Три попарно перпендикулярные прямые с выбранными направлениями и единицей измерения образуют систему координат в пространстве. Точка пересечения всех прямых является началом системы координат.
Оси координат (Ox), (Oy) и (Oz) называются соответственно: (Ox) — ось абсцисс, (Oy) — ось ординат, (Oz) — ось аппликат.
Через две пересекающиеся прямые можно провести плоскость. Получаем три координатные плоскости: ((Oxy)), ((Oyz)) и ((Oxz)).
Положение точки (A) в пространстве определяется тремя координатами: (x), (y) и (z).
Координата (x) называется абсциссой точки (A), координата (y) — ординатой точки (A), координата (z) — аппликатой точки (A).
Записываются так: (A(x; y; z)).
Если точка находится на оси (Ox), то её координаты (X(x; 0; 0)).
Если точка находится на оси (Oy), то её координаты (Y(0; y; 0)).
Если точка находится на оси (Oz), то её координаты (Z(0; 0; z)).
Если точка находится в плоскости (Oxy), то её координаты
A1x;y;0
.
Если точка находится в плоскости (Oyz), то её координаты
A20;y;z
.
Если точка находится в плоскости (Oxz), то её координаты
A3x;0;z
.
Если в системе координат от начальной точки отложить единичные векторы
i→
,
j→
и
k→
, то можно определить прямоугольный базис. Любой вектор можно разложить по единичным векторам и представить в виде
OA→=x⋅i→+y⋅j→+z⋅k→
.
Коэффициенты (x), (y) и (z) определяются одним-единственным образом и называются координатами вектора.
Записываются так:
OA→x;y;z
.
Рассмотрим правила о том, как с помощью координат записать:
– координаты суммы векторов, если даны координаты векторов:
,
b→x2;y2;z2
,
a→+b→x1+x2;y1+y2;z1+z2
;
– координаты разности векторов, если даны координаты векторов:
a→−b→x1−x2;y1−y2;z1−z2
;
– координаты произведения вектора на число, если даны координаты вектора:
– длину вектора:
– координаты вектора, если даны координаты начальной и конечной точек вектора:
,
BxB;yB;zB
,
AB→xB−xA;yB−yA;zB−zA
;
– расстояние между двумя точками, если даны координаты точек:
;
– координаты серединной точки отрезка, если даны координаты начальной и конечной точек отрезка:
.
Вспомним, как мы находили координаты вектора на
плоскости.
Пользуясь тем, что любой вектор можно разложить по
двум неколлинеарным векторам, на осях мы задавали единичные векторы. Таким
образом, любой вектор можно разложить по данным единичным векторам, а
координатами вектора являются коэффициенты этого разложения.
Так же вам уже известно, что любой вектор пространства
можно выразить через 3 некомпланарных вектора, то есть векторы, не лежащие в
одной плоскости.
Изобразим прямоугольную систему координат Охуz.
На каждой из положительных осей от начала координат отложим единичные векторы.
Буквой i
обозначим единичный вектор оси Оx,
буквой j — единичный вектор оси Оy,
буквой k — единичный вектор оси Оz.
Определение:
Векторы i,
j, k
будем называть координатными векторами.
Понятно, что они являются некомпланарными. И
поэтому любой вектор пространства можно разложить по единичным векторам i,
j, k.
Причём коэффициенты разложения х, у и z
определяются единственным образом.
Коэффициенты х, у и z
называют
координатами вектора р в данной системе координат. Координаты
вектора будем записывать в фигурных скобках в последовательности х, у, z.
Задание: Пользуясь
разложениями векторов по координатным векторам, записать их координаты.
Решение:
Задание: пользуясь
координатами векторов, запишем их разложения по координатным векторам i,
j, k.
Решение:
Задача: В
прямоугольном параллелепипеде 𝑂𝐴 =
2, 𝑂𝐵 =
3, а ОО1 = 2. Найти координаты векторов 𝑂𝐴1,
𝑂𝐵1,
𝑂𝑂1,
𝑂𝐶,
𝑂𝐶1,
𝐵𝐶1,
𝐴𝐶1
и 𝑂1 𝐶.
Решение:
После выполнения этого задания можно сделать вывод
о том, что если вектор лежит в некоторой из координатных плоскостей или
параллелен ей, а также лежит или параллелен некоторой из координатных осей, то
его соответствующие координаты равны нулю.
Если вектор лежит в координатной плоскости Оху или
параллелен ей, то его аппликата равна нулю. Если вектор принадлежит или
параллелен координатной плоскости Охz,
то его ордината равна нулю. Если же вектор принадлежит или параллелен
координатной плоскости Оyz,
то его абсцисса равна нулю.
В случае, когда вектор лежит на оси координат Оx
или параллелен ей, то ордината и аппликата равны нулю. Если вектор принадлежит
или параллелен оси Оy, то абсцисса и
аппликата равны нулю. И если вектор принадлежит или параллелен оси Оz,
то абсцисса и ордината равны нулю.
А сейчас поговорим о противоположных векторах. Из
планиметрии известно, что координаты противоположных векторов
противоположны. Это утверждение верно и для векторов в пространстве.
Задание: найти
координаты векторов противоположных данным векторам.
Решение:
Также из курса планиметрии вам известны правила
определения координат вектора суммы, вектора разности и произведения
вектора на число.
Такие же правила действую и для координат векторов в
пространстве.
Задание: 𝑎 ⃗{−1;0;3},
𝑏 ⃗{5;−2;1}
и 𝑐 ⃗{1;7;−2}.
Определить координаты векторов:
1) 𝑎 ⃗+𝑐 ⃗;
2) 𝑏 ⃗−𝑎 ⃗;
3) 2𝑎 ⃗+𝑏 ⃗;
4) 1/2 𝑎 ⃗−2𝑏 ⃗+𝑐 ⃗.
Решение:
Так, используя правила определения координат вектора
суммы, разности и произведения вектора на число, мы определили координаты
данных векторов.
Итоги:
Сегодня мы ввели понятие координатных векторов i,
j, k.
И, пользуясь тем, что любой вектор пространства можно выразить через 3
некомпланарных вектора, записали, что коэффициенты х, у и z
называют координатами вектора p
в данной системе координат.
Мы отметили, что все координаты нулевого вектора равны
нулю. Равные векторы имеют равные координаты, а координаты противоположных
векторов противоположны.
Также мы записали правила, которые позволяют находить
координаты любого вектора, представленного в виде алгебраической суммы данных
векторов, координаты которых известны.
План урока:
Понятие векторов в пространстве
Операции над векторами
Компланарные векторы
Разложение вектора на некомпланарные вектора
Понятие вектора в пространстве
Напомним, что в курсе планиметрии мы уже подробно изучали вектора и действия с ними. При этом предполагалось, что все вектора располагаются в одной плоскости. Однако можно расширить понятие вектора так, чтобы они использовались и в стереометрии. В таком случае вектора уже могут располагаться в различных плоскостях.
Начнем с определения вектора:
Конец вектора обозначают с помощью стрелки. Посмотрим на рисунок:
Здесь показаны сразу три вектора:
У вектора АВ начало находится в точке А, а конец – в точке В. Аналогично у вектора СD точка С – это начало, а D – это конец. В обоих случаях начало и конец – это различные точки, поэтому АВ и CD именуют ненулевыми векторами. Если же начало и конец находятся в одной точке, например в Т, то получается нулевой вектор ТТ. Всякую точку в пространстве можно рассматривать как нулевой вектор:
Длина вектора АВ – это длина соответствующего ему отрезка АВ. Для обозначения длины используют квадратные скобки:
Естественно, что нулевой вектор имеет нулевую длину.
Далее напомним понятие коллинеарных векторов:
Коллинеарные вектора могут быть либо сонаправленными, либо противоположно направленными. Сонаправленные вектора находятся на сонаправленных лучах. Рассмотрим пример с кубом:
Здесь показаны вектора AD и ВС. Они сонаправленные, этот факт записывается так:
Вектора AD и FE располагаются на скрещивающихся прямых, поэтому они не коллинеарны. Их нельзя считать ни сонаправленными, ни противоположно направленными.
Сонаправленные вектора, имеющие одинаковую длину, именуются равными.
Рассмотрим несколько простейших задач.
Задание. В прямоугольном параллелепипеде АВСDA1B1C1D1 известны три его измерения:
Решение. Для нахождения длин этих векторов достаточно вычислить длину отрезков СВ, DB и DB1. Проще всего вычислить СВ, ведь отрезки СВ и AD одинаковы как стороны прямоугольника АВCD:
Задание. На рисунке показан правильный тетраэдр АВСD. Точки M, N, P и Q являются серединами тех сторон, на которых они располагаются. Какие вектора из отмеченных на рисунке равны между собой?
Решение. Легко заметить, что вектора DP и PC находятся на одной прямой DC и сонаправлены, при этом их длина одинакова, ведь Р – середина DC. Тогда эти вектора по определению равны:
Вектора АМ и МВ также коллинеарны и имеют одинаковую длину, но они противоположно направлены, а потому равными не являются.
Теперь заметим, что отрезки MN, MQ, PQ и NP – это средние линии в ∆ABD, ∆АВС, ∆BCD и ∆ACD соответственно. По свойству средней линии получаем, что MN||BD, PQ||BD, MQ||АС и NP||АС. Отсюда по свойству транзитивности параллельности получаем, что MN||PQ и MQ||NP. Это значит, что четырехугольник MQPN – это параллелограмм, а у него противоположные стороны одинаковы:
Операции над векторами
Правила сложения векторов в стереометрии не отличаются от правил в планиметрии. Пусть надо сложить два вектора, а и b. Для этого отложим вектор а от какой-нибудь точки А, тогда его конец окажется в некоторой точке В. Далее от В отложим вектор b, его конец попадет в какую-то точку С. Тогда вектор АС как раз и будет суммой a и b:
Такой метод сложения векторов именуется правилом треугольника. Если нужно сложить больше двух векторов, то используют правило многоугольника. В этом случае необходимо каждый следующий вектор откладывать от конца предыдущего. При этом в стереометрии вектора могут располагаться в различных плоскостях, то есть они на самом деле многоугольник не образуют:
Напомним, что в планиметрии существовали так называемые противоположные вектора. Есть они и в стереометрии:
Главное свойство противоположных векторов заключается в том, что в сумме они дают нулевой вектор:
Заметим, что для получения противоположного вектора достаточно поменять его начало и конец, то есть в записи вектора обозначающие его буквы надо просто записать в обратном порядке:
C помощью противоположного вектора легко определить операцию вычитания векторов. Чтобы из вектора а вычесть вектор b, надо всего лишь прибавить к a вектор, противоположный b:
Далее рассмотрим умножение вектора на число. Пусть вектор а умножается на число k. В результате получается новый вектор b, причем
1) b и a будут коллинеарными векторами;
2) b будет в k раз длиннее, чем вектор a.
Если k – положительное число, то вектора a и b будут сонаправленными. Если же k< 0, то a и b будут направлены противоположно.
Уточним, что если |k| < 1, то фактически b будет не длиннее, а короче вектора a. Наконец, если k = 0, то и b будет иметь нулевую длину, то есть b окажется нулевым вектором.
Задание. Дан параллелепипед АВСDА1В1С1D1. Постройте вектор, который будет являться суммой векторов:
Решение. В каждом случае необходимо заменить один из векторов в сумме на другой равный ему вектор так, чтобы можно было применить правило треугольника.
В задании а) вектор А1D1 заменить равным ему вектором ВС. В итоге получится вектор АС.
В задании б) заменяем АD1 на вектор ВС1. Также можно было бы заменить АВ на D1C1. В обоих случаях сумма окажется равной АС1.
В задании в) удобно DA заменить на C1В1, тогда искомой суммой будет вектор С1В.
В задании г) производим замену DD1 на равный ему вектор BB1. Тогда сумма DB и BB1– это вектор DB1.
В задании д) необходимо заменить ВС на В1С1. В итоге получаем вектор DC:
Задание. В пространстве отмечены точки А, В, С и D. Выразите вектор АВ через вектора:
Решение. В случае а) сначала запишем очевидное равенство векторов, вытекающее из правило многоугольника:
Обратите внимание, что здесь у каждого следующего слагаемого начальная точка совпадает с конечной точкой предыдущего слагаемого, поэтому равенство и справедливо:
Однако по условию а) нам надо использовать другие вектора для выражения АВ. Мы можем просто заменить вектора CD и DB на противоположные:
Теперь можно составить и выражение для АВ:
Аналогично решаем и задания б) и в):
Задание. Р – вершина правильной шестиугольной пирамиды. Докажите, что сумма векторов, совпадающих с ребрами этой пирамиды и начинающихся в точке Р, в точности равна сумме векторов, которые совпадают с апофемами пирамиды и при этом также начинаются в точке Р.
Решение. Обозначим вершины буквами А1, А2, … А6, а середины сторон шестиугольника, лежащего в основании, буквами Н1, Н2, … Н6, как это показано на рисунке:
Нам надо показать, что сумма красных векторов равна сумме черных векторов:
Теперь отдельно построим правильный шестиугольник, лежащий, в основании пирамиды:
Ясно, что вектора, образованные сторонами этого шестиугольника, в сумме дают нулевой вектор (по правилу многоугольника):
Так как точки Н1, Н2, … Н6 – середины сторона, то вектора Н6А6, Н5А5,…Н1А1 будут вдвое короче векторов А1А6, А6А5, … А2А1. При этом они находятся на одних прямых, поэтому справедливы равенства:
Таким образом нам удалось из верного равенства (3) доказать (2), из которого в свою очередь следует справедливость и (1), ч. т. д.
Задание. Упростите выражения:
Решение. Здесь надо просто применить законы сложения и умножения векторов, как это делалось и в курсе планиметрии. Сначала раскрываем скобки, а потом приводим подобные слагаемые:
Компланарные векторы
Если мы отложим несколько векторов от одной точки, то они либо будут находиться в одной плос-ти, либо располагаться в различных плос-тях. В первом случае их именуют компланарными векторами, а во втором – некомпланарными.
Любые два вектора будут компланарны, ведь при их откладывании от одной точки мы получаем две пересекающихся прямых, а через них всегда можно провести плос-ть. Однако если векторов более двух, то они могут быть как компланарны, так и некомпланарны.
Рассмотрим для примера параллелепипед:
Здесь вектора АС, АВ и АD компланарны, так как все они принадлежат одной грани (то есть плос-ти) АВСD. А вектора АВ, АD и АА1 некомпланарны, ведь через них нельзя провести одну плос-ть.
Очевидно, что если из трех векторов любые два коллинеарны, то вся тройка векторов компланарна, ведь при откладывании векторов от одной точки коллинеарные вектора окажутся на одной прямой.
Существует признак компланарности векторов:
Напомним, что подразумевается под разложением вектора. Пусть есть вектора а, b и c. Если существуют такие числах и y, при которых выполняется равенство
то говорят, что вектор с разложен по векторам а и b, причем числа xи y называются коэффициентами разложения.
Докажем сформулированный признак. Пусть есть три вектора а, b и c, а также числа xи y, такие, что
Эти вектора находятся в одной плос-ти ОАВ. Теперь от той же точки О отложим вектора ха и уb, концы которых окажутся в точках А1 и В1:
Естественно, что вектора ОА1 и ОВ1 также окажутся в плос-ти ОАВ. Тогда и их сумма будет принадлежать этой плос-ти, а эта сумма как раз и есть вектор с:
В итоге получили, что а, b и с располагаются в одной плос-ти, то есть они компланарны.
Справедливо и обратное утверждение. Если вектора а, b и с компланарны, но а и b неколлинеарны, то вектор с можно разложить на вектора a и b. Это утверждение прямо следует из изученной в 9 классе теоремы о разложении векторов. Важно отметить, что коэффициенты такого разложения определяются однозначно.
Для сложения тройки некомпланарных векторов можно применить так называемое правило параллелепипеда. Если есть три некомпланарных вектора, то можно отложить их от одной точки О и далее построить параллелепипед, в котором эти вектора будут ребрами. Тогда диагональ этого параллелепипеда, выходящая из точки О, и будет суммой этих трех векторов:
Разложение вектора на некомпланарные вектора
Иногда вектор можно разложить не на два, а на три вектора. Выглядит такое разложение так:
Для доказательства рассмотрим три некомпланарных вектора а, bи c, а также произвольный вектор р. Отложим их от одной точки О. Обозначим концы этих векторов большими буквами А, В, С и Р:
Через ОВ и ОА можно провести некоторую плос-ть α. Точка С ей принадлежать не может, ведь ОА, ОВ и ОС – некомпланарные вектора. Проведем через Р прямую, параллельную ОС. Так как ОС пересекает α, то и параллельная ей прямая также пересечет α в некоторой точке Р1. (Примечание. Если Р принадлежит α, то точки Р и Р1 совпадут, то есть вектор Р1Р будет нулевым).
Далее через точку Р1 в плос-ти α проведем прямую, параллельную ОВ, которая пересечет ОА в точке Р2. Заметим, что вектор ОР2 находится на той же прямой, что и вектор ОА, то есть они коллинеарны, поэтому существует такое число х, что
Итак, мы показали, что у произвольного вектора p есть разложение на заранее заданные некомпланарные вектора. Осталось показать, что существует только одно такое разложение. Докажем это методом от противного. Пусть есть второе разложение с другими коэффициентами х1, у1 и z1:
В правой части находятся три вектора, которые в сумме нулевой вектор. По правилу сложения векторов это означает, что эти вектора образуют треугольник, то есть находятся в одной плос-ти:
Значит, они компланарны. Тогда компланарны и вектора a, b и с, что противоречит условию теоремы. Значит, второго разложения р на заданные некомпланарные векторы не существует, ч. т. д.
Задание. АВСD и А1В1С1D1 – параллелограммы, располагающиеся в разных плос-тях. Докажите, что тройка векторов ВВ1, СС1 и DD1 компланарна.
Решение. Сначала построим рисунок по условию задачи:
Для доказательства используем признак компланарности векторов. Для этого надо один из векторов, отмеченных на рисунке красным, разложить на два других вектора.
В результате нам удалось разложить СС1 на вектора BB1 и CC1. Значит, эти три вектора коллинеарны.
Задание. В параллелепипеде АВСDA1B1C1D1 запишите разложение вектора BD1 по векторам ВА, ВС и ВВ1.
Решение. Сначала представим вектор BD1 как сумму трех векторов:
Теперь заметим, что вектора С1D1 и ВА соответствуют ребрам параллелепипеда. Эти ребра одинаковы по длине и параллельны, поэтому и вектора будут равными. Аналогично равны вектора СС1 и ВВ1:
Задание. АВСD – тетраэдр, а точка К делит его ребро ВС пополам. Разложите вектор DK по векторам DA, AB и AC.
Решение. Сначала запишем очевидное выражение для вектора DK:
Задание. В точке М пересекаются медианы треугольника АВС, а О – произвольная точка в пространстве. Разложите вектор ОМ по векторам ОА, ОВ и ОС.
Решение. Медиану, проходящую через точку А, мы обозначим как АА1, то есть А1 – это середина отрезка ВС. Также буквой К обозначим середину ОВ:
Сначала разложим вектор ОА1 на ОВ и ОС. Это можно сделать, ведь они компланарны. КА1 – это средняя линия ∆ОСВ, поэтому КА1||ОС и КА1 вдвое короче ОС. Это значит, что
Так как АА1 – медиана, то точка М делит ее в отношении 2:1. Отсюда вытекает следующее соотношение:
Только что решенная задача может быть использована и при решении другого, более сложного задания.
Задание. Докажите, что в параллелепипеде АВСDА1В1С1D1 плос-ти А1ВD и СB1D1 делят диагональ АС1 на три равных отрезка.
Решение. Обозначим точкой K точку пересечения медиан ∆А1ВD. Тогда по формуле, выведенной в предыдущей задаче, мы получаем, что
Это соотношение означает, что вектора АК и АС1 коллинеарны, поэтому они располагаются на одной прямой (они не могут находиться на параллельных прямых, ведь у них есть общая точка А). Значит, точка K принадлежит диагонали АС1, и отрезок АК втрое короче диагонали.
Аналогично можно показать, что и
Из этого также вытекает, что М принадлежит диагонали АС1, и МС1 втрое короче АС1. Значит, точки М и К делят диагональ на три равных отрезка, ч. т. д.
Сегодня мы расширили понятие векторов и научились их применять не только в планиметрических, но и в стереометрических задачах. При сохраняются все правила, по которым выполняются действия над векторами. Также в стереометрии появляется новое понятие компланарных и некомпланарых векторов.
Геометрия, 11 класс
Урок № 1. Координаты в пространстве. Система координат
Перечень вопросов, рассматриваемых в теме:
- Прямоугольная система координат в пространстве.
- Координаты вектора, радиус-вектор.
- Координаты середины отрезка, длина вектора, расстояние между точками.
Основная литература:
Гусева В.А., Куланин Е.Д. Геометрия. Профильный уровень. 10 класс – М.: Бином, 2010 – с. 130-148
Погорелов А.В. Геометрия. Учеб. для 7-11 кл. общеобразоват. Учреждение – 13-е изд-е. – М.: Просвещение, 2014. – с. 51-52
Атанасян Л.С., Бутузов В.Ф. и др. Геометрия. 7-9 кл. 20-е изд-е. – М.: Просвещение, 2010. – с. 259-270.
Открытые электронные ресурсы:
Решу ЕГЭ образовательный портал для подготовки к экзаменам https://ege.sdamgia.ru/
Теоретический материал для самостоятельного изучения
Точка О разделяет каждую из осей координат на два луча. Луч, направление которого совпадает с направлением оси, называется положительной полуосью, а другой луч отрицательной полуосью. Плоскости, проходящие соответственно через оси координат Ох и Оу, Оу и Оz, Оz и Ох, называются координатными плоскостями и обозначаются Оху, Оуz, Оzх.
Прямоугольная система координат в пространстве задана, если выбрана точка – начало координат, через эту точку проведены три попарно перпендикулярные прямые, на каждой из них выбрано направление (оно обозначается стрелкой) и задана единица измерения отрезков (рис. 121). Прямые с выбранными на них направлениями называются осями координат, а их общая точка – началом координат.
Координаты вектора
Зададим в пространстве прямоугольную систему координат Охуz. На каждой из положительных полуосей отложим от начала координат единичный вектор, т. е. вектор, длина которого равна единице. Обозначим через единичный вектор оси абсцисс, через – единичный вектор оси ординат и через – единичный вектор оси аппликат (рис. 124). Векторы , , – назовем координатными векторами. Очевидно, эти векторы не компланарны. Поэтому любой вектор a и можно разложить по координатным векторам, т. е. представить в виде
причем коэффициенты разложения х, у, z определяются единственным образом.
Коэффициенты х, у и z в разложении вектора по координатным векторам называются координатами вектора в данной системе координат. Координаты вектора будем записывать в фигурных скобках после обозначения вектора: {х; у; z}.
Нулевой вектор можно представить в виде так как все координаты нулевого вектора равны нулю.
Так как нулевой вектор можно представить в виде то все координаты нулевого вектора равны нулю. Далее, координаты равных векторов соответственно равны, т. е. если векторы {х1, y1, z1} и {х2, y2, z2) равны, то х1 = x2, y1 = y2 и z1 = z2
Рассмотрим правила, которые позволяют по координатам данных векторов найти координаты их суммы и разности, а также координаты произведения данного вектора на данное число.
1)Каждая координата суммы двух или более векторов равна сумме соответствующих координат этих векторов. Другими словами, если {х1, у1, z1} и {х2, у2, z2} — – данные векторы, то вектор + имеет координаты {х1+х2, у1 + у2, z1 + z2}.
2)Каждая координата разности двух векторов равна разности соответствующих координат этих векторов. Другими словами, если {х1, y1, z1} и b{х2 у2; z2} – данные векторы, то вектор – имеет координаты {х1 – х2, y1 – y2, z1 – z2}.
3)Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. Другими словами, если {х; у; х} – данный вектор, α – данное число, то вектор α имеет координаты {αх; αу; αz).
1)Признак коллинеарности векторов: Для того, чтобы два вектора были коллинеарны, необходимо и достаточно, чтобы один из них был произведением другого на некоторое число.
Следствие: ненулевой вектор коллинарен вектору тогда и только тогда, когда существует такое число α, что =α.
Определение: Векторы называются компланарными, если при откладывании их от одной и той же точки они будут лежать в одной плоскости.
2)Признак компланарности трех векторов: если вектор можно разложить по векторам и , т. е. представить в виде = x + y, где x и y — – некоторые числа, то векторы , и компланарны.
Определение: Вектор, конец которого совпадает с данной точкой, а начало – с началом координат, называется радиус-вектором данной точки.
Каждая координата вектора равна разности соответствующих координат его конца и начала.
Рис. 129
Каждая координата середины отрезка равна полусумме соответствующих координат его концов.
Длина вектора вычисляется по формуле:
Примеры и разбор решения заданий тренировочного модуля
Пример 1.
Выделите цветом верный ответ:
Дано: А (2; –1; 0), В (–3; 2; 1), С (1; 1; 4); CD = -2AB.
Найти: координаты точки D.
Варианты ответов:
(3; -1; 8)
(11, –5, 2)
(-6; 3; 11)
(8; 4; 2)
Решение:
Пусть D (х; у; z)
поэтому 18
Правильные ответы:
(3; -1; 8)
(11, –5, 2)
(-6; 3; 11)
(8; 4; 2)
Пример 2.
Дано: координаты точек: А (3; –1; 2), В (x; ); координаты вектора
Рис. 127
AB{5; 8; 1}
Найти: x, у, z
Решение:
Решаем уравнения и получаем: х=8; у=; z=3, z=-1
Ответ: х=8; у=; z=3, z=-1
В данной публикации мы рассмотрим формулы, с помощью которых можно найти координаты вектора, заданного координатами его начальной и конечной точек, а также разберем примеры решения задач по этой теме.
- Нахождение координат вектора
- Примеры задач
Нахождение координат вектора
Для того, чтобы найти координаты вектора AB, нужно из координат его конечной точки (B) вычесть соответствующие координаты начальной точки (A).
Формулы для определения координат вектора
Для плоских задач | AB = {Bx – Ax; By – Ay} |
Для трехмерных задач | AB = {Bx – Ax; By – Ay; Bz – Az} |
Для n-мерных векторов | AB = {B1 – A1; B2 – A2; … Bn – An} |
Примеры задач
Задание 1
Найдем координаты вектора AB, если у его точек следующие координаты: A = (2; 8), B = (5; 12).
Решение:
AB = {5 – 2; 12 – 8} = {3; 4}.
Задание 2
Определим координаты точки B вектора AB = {6; 14}, если координаты точки A = (2; 5).
Решение:
Координаты точки B можно вывести из формулы для расчета координат вектора:
Bx = ABx + Ax = 6 + 2 = 8.
By = ABy + Ay = 14 + 5 = 19.
Таким образом, B = (8; 19).