Как найти вектор направления по углу

Как найти вектор направления по углу?

6241cc51af759566266347.png
у меня есть условный босс, к нему подходит толпа юнитов, надо их расположить полу-кругом, как мне найти направление их положения относительно босса? или мб есть другие варианты как их так расставить?


  • Вопрос задан

    более года назад

  • 65 просмотров

Пригласить эксперта

Решение в лоб – 7 класс геометрии.
У нас прямоугольный треугольник, есть угол (мы же хотим например расставить их каждые 10 градусов), есть гипотенуза (он же радиус на котором мы хотим разместить врагов).
Нужно найти катеты, зная угол и гипотенузы (подсказывают, это синус и косинус).
6241ce1b5355a542069084.png

Уравнение окружности как вариант


  • Показать ещё
    Загружается…

15 мая 2023, в 17:31

2000 руб./за проект

15 мая 2023, в 16:55

1000 руб./за проект

15 мая 2023, в 16:46

3000 руб./за проект

Минуточку внимания

Угол между векторами.

Формула вычисления угла между векторами

cos α = a · b
| a |·| b |

Примеры задач на вычисление угла между векторами

Примеры вычисления угла между векторами для плоских задачи

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 3 = 12 + 12 = 24.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 3 2 = √ 16 + 9 = √ 25 = 5

Найдем угол между векторами:

cos α = a · b = 24 = 24 = 0.96
| a | · | b | 5 · 5 25

Решение: Найдем скалярное произведение векторов:

a · b = 5 · 7 + 1 · 5 = 35 + 5 = 40.

Найдем модули векторов:

| a | = √ 7 2 + 1 2 = √ 49 + 1 = √ 50 = 5√ 2
| b | = √ 5 2 + 5 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b = 40 = 40 = 4 = 0.8
| a | · | b | 5√ 2 · 5√ 2 50 5

Примеры вычисления угла между векторами для пространственных задач

Решение: Найдем скалярное произведение векторов:

a · b = 3 · 4 + 4 · 4 + 0 · 2 = 12 + 16 + 0 = 28.

Найдем модули векторов:

| a | = √ 3 2 + 4 2 + 0 2 = √ 9 + 16 = √ 25 = 5
| b | = √ 4 2 + 4 2 + 2 2 = √ 16 + 16 + 4 = √ 36 = 6

Найдем угол между векторами:

cos α = a · b = 28 = 14
| a | · | b | 5 · 6 15

Решение: Найдем скалярное произведение векторов:

a · b = 1 · 5 + 0 · 5 + 3 · 0 = 5.

Найдем модули векторов:

| a | = √ 1 2 + 0 2 + 3 2 = √ 1 + 9 = √ 10
| b | = √ 5 2 + 5 2 + 0 2 = √ 25 + 25 = √ 50 = 5√ 2

Найдем угол между векторами:

cos α = a · b | a | · | b | = 5 √ 10 · 5√ 2 = 1 2√ 5 = √ 5 10 = 0.1√ 5

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Нахождение угла между векторами

Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a → и b → , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы O A → = b → и O B → = b →

Углом между векторами a → и b → называется угол между лучами О А и О В .

Полученный угол будем обозначать следующим образом: a → , b → ^

Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

a → , b → ^ = 0 , когда векторы являются сонаправленными и a → , b → ^ = π , когда векторы противоположнонаправлены.

Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π 2 радиан.

Если хотя бы один из векторов является нулевым, то угол a → , b → ^ не определен.

Нахождение угла между векторами

Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

Согласно определению скалярное произведение есть a → , b → = a → · b → · cos a → , b → ^ .

Если заданные векторы a → и b → ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

cos a → , b → ^ = a → , b → a → · b →

Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

Исходные данные: векторы a → и b → . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно – 9 . Необходимо вычислить косинус угла между векторами и найти сам угол.

Решение

Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cos a → , b → ^ = – 9 3 · 6 = – 1 2 ,

Теперь определим угол между векторами: a → , b → ^ = a r c cos ( – 1 2 ) = 3 π 4

Ответ: cos a → , b → ^ = – 1 2 , a → , b → ^ = 3 π 4

Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a → = ( a x , a y ) , b → = ( b x , b y ) выглядит так:

cos a → , b → ^ = a x · b x + a y · b y a x 2 + a y 2 · b x 2 + b y 2

А формула для нахождения косинуса угла между векторами в трехмерном пространстве a → = ( a x , a y , a z ) , b → = ( b x , b y , b z ) будет иметь вид: cos a → , b → ^ = a x · b x + a y · b y + a z · b z a x 2 + a y 2 + a z 2 · b x 2 + b y 2 + b z 2

Исходные данные: векторы a → = ( 2 , 0 , – 1 ) , b → = ( 1 , 2 , 3 ) в прямоугольной системе координат. Необходимо определить угол между ними.

Решение

  1. Для решения задачи можем сразу применить формулу:

cos a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 2 2 + 0 2 + ( – 1 ) 2 · 1 2 + 2 2 + 3 2 = – 1 70 ⇒ a → , b → ^ = a r c cos ( – 1 70 ) = – a r c cos 1 70

  1. Также можно определить угол по формуле:

cos a → , b → ^ = ( a → , b → ) a → · b → ,

но предварительно рассчитать длины векторов и скалярное произведение по координатам: a → = 2 2 + 0 2 + ( – 1 ) 2 = 5 b → = 1 2 + 2 2 + 3 2 = 14 a → , b → ^ = 2 · 1 + 0 · 2 + ( – 1 ) · 3 = – 1 cos a → , b → ^ = a → , b → ^ a → · b → = – 1 5 · 14 = – 1 70 ⇒ a → , b → ^ = – a r c cos 1 70

Ответ: a → , b → ^ = – a r c cos 1 70

Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

Исходные данные: на плоскости в прямоугольной системе координат заданы точки A ( 2 , – 1 ) , B ( 3 , 2 ) , C ( 7 , – 2 ) . Необходимо определить косинус угла между векторами A C → и B C → .

Решение

Найдем координаты векторов по координатам заданных точек A C → = ( 7 – 2 , – 2 – ( – 1 ) ) = ( 5 , – 1 ) B C → = ( 7 – 3 , – 2 – 2 ) = ( 4 , – 4 )

Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cos A C → , B C → ^ = ( A C → , B C → ) A C → · B C → = 5 · 4 + ( – 1 ) · ( – 4 ) 5 2 + ( – 1 ) 2 · 4 2 + ( – 4 ) 2 = 24 26 · 32 = 3 13

Ответ: cos A C → , B C → ^ = 3 13

Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы O A → = a → и O B → = b → , тогда, согласно теореме косинусов в треугольнике О А В , будет верным равенство:

A B 2 = O A 2 + O B 2 – 2 · O A · O B · cos ( ∠ A O B ) ,

b → – a → 2 = a → + b → – 2 · a → · b → · cos ( a → , b → ) ^

и отсюда выведем формулу косинуса угла:

cos ( a → , b → ) ^ = 1 2 · a → 2 + b → 2 – b → – a → 2 a → · b →

Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

Хотя указанный способ имеет место быть, все же чаще применяют формулу:

Скалярное произведение векторов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Основные определения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Скалярное произведение — это операция над двумя векторами, результатом которой является скаляр, то есть число, которое не зависит от выбора системы координат.

Результат операции является число. То есть при умножении вектор на вектор получается число. Если длины векторов |→a|, |→b| — это числа, косинус угла — число, то их произведение |→a|*|→b|*cos∠(→a, →b) тоже будет числом.

Чтобы разобраться в теме этой статьи, нам еще нужно узнать особенности угла между векторами.

Угол между векторами

Угол между векторами ∠(→a, →b) может принимать значения от 0° до 180° градусов включительно. Аналитически это можно записать в виде двойного неравенства: 0°=

2. Если угол между векторами равен 90°, то такие векторы перпендикулярны друг другу.

3. Если векторы направлены в разные стороны, тогда угол между ними 180°.

Также векторы могут образовывать тупой угол. Это выглядит так:

Скалярное произведение векторов

Определение скалярного произведения можно сформулировать двумя способами:

Скалярное произведение двух векторов a и b дает в результате скалярную величину, которая равна сумме попарного произведения координат векторов a и b.

Скалярным произведением двух векторов a и b будет скалярная величина, равная произведению модулей этих векторов, умноженная на косинус угла между ними:

→a * →b = →|a| * →|b| * cosα

  • Алгебраическая интерпретация.
  • Что важно запомнить про геометрическую интерпретацию скалярного произведения:

    • Если угол между векторами острый и векторы ненулевые, то скалярное произведение положительно, то есть cosα > 0.
    • Если угол между векторами тупой и векторы ненулевые, то скалярное произведение отрицательно, так как cosα

    Скалярное произведение в координатах

    Вычисление скалярного произведения можно произвести через координаты векторов в заданной плоскости или в пространстве.

    Скалярным произведением двух векторов на плоскости или в трехмерном пространстве в прямоугольной системе координат называется сумма произведений соответствующих координат векторов →a и →b.

    То есть для векторов →a = (ax, ay), →b = (bx, by) на плоскости в прямоугольной декартовой системе координат формула для вычисления скалярного произведения имеет вид: (→a, →b) = ax*bx + ay*by

    А для векторов →a = (ax, ay, az), →b = (bx, by, bz) в трехмерном пространстве скалярное произведение в координатах находится так: (→a, →b) = ax*bx + ay*by + az*bz

    Докажем это определение:

      Сначала докажем равенства

    для векторов →a = (ax, ay), →b = (bx, by) на плоскости, заданных в прямоугольной декартовой системе координат.

    Отложим от начала координат (точка О) векторы →OB = →b = (bx, by) и →OA = →a = (ax, ay)

    Тогда, →AB = →OB – →OA = →b – →a = (bx – ax, by – ay)

    Будем считать точки О, А и В вершинами треугольника ОАВ. По теореме косинусов можно записать:

    то последнее равенство можно переписать так:

    а по первому определению скалярного произведения имеем

  • Вспомнив формулу вычисления длины вектора по координатам, получаем
  • Абсолютно аналогично доказывается справедливость равенств (→a, →b) = |→a|*|→b|*cos(→a, →b) = ax*bx + ay*by + ax*bz для векторов →a = (ax, ay, az), →b = (bx, by, bz), заданных в прямоугольной системе координат трехмерного пространства.
  • Формула скалярного произведения векторов в координатах позволяет заключить, что скалярный квадрат вектора равен сумме квадратов всех его координат: на плоскости (→a, →a) = ax2 + ay2 в пространстве (→a, →a) = ax2 + ay2 + az2.
  • Записывайтесь на наши курсы по математике для учеников с 1 по 11 классы!

    Формулы скалярного произведения векторов заданных координатами

    Формула скалярного произведения векторов для плоских задач

    В плоской задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by

    Формула скалярного произведения векторов для пространственных задач

    В пространственной задаче скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = ax * bx + ay * by + az * bz

    Формула скалярного произведения n-мерных векторов

    В n-мерном пространстве скалярное произведение векторов a = и b = можно найти по формуле:

    a * b = a1 * b1 + a2 * b2 + . + an * bn

    Свойства скалярного произведения

    Свойства скалярного произведения векторов:

      Скалярное произведение вектора самого на себя всегда больше или равно нулю. В результате получается нуль, если вектор равен нулевому вектору.

    →0 * →0 = 0

    Скалярное произведение вектора самого на себя равно квадрату его модуля:

    →a * →a = →∣∣a∣∣2

    Операция скалярного произведения коммуникативна, то есть соответствует переместительному закону:

    →a * →b = →b * →a

    Операция скалярного умножения дистрибутивна, то есть соответствует распределительному закону:

    (→a + →b) * →c = →a * →c + →b * →c

    Сочетательный закон для скалярного произведения:

    (k * →a) * →b = k * (→a * →b)

    Если скалярное произведение двух ненулевых векторов равно нулю, то эти векторы ортогональны, то есть перпендикулярны друг другу:

    a ≠ 0, b ≠ 0, a * b = 0 a ┴ b

    Эти свойства очень легко обосновать, если отталкиваться от определения скалярного произведения в координатной форме и от свойств операций сложения и умножения действительных чисел.

    Для примера докажем свойство коммутативности скалярного произведения (→a, →b) = (→b, →a)

    По определению (→a, →b) = ax*bx + ay*by и (→b, →a) = bx*ax + by*ay. В силу свойства коммутативности операции умножения действительных чисел, справедливо ax*bx = bx*ax b ay*by = by*ay, тогда ax*bx + ay*by = bx*ax + by*ay.

    Следовательно, (→a, →b) = (→b, →a), что и требовалось доказать.

    Аналогично доказываются остальные свойства скалярного произведения.

    Следует отметить, что свойство дистрибутивности скалярного произведения справедливо для любого числа слагаемых, то есть,

    Примеры вычислений скалярного произведения

    Пример 1.

    Вычислите скалярное произведение двух векторов →a и →b, если их длины равны 3 и 7 единиц соответственно, а угол между ними равен 60 градусам.

    У нас есть все данные, чтобы вычислить скалярное произведение по определению:

    (→a,→b) = →|a| * →|b| * cos(→a,→b) = 3 * 7 cos60° = 3 * 7 * 1/2 = 21/2 = 10,5.

    Ответ: (→a,→b) = 21/2 = 10,5.

    Пример 2.

    Найти скалярное произведение векторов →a и →b, если →|a| = 2, →|b| = 5, ∠(→a,→b) = π/6.

    Используем формулу →a * →b = →|a| * →|b| * cosα.

    В данном случае:

    →a * →b = →|a| * →|b| * cosα = 2 * 5 * cosπ/6 = 10 * √3/2 = 5√3

    Пример 3.

    Как найти скалярное произведение векторов →a = 7*→m + 3*→n и →b = 5*→m + 8*→n, если векторы →m и →n перпендикулярны и их длины равны 3 и 2 единицы соответственно.

    По свойству дистрибутивности скалярного произведения имеем

    Сочетательное свойство позволяет нам вынести коэффициенты за знак скалярного произведения:

    В силу свойства коммутативности последнее выражение примет вид

    Итак, после применения свойств скалярного произведения имеем

    Осталось применить формулу для вычисления скалярного произведения через длины векторов и косинус угла между ними:

    Пример 4.

    В правильной треугольной призме ABCA1B1C1, все ребра которой равны 1, найти косинус угла между прямыми AB1 и BC1.

      Введем систему координат.

    Если сделать выносной рисунок основания призмы, получим понятный плоскостной рисунок с помощью которого можно легко найти координаты всех интересующих точек.

  • Точка А имеет координаты (0;0;0). Точка С — (1;0;0). Точка В — (1/2;√3/2;0). Тогда точка В1 имеет координаты (1/2;√3/2;1), а точка С1 – (1;0;1).
  • Найдем координаты векторов →AB1 и →BC1:
  • Найдем длины векторов →AB1 и →BC1:
  • Найдем скалярное произведение векторов →AB1 и →BC1:
  • Найдем косинус угла между прямыми AB1 и BC1:
  • Пример 5.

    а) Проверить ортогональность векторов: →a(1; 2; -4) и →b(6; -1; 1) .

    б) Выяснить, будут ли перпендикулярными отрезки KL и MN, если K(3;5), L(-2;0), M(8;-1), N(1;4).

    а) Выясним, будут ли ортогональны пространственные векторы. Вычислим их скалярное произведение: →ab = 1*6 + 2*(-1) + (-4)*1 = 0, следовательно

    б) Здесь речь идёт об обычных отрезках плоскости, а задача всё равно решается через векторы. Найдем их: →KL(-2-3; 0-5) = →KL(-5; -5), →MN(1-8; 4-(-1)) = →MN(-7;5)

    Вычислим их скалярное произведение: →KL*→MN = -5*(-7) + (-5)*5 = 10 ≠ 0, значит, отрезки KL и MN не перпендикулярны.

    Обратите внимание на два существенных момента:

    • В данном случае нас не интересует конкретное значение скалярного произведения, важно, что оно не равно нулю.
    • В окончательном выводе подразумевается, что если векторы не ортогональны, значит, соответствующие отрезки тоже не будут перпендикулярными. Геометрически это очевидно, поэтому можно сразу записывать вывод об отрезках, что они не перпендикулярны.

    Ответ: а) →a перпендикулярно →b, б) отрезки KL, MN не перпендикулярны.

    Пример 6.

    Даны три вершины треугольника A(-1; 0), B(3; 2), C(5; -4). Найти угол при вершине B — ∠ABC.

    По условию чертеж выполнять не требуется, но для удобства можно сделать:

    Требуемый угол ∠ABC помечен зеленой дугой. Сразу вспоминаем школьное обозначение угла: ∠ABC — особое внимание на среднюю букву B — это и есть нужная нам вершина угла. Для краткости можно также записать просто ∠B.

    Из чертежа видно, что угол ∠ABC треугольника совпадает с углом между векторами →BA и →BC, иными словами: ∠ABC = ∠(→BA; →BC).

    Вычислим скалярное произведение:

    Вычислим длины векторов:

    Найдем косинус угла:

    Когда такие примеры не будут вызывать трудностей, можно начать записывать вычисления в одну строчку:

    Полученное значение не является окончательным, поэтому нет особого смысла избавляться от иррациональности в знаменателе.

    Найдём сам угол:

    Если посмотреть на чертеж, то результат действительно похож на правду. Для проверки угол также можно измерить и транспортиром.

    Ответ: ∠ABC = arccos(1/5√2) ≈1,43 рад. ≈ 82°

    Важно не перепутать, что в задаче спрашивалось про угол треугольника, а не про угол между векторами. Поэтому указываем точный ответ: arccos(1/5√2) и приближенное значение угла: ≈1,43 рад. ≈ 82°, которое легко найти с помощью калькулятора.

    А те, кому мало и хочется еще порешать, могут вычислить углы ∠A, ∠C, и убедиться в справедливости канонического равенства ∠A + ∠B + ∠C = 180°.

    [spoiler title=”источники:”]

    http://zaochnik.com/spravochnik/matematika/vektory/nahozhdenie-ugla-mezhdu-vektorami-primery-i-reshen/

    http://skysmart.ru/articles/mathematic/skalyarnoe-proizvedenie-vektorov

    [/spoiler]

    У любого вектора есть 2 главные характеристики:

    • длина (математики говорят «модуль вектора»)
    • направление (в какую сторону вектор на рисунке направлен)

    Третья характеристика вектора – это его координаты.

    Примечание:

    Зная координаты вектора, можно найти его длину и направление. Поэтому, задавать информацию о векторе можно двояко: либо указав его длину и направление, либо его координаты.

    Что такое координаты вектора

    Координаты вектора – это длины его теней на осях координат (его проекции на оси).

    Координаты вектора указывают так:

    [vec{a} = left{ a_{x}; a_{y} right}]

    ( a_{x} ) – это  «x» координата вектора, проекция вектора ( vec{a} ) на ось Ox;

    ( a_{y} ) — это  «y» координата вектора, проекция вектора ( vec{a} ) на ось Oy;

    На рисунке изображен вектор и его проекции на оси координат

    Рис. 1. Обозначения вектора и его проекций на координатные оси

    Координаты вектора можно получить из координат его начальной и конечной точек:

    «координата вектора» = «конец» — «начало»

    Пример:

    ( A left( 1;1 right) ) — начальная точка,

    ( B left( 4;3 right) ) — конечная точка,

    На рисунке изображены две точки на плоскости xOy

    Рис. 2. На плоскости отмечены две точки

    ( overrightarrow {AB} ) – вектор.

    [ overrightarrow {AB} = left{ AB_{x}; AB_{y} right} ]

    [ begin{cases}  AB_{x} = 4 – 1; AB_{x} = 3  \ AB_{y} = 3 – 1; AB_{y} = 2 end{cases} ]

    [ overrightarrow {AB} = left{ 3; 2 right} ]

    На рисунке изображен вектор, числами отмечены его координаты - длины его проекций на осях координат

    Рис. 3. Вектор и его координаты

    Длина вектора (в чем измеряется, как посчитать)

    Длину вектора (его модуль) обозначают так:

    ( left| vec{a} right| ) – длина вектора ( vec{a} ).

    Как вычислить длину вектора по его координатам

    Когда известны координаты вектора, его длину считают так:

    ( a_{x} ) и ( a_{y} ) — это числа, координаты вектора ( vec{a} )

    Для двухмерного вектора:

    [ large boxed {  left| vec{a} right| = sqrt{ a_{x}^{2} + a_{y}^{2} } }]

    Для трехмерного вектора:

    [ large boxed {  left| vec{a} right| = sqrt{ a_{x}^{2} + a_{y}^{2} + a_{z}^{2} } } ]

    Как вычислить длину вектора с помощью рисунка

    Если вектор нарисован на клетчатой бумаге, длину считаем так:

    1). Если вектор лежит на линиях клеточек тетради:

    — считаем количество клеточек.

    Зная масштаб клеток, легко получить длину вектора – умножаем масштаб на количество клеток.

    Вектор располагается вдоль линий, разграничивающих листок в клетку

    Рис. 4. Вектор располагается вдоль линий, на листке в клетку

    2). Если вектор не лежит вдоль линий:

    — проводим вертикаль и горизонталь пунктиром.

    Вектор на листке в клетку не лежит вдоль линий клеточе

    Рис. 5. Вектор не расположен вдоль линий, разграничивающих листок в клетку

    ( Delta x ) — горизонталь; ( Delta y ) — вертикаль;

    — затем применяем формулу:

    [ left| vec{a} right| = sqrt { left(Delta x  right)^{2} + left( Delta y right)^{2} } ]

    Как указать направление вектора

    Указать направление вектора можно с помощью его координат. Так как в его координатах уже содержится информация о длине и направлении вектора.

    Бывает так, что координаты вектора неизвестны, а известна только лишь его длина. Тогда направление можно указать с помощью угла между вектором и какой-либо осью.

    Для двумерного вектора

    Если вектор двумерный, то для указания направления (см. рис. 10) можно использовать один из двух углов:

    • угол ( alpha ) между вектором и горизонталью (осью Ox),
    • или угол ( beta ) вежду вектором и вертикалью (осью Oy).

    Отмечены углы между вектором и каждой из двух осей на плоскости

    Рис. 6. Углы между вектором и осями на плоскости

    Словами указать направление вектора можно так:

    • вектор длиной 5 единиц направлен под углом 30 градусов к горизонтали;
    • Или же: вектор длиной 5 единиц направлен под углом 60 градусов к вертикали.

    Такой способ указания координат используют в полярной системе координат.

    Для трехмерного вектора

    Когда вектор располагается в трехмерном пространстве, чтобы указать, куда вектор направлен, используют два угла.

    • угол между вектором и осью Oz;
    • и один из углов: между вектором и осью Oy, или между вектором и осью Ox;

    Такой способ указания координат используют в сферической системе координат.

    Считаем Землю шаром. Расположим ее центр в начале трехмерной системы координат – точке (0 ; 0 ; 0).

    Тогда координаты любой точки на поверхности планеты можно указать с помощью радиус-вектора этой точки.

    Для указания сферических координат принято использовать:

    • длину вектора,
    • угол между осью Ox и вектором и
    • угол между осью Oz и вектором.

    Длина вектора, угол между векторами – эти понятия являются естественно-применимыми и интуитивно понятными при определении вектора как отрезка определенного направления. Ниже научимся определять угол между векторами в трехмерном пространстве, его косинус и рассмотрим теорию на примерах.

    Для рассмотрения понятия угла между векторами обратимся к графической иллюстрации: зададим на плоскости или в трехмерном пространстве два вектора a→ и b→ , являющиеся ненулевыми. Зададим также произвольную точку O и отложим от нее векторы OA→=b→ и OB→=b→

    Определение 1

    Углом между векторами a→ и b→ называется угол между лучами ОА и ОВ.

    Полученный угол будем обозначать следующим образом: a→,b→^

    Нахождение угла между векторами

    Очевидно, что угол имеет возможность принимать значения от 0 до π или от 0 до 180 градусов.

    a→,b→^=0, когда векторы являются сонаправленными и a→,b→^=π , когда векторы противоположнонаправлены.

    Определение 2

    Векторы называются перпендикулярными, если угол между ними равен 90 градусов или π2 радиан.

    Если хотя бы один из векторов является нулевым, то угол a→,b→^ не определен.

    Нахождение угла между векторами

    Косинус угла между двумя векторами, а значит и собственно угол, обычно может быть определен или при помощи скалярного произведения векторов, или посредством теоремы косинусов для треугольника, построенного на основе двух данных векторов.

    Согласно определению скалярное произведение есть a→, b→=a→·b→·cosa→,b→^.

    Если заданные векторы a→ и b→ ненулевые, то можем разделить правую и левую части равенства на произведение длин этих векторов, получая, таким образом, формулу для нахождения косинуса угла между ненулевыми векторами:

    cosa→,b→^=a→,b→a→·b→

    Данная формула используется, когда в числе исходных данных есть длины векторов и их скалярное произведение.

    Пример 1

    Исходные данные: векторы a→ и b→ . Длины их равны 3 и 6 соответственно, а их скалярное произведение равно -9. Необходимо вычислить косинус угла между векторами и найти сам угол.

    Решение

    Исходных данных достаточно, чтобы применить полученную выше формулу, тогда cosa→,b→^=-93·6=-12 , 

    Теперь определим угол между векторами: a→,b→^=arccos (-12)=3π4

    Ответ: cosa→,b→^=-12, a→,b→^=3π4

    Чаще встречаются задачи, где векторы задаются координатами в прямоугольной системе координат. Для таких случаев необходимо вывести ту же формулу, но в координатной форме.

    Длина вектора определяется как корень квадратный из суммы квадратов его координат, а скалярное произведение векторов равно сумме произведений соответствующих координат. Тогда формула для нахождения косинуса угла между векторами на плоскости a→=(ax, ay), b→=(bx, by) выглядит так:

    cosa→,b→^=ax·bx+ay·byax2+ay2·bx2+by2

    А формула для нахождения косинуса угла между векторами в трехмерном пространстве a→=(ax, ay, az), b→=(bx, by, bz) будет иметь вид: cosa→,b→^=ax·bx+ay·by+az·bzax2+ay2+az2·bx2+by2+bz2

    Пример 2

    Исходные данные: векторы a→=(2, 0, -1), b→=(1, 2, 3) в прямоугольной системе координат. Необходимо определить угол между ними.

    Решение

    1. Для решения задачи можем сразу применить формулу:

    cosa→,b→^=2·1+0·2+(-1)·322+02+(-1)2·12+22+32=-170⇒a→,b→^=arccos(-170)=-arccos170

    1. Также можно определить угол по формуле:

    cosa→,b→^=(a→, b→)a→·b→,

    но предварительно рассчитать длины векторов и скалярное произведение по координатам: a→=22+02+(-1)2=5b→=12+22+32=14a→,b→^=2·1+0·2+(-1)·3=-1cosa→,b→^=a→,b→^a→·b→=-15·14=-170⇒a→,b→^=-arccos170

    Ответ: a→,b→^=-arccos170

    Также распространены задачи, когда заданы координаты трех точек в прямоугольной системе координат и необходимо определить какой-нибудь угол. И тогда, для того, чтобы определить угол между векторами с заданными координатами точек, необходимо вычислить координаты векторов в виде разности соответствующих точек начала и конца вектора.

    Пример 3

    Исходные данные: на плоскости в прямоугольной системе координат заданы точки A(2, -1), B(3, 2), C(7, -2). Необходимо определить косинус угла между векторами AC→ и BC→.

    Решение 

    Найдем координаты векторов по координатам заданных точек AC→=(7-2, -2-(-1))=(5, -1)BC→=(7-3, -2-2)=(4, -4)

    Теперь используем формулу для определения косинуса угла между векторами на плоскости в координатах: cosAC→, BC→^=(AC→, BC→)AC→·BC→=5·4+(-1)·(-4)52+(-1)2·42+(-4)2=2426·32=313

    Ответ: cosAC→, BC→^=313

    Угол между векторами можно определить по теореме косинусов. Отложим от точки O векторы OA→=a→ и OB→=b→ , тогда, согласно теореме косинусов в треугольнике ОАВ, будет верным равенство:

    AB2=OA2+OB2-2·OA·OB·cos(∠AOB) ,

    что равносильно:

    b→-a→2=a→+b→-2·a→·b→·cos(a→, b→)^

    и отсюда выведем формулу косинуса угла:

    cos(a→, b→)^=12·a→2+b→2-b→-a→2a→·b→

    Для применения полученной формулы нам нужны длины векторов, которые несложно определяются по их координатам.

    Хотя указанный способ имеет место быть, все же чаще применяют формулу:

    cos(a→, b→)^=a→, b→a→·b→

    Ирина Мальцевская

    Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

    5 / 5 / 6

    Регистрация: 17.05.2014

    Сообщений: 61

    1

    Как найти вектор направления тела, зная угол поворота?

    02.02.2016, 00:39. Показов 1816. Ответов 5


    Студворк — интернет-сервис помощи студентам

    Как найти вектор направлениясмещения по осям тела, зная угол его поворота.

    Миниатюры

    Как найти вектор направления тела, зная угол поворота?
     



    0



    2644 / 2220 / 239

    Регистрация: 03.07.2012

    Сообщений: 8,064

    Записей в блоге: 1

    02.02.2016, 07:18

    2

    Кто-нибудь понял, чего хочет ТС?



    0



    5 / 5 / 6

    Регистрация: 17.05.2014

    Сообщений: 61

    02.02.2016, 14:19

     [ТС]

    3

    Есть тело и его угол поворота. И нужно, чтобы оно двигалось в ту сторону, в которую направлено. Как вычислить вектор его движения?



    0



    372 / 342 / 42

    Регистрация: 14.07.2015

    Сообщений: 2,890

    02.02.2016, 15:01

    4

    Цитата
    Сообщение от Forrgit
    Посмотреть сообщение

    И нужно, чтобы оно двигалось в ту сторону, в которую направлено.

    так пусть двигается, кто ему мешает?
    Формулировка задачи своими словами явно не ваш конек.



    0



    761 / 662 / 195

    Регистрация: 24.11.2015

    Сообщений: 2,158

    03.02.2016, 09:51

    5

    Если не сказано иное, то поступательное и вращательное движения тела абсолютно независимы. А в данной задаче ничего и не сказано…
    Просто вообще ничего

    Добавлено через 10 часов 24 минуты
    Если речь идет о проекциях вектора на оси координат, то надо вернуться в школу и немного поучиться, начиная с пятого класса. Или, хотя бы, перечитать школьные учебники. А не загадывать кроссворды и ребусы.



    0



    2644 / 2220 / 239

    Регистрация: 03.07.2012

    Сообщений: 8,064

    Записей в блоге: 1

    03.02.2016, 10:39

    6

    “Некоторые сами не знают чего хочут”… Из к/ф.



    0



    Добавить комментарий