0&4&2\-1&2&6\3&0&1end{vmatrix}=0cdot(-1)^2cdotbegin{vmatrix}2&6\0&1end{vmatrix}+4cdot(-1)^3cdotbegin{vmatrix}-1&6\3&1end{vmatrix}+2cdot(-1)^4cdotbegin{vmatrix}-1&2\3&0end{vmatrix}=0cdot2-4cdot(-1-18)+2cdot(0-6)=0-4cdot(-19)-2cdot6=76-12=64.

Тест по теме “Вычисление смешанного произведения векторов”

Не можешь разобраться в этой теме?

Обратись за помощью к экспертам

Бесплатные доработки

Гарантированные бесплатные доработки

Быстрое выполнение

Быстрое выполнение от 2 часов

Проверка работы

Проверка работы на плагиат

Содержание

  1. Термин
  2. Признаки компланарности векторов
  3. Умножение в системе координат
  4. Нахождение смешанного произведения векторов
  5. Формулы вычисления смешанного произведения векторов
  6. Свойства смешанного произведения векторов
  7. Некоторые приложения смешанного произведения
  8. Определение взаимной ориентации векторов в пространстве
  9. Установление компланарности векторов
  10. Определение объемов параллелепипеда и треугольной пирамиды
  11. Геометрический смысл
  12. Разбор типовых задач

Термин

Для того, чтобы определить, в чем заключается данный термин, нужно взять три вектора.

Смешанным произведением a→, b→ и d→ является та величина, которая равняется скалярному произведению a→×b→ и d→ , где a→×b→ — умножение a→ и b→ . Операцию умножения a→, b→ и d→ зачастую обозначают a→·b→·d→ . Можно преобразовать формулу так:a→·b→·d→=(a→×b→,d→) .

Признаки компланарности векторов

Три вектора (или большее число) называются компланарными, если они, будучи приведены к общему началу, лежат в одной плоскости.

Если хотя бы один из трех векторов – нулевой, то три вектора тоже считаются компланарными.

Признак компланарности. Если система a, b, c – правая, то abc>0; если левая, то abc<0. Если же векторы a, b, c компланарны, то abc=0. Иными словами обращение в нуль смешанного произведения abc есть признак компланарности векторов a,b,c.
Геометрический смысл смешанного произведения. Смешанное произведение abc трех некомпланарных векторов a, b, c равно объему параллелепипеда, построенного на векторах a, b, c, взятому со знаком плюс, если система a, b, c – правая, и со знаком минус, если эта система левая. YXZa(3;0;0)b(0;3;0)c(0;0;3)

Умножение в системе координат

Мы можем умножить вектора, если они указаны на координатной плоскости.

Возьмем i→, j→, k→

Произведение векторов в данном конкретном случае будет иметь следующий вид:a→×b→=(ay·bz-az·by)·i→+(az·bx+ax·bz)·j→+(ax·by+ay·bx)·k→=ayazbybz·i→-axazbxbz·j→+axaybxby·k→

Для выполнения скалярного произведения в системе координат необходимо сложить результаты, полученный во время умножения координат.

Из этого следует:

a→×b→=(ay·bz-az·by)·i→+(az·bx+ax·bz)·j→+(ax·by+ay·bx)·k→=ayazbybz·i→-axazbxbz·j→+axaybxby·k→

Мы также можем определить смешанное произведение векторов, если в заданной системе координат указаны координаты векторов, которые умножаются.

a→×b→=( ayazbybz·i→-axazbxbz·j→+axaybxby·k→, dx·i→+dy·j→+dz·k→)==ayazbybz·dx-axazbxbz·dy+axaybxby·dz=axayazbxbybzdxdydz

Таким образом, можно сделать вывод, что:

a→·b→·d=a→×b→, d→=axayazbxbybzdxdydz

Смешанное произведение можно приравнять к определителю матрицы, в качестве строк которой использованы векторные координаты. Наглядно это выглядит так: a→·b→·d=a→×b→, d→=axayazbxbybzdxdydz .

Свойства операции над векторами Из особенностей, которые выделяются в скалярном или векторном произведении, можно вывести особенности, которые характеризуют смешанное произведение. Ниже мы приведем основные свойства.

  1. (λ·a→)·b→·d→=a→·(λ·b→)·d→=a→·b→·(λ·d→)=λ·a→·b→·d→    λ∈R ;
  2. a→·b→·d→=d→·a→·b→=b→·d→·a→;   a→·d→·b→=b→·a→·d→=d→·b→·a→
  3. (a(1)→+a(2)→)·b→·d→=a(1)→·b→·d→+a(2)→·b→·d→a→·(b(1)→+b(2)→)·d→=a→·b(1)→·d→+a→·b(2)→·d→a→·b→·(d(1)→+d(2)→)=a→·b→·d(2)→+a→·b→·d(2)→

Помимо приведенных свойств, следует уточнить, что если множитель нулевой, то результатом умножения также станет нуль.

Результатом умножения также будет нуль в том случае, если два или больше множителей равны.

Действительно, если a→=b→ , то, следуя определению векторного произведения [a→×b→]=a→·b→·sin 0 =0 , следовательно, смешанное произведение равно нулю, так как ([a→×b→], d→)=(0→, d→)=0 .

Если же a→=b→ или b→=d→ , то угол между векторами [a→×b→] и d→ равен π2 . По определению скалярного произведения векторов ([a→×b→], d→)=[a→×b→]·d→·cosπ2=0 .

Свойства операции умножения чаще всего требуются во время решения задач.
Для того, чтобы подробно разобрать данную тему, возьмем несколько примеров и подробно их распишем.

Пример 1

Докажите равенство ([a→×b→], d→+λ·a→+b→)=([a→×b→], d→) , где λ — некоторое действительное число.

Для того, чтобы найти решение этого равенства, следует преобразовать его левую часть. Для этого необходимо воспользоваться третьим свойством смешанного произведения, которое гласит:

([a→×b→], d→+λ·a→+b→)=([a→×b→], d→)+([a→×b→], λ·a→)+([a→×b→], b→)
Мы разобрали, что (([a→×b→], b→)=0. Из этого следует, что
([a→×b→], d→+λ·a→+b→)=([a→×b→], d→)+([a→×b→], λ·a→)+([a→×b→], b→)==([a→×b→], d→)+([a→×b→], λ·a→)+0=([a→×b→], d→)+([a→×b→], λ·a→)

Согласно первому свойству ([a⇀×b⇀], λ·a→)=λ·([a⇀×b⇀],a→) , а ([a⇀×b⇀], a→)=0 . Таким образом, ([a⇀×b⇀], λ·a→) . Поэтому,
([a⇀×b⇀], d→+λ·a→+b→)=([a⇀×b⇀], d→)+([a⇀×b⇀], λ·a→)==([a⇀×b⇀], d→)+0=([a⇀×b⇀], d→)

Равенство доказано.

Пример 2

Необходимо доказать, что модуль смешанного произведения трех векторов не больше, чем произведения их длин.

Решение

Исходя из условия, можно представить пример в виде неравенства a→×b→, d→≤a→·b→·d→ .

По определению, преобразуем неравенство a→×b→, d→=a→×b→·d→·cos(a→×b→^, d→)==a→·b→·sin(a→, b→^)·d→·cos([a→×b→^], d)

Используя элементарные функции, можно сделать вывод, что 0≤sin(a→, b→^)≤1,  0≤cos([a→×b→^], d→)≤1 .

Из этого можно сделать вывод, что
(a→×b→, d→)=a→·b→·sin(a→, b→)^·d→·cos(a→×b→^, d→)≤≤a→·b→·1·d→·1=a→·b→·d→

Неравенство доказано.

Нахождение смешанного произведения векторов

Смешанное произведение векторов равняется определителю матрицы, которая составлена из координат этих векторов.

Алгоритм действий следующей:

Допустим, у нас есть три вектора: a = {ax; ay; az}, b = {bx; by; bz} и с = {сx; сy; сz}. Чтобы найти их смешанное произведение (в декартовой системе) мы составляем матрицу с элементами, как показано ниже, и затем просто вычисляем ее определитель.

Формула смешанного произведения трех векторов

Формулы вычисления смешанного произведения векторов

Смешанное произведение векторов равно определителю матрицы, составленной из этих векторов.

Смешанное произведение векторовa = {ax; ay; az},b = {bx; by; bz} и c = {cx; cy; cz} в декартовой системе координат можно вычислить, используя следующую формулу:

a · [b × c] =  ax  ay  az
 bx  by  bz
 cx  cy  cz

Свойства смешанного произведения векторов

  • Геометрический смысл смешанного произведения. Модуль смешанного произведения трех векторов a, b и с равен объёму параллелепипеда, образованного этими векторами:
    Vпарал = |a · [b × c]|
  • Геометрический смысл смешанного произведения. Объем пирамиды образованной тремя векторами a, b и с равен одной шестой части от модуля смешанного произведения этих векторов:
  • Если смешанного произведения трех не нулевых векторов равно нулю, то эти вектора компланарные.
  • a · [b × c] = b · (a · c) — c · (a · b)
  • a · [b × c] = b · [c × a] = c · [a × b] = -a · [c × b] = -b · [a × c] = -c · [b × a]
  • a · [b × c] + b · [c × a] + c · [a × b] = 0 — тождество Якоби.

Некоторые приложения смешанного произведения

Определение взаимной ориентации векторов в пространстве

Определение взаимной ориентации векторов Смешанное произведение векторов
основано на следующих соображениях. Если Смешанное произведение векторов, то Смешанное произведение векторов— правая тройка; если Смешанное произведение векторов, то Смешанное произведение векторов— левая тройка.

Установление компланарности векторов

Векторы Смешанное произведение векторовкомпланарны тогда и только тогда, когда их смешанное произведение равно нулю Смешанное произведение векторов:

Смешанное произведение векторов

Определение объемов параллелепипеда и треугольной пирамиды

Нетрудно показать, что объем параллелепипеда, построенного на векторах Смешанное произведение векторов
вычисляется как Смешанное произведение векторов, а объем треугольной пирамиды, построенной на этих же векторах, равен Смешанное произведение векторов

Пример:

Вершинами пирамиды служат точки A(1; 2;3), B(0; -1; 1), С(2;5;2) и D(3;0; -2). Найти объем пирамиды.

Решение:

Находим векторы Смешанное произведение векторов:

Смешанное произведение векторов

Находим Смешанное произведение векторов:

Смешанное произведение векторов

Следовательно, Смешанное произведение векторов

Геометрический смысл

Используем множители a→, b→ и d→ .

Вектора a→, b→ и d→ исходят от одной точки. Используем их как стороны для построения фигуры.

Обозначим, что c→=[a→×b→]. Для данного случая можно определить произведение векторов как a→·b→·d→=c→·d→·cos(c→, d→^)=c→·npc→d→ , где npc→d→ — числовая проекция вектора d→ на направление вектора c→=[a→×b→] .

Абсолютная величина npc→d→ равняется числу, которое также является равно высоте фигуры, для которого использованы вектора a→, b→ и d→ в качестве сторон. Исходя из этого, следует уточнить, что c→=[a→×b→] перпендикулярен a→ и вектору и вектору согласно определению умножения векторов. Величина c→=a→xb→ равняется площади параллелепипеда, построенного на векторах a→ и b→ .

Делаем вывод, что модуль произведения a→·b→·d→=c→·npc→d→ равен результату умножения площади основания на высоту фигуры, которая построена на векторах a→, b→ и d→ .

Абсолютная величина векторного произведения является объемом параллелепипеда: Vпараллелепипида=a→·b→·d→ .

Данная формула и является геометрическим смыслом.

Объем тетраэдра, который построен на a→,b→ и d→ , равняется 1/6 объема параллелепипеда Получаем, Vтэтраэда=16·Vпараллелепипида=16·a→·b→·d→ .

Геометрический смысл

Для того, чтобы закрепить знания, разберем несколько типичных примеров

Пример 6

Необходимо найти объем параллелепипеда, в качестве сторон которого используются AB→=(3, 6, 3), AC→=(1, 3, -2), AA1→=(2, 2, 2) , заданные в прямоугольной системе координат. Объем параллелепипеда можно найти, используя формулу об абсолютной величине. Из этого следует:AB→·AC→·AA1→=36313-2222=3·3·2+6·(-2)·2+3·1·2-3·3·2-6·1·2-3·(-2)·2=-18

Тогда, V параллелепипеда=-18=18 .

Пример 7

В системе координат заданы точки A(0, 1,  0), B(3, -1, 5),  C(1, 0, 3), D(-2, 3, 1) . Следует определить объем тетраэдра, который расположен на этих точках.

Воспользуемся формулой Vтэтраэдра=16·AB→·AC→·AD→ . Мы можем определить координаты векторов по координатам точек: AB→=(3-0, -1-1, 5-0)=(3, -2, 5)AC→=(1-0, 0-1, 3-0) =(1,-1, 3)AD→=(-2-0, 3-1, 1-0)=(-2, 2, 1)

Дальше определяем смешанное произведение AB→·AC→·AD→ по координатам векторов: AB→·AC→·AD→=3-251-13-221=3·(-1)·1+(-2)·3·(-2)+5·1·2-5·(-1)·(-2)-(-2)·1·1-3·3·2=-7 Объем Vтэтраэдра=16·-7=76 .

V тэтраэдра=76 .

Разбор типовых задач

Для того, чтобы определить, чему равно произведение векторов, следует знать координаты умножаемых векторов. Для операции можно использовать такую формулу a→·b→·d→=(a→×b→, d→)=axayazbxbybzdxdydz .

Пример

В прямоугольной системе координат представлены 3 вектора с такими координатами: a→=(1, -2, 3),  b→(-2, 2, 1),  d→=(3,-2, 5) . Необходимо определить, чему равно произведение указанных векторов a→·b→·d→ .

Исходя из теории, представленной выше, мы можем воспользоваться правилом, которое гласит, что смешанное произведение может быть вычислено через определитель матрицы. Это будет выглядеть так: a→·b→·d→=(a→×b→, d→)=axayazbxbybzdxdydz=1-23-2213-25==1·2·5+(-1)·1·3+3·(-2)·(-2)-3·2·3-(-1)·(-2)·5-1·1·(-2)=-7

Пример

Необходимо найти произведение векторовi→+j→, i→+j→-k→, i→+j→+2·k→ , где i→,j→, k→ — орты прямоугольной декартовой системы координат.

Исходя из условия, которое гласит, что вектора расположены в данной системе координат, можно вывести их координаты: i→+j→=(1, 1, 0)i→+j→-k→=(1, 1, -1)i→+j→+2·k→=(1, 1, 2)

Используем формулу, которая использовалась выше
i→+j→×(i→+j→-k→, (i→+j→+2·k→)=11011-1112=0i→+j→×(i→+j→-k→, (i→+j→+2·k→)=0

Смешанное произведение также возможно определить с помощью длины вектора, которая уже известна, и угла между ними. Разберем этот тезис в примере.

Пример

В прямоугольной системе координат расположены три вектора a→,b→ и d→ , которые перпендикулярны между собой. Они представляют собой правую тройку, их длины составляют 4, 2 и 3. Необходимо умножить вектора.

Обозначим c→=a→×b→ .

Согласно правилу, результатом умножения скалярных векторов является число, которое равно результату умножения длин используемых векторов на косинус угла между ними. Делаем вывод, что a→·b→·d→=([a→×b→], d→)=c→,d→=c→·d→·cos(c→, d→^) .

Используем длину вектора d→ , указанную в условии примера: a→·b→·d→=c→·d→·cos(c→, d→^)=3·c→·cos(c→, d→^) . Необходимо определить с→и с→, d→^ . По условию a→,b→^=π2, a→=4, b→=2 . Вектор c→ найдем с помощью формулы: c→=[a→×b→]=a→·b→·sina→, b→^=4·2·sinπ2=8

Можно сделать вывод, что c→ перпендикулярен a→ и b→ . Вектора a→, b→, c→ будут являться правой тройкой, так использована декартовая система координат. Векторы c→ и d→ будут однонаправленными, то есть, c→,d→^=0 . Используя выведенные результаты, решаем пример a→·b→·d→=3·c→·cos(c→, d→^)=3·8·cos 0=24 .

a→·b→·d→=24 .

Пример Найти смешанное произведение векторов abс, где , , .

Решение.

Для вычисления смешанного произведения векторов a, b, c составим матрицу, строки которой образуются векторами a, b, c: .

Смешанное произведение векторов a, b, c равен определителю матрицы L. Вычислим определитель матрицы L, разложив определитель по строке 1:

Ответ.

Смешанное произведение векторов a, b, c равен :

abc=−58.

Пример. Найти смешанное произведение векторов abс, где

Начальная точка вектора a: .

Конечная точка вектора a:  .

Вектор b:

Начальная точка вектора c:

Конечная точка вектора c:

Решение.

Переместим вектор a на начало координат. Для этого вычтем из соответствующих координат конечной точки B координаты начальной точки A:

Переместим вектор c на начало координат. Для этого вычтем из соответствующих координат конечной точки F координаты начальной точки E:

Для вычисления смешанного произведения векторов a, b, c составим матрицу, строки которой образуются векторами a, b, c:

Смешанное произведение векторов a, b, c равен определителю матрицы L. Вычислим определитель матрицы L, разложив определитель по строке 1:


.

Ответ.

Смешанное произведение векторов a, b, c равен : abc=76.

Содержание:

  • Формула
  • Примеры вычисления смешанного произведения векторов

Формула

Для того чтобы найти смешанное произведение
$(bar{a}$, $bar{b}$, $bar{c})$ трех векторов, заданных своими координатами
$bar{a}=left(a_{x} ; a_{y} ; a_{z}right), b=left(b_{x} ; b_{y} ; b_{z}right)$ и $bar{c}=left(c_{x}, c_{y}, c_{z}right)$ необходимо
вычислить следующий определитель, где по
строкам записаны координаты заданных векторов, то есть

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{lll}a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z} \ c_{x} & c_{y} & c_{z}end{array}right|$$

Примеры вычисления смешанного произведения векторов

Пример

Задание. Вычислить смешанное произведение векторов
$bar{a}=(1 ; 3 ; 1)$, $bar{b}=(2 ; 1 ; 3)$, и $bar{c}=(3 ; 1 ; 2)$

Решение. Для нахождения смешанного произведения заданных векторов воспользуемся формулой

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{lll}a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z} \ c_{x} & c_{y} & c_{z}end{array}right|$$

Подставляя координаты заданных векторов, получим:

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{ccc}1 & 3 & 1 \ 2 & 1 & 3 \ 3 & 1 & 2end{array}right|$$

Определитель вычисляем по правилу треугольника:

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{ccc}1 & 3 & 1 \ 2 & 1 & 3 \ 3 & 1 & 2end{array}right|=1 cdot 1 cdot 2+3 cdot 3 cdot 3+2 cdot 1 cdot 1-$$
$$-1 cdot 1 cdot 3-3 cdot 2 cdot 2-3 cdot 1 cdot 1=2+27+2-3-12-3=13$$

Ответ. $(bar{a}, bar{b}, bar{c})=13$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Даны три вектора $bar{a}=(1 ;-2 ; 3), bar{b}=(3 ;-5 ; 6)$ и $bar{c}=(5 ;-4 ; 1)$. Проверить, являются ли они компланарными, если нет,
определить левую или правую тройку они образуют.

Решение. Найдем смешанное произведение этих векторов. Для этого воспользуемся формулой

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{lll}a_{x} & a_{y} & a_{z} \ b_{x} & b_{y} & b_{z} \ c_{x} & c_{y} & c_{z}end{array}right|$$

Подставляя координаты заданных векторов, получим

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{ccc}1 & -2 & 3 \ 3 & -5 & 6 \ 5 & -4 & 1end{array}right|$$

Определитель вычисляем по правилу треугольника:

$$(bar{a}, bar{b}, bar{c})=left|begin{array}{ccc}1 & -2 & 3 \ 3 & -5 & 6 \ 5 & -4 & 1end{array}right|=1 cdot(-5) cdot 1+(-2) cdot 5 cdot 6+$$
$$+3 cdot 3 cdot(-4)-3 cdot(-5) cdot 5-3 cdot(-2) cdot 1-1 cdot 6 cdot(-4)=$$
$$-5-60-36+75+6+24=4 neq 0$$

Смешанное произведение заданных векторов не равно нулю, следовательно, векторы некомпланарные. Так как смешанное
произведение положительно, то делаем вывод, что заданные векторы образуют правую тройку.

Ответ. Векторы некомпланарны и образуют правую тройку.

Читать дальше: как найти вектор коллинеарный вектору.

Добавить комментарий