Как найти вектор нормали по двум точкам



5.2.3. Вектор нормали плоскости (нормальный вектор)

Вектор нормали плоскости – это вектор, который перпендикулярен данной плоскости. Очевидно, что у любой плоскости бесконечно много нормальных векторов.

Но для решения задач нам будет хватать и одного: если плоскость задана общим уравнением  в прямоугольной (!) системе координат, то вектор  является нормальным вектором данной плоскости.

Просто до безобразия! – всё, что нужно сделать – это «снять» коэффициенты из уравнения плоскости. И чтобы хоть как-то усложнить практику рассмотрим тоже простую, но очень важную задачу, которая часто встречается, причём, не только в геометрии:

Задача 134

Найти единичный нормальный вектор плоскости .

Решение: принципиально ситуация выглядит так:

Сначала из уравнения плоскости «снимем» вектор нормали: .

И эту задачку мы уже решали: для того чтобы найти единичный вектор , нужно каждую координату вектора  разделить на длину вектора .

Вычислим длину вектора нормали:

Таким образом:

Контроль:, ОК

Ответ:

Вспоминаем, что координаты этого вектора  – есть в точности направляющие косинусы вектора : .

И, как говорится, обещанного три страницы ждут 🙂  – вернёмся к Задаче 130, чтобы выполнить её проверку. Напоминаю, что там требовалось построить уравнение плоскости по точке  и двум векторам , и в результате решения мы получили уравнение .

Проверяем:

Во-первых, подставим координаты точки  в полученное уравнение:

 – получено верное равенство, значит, точка  лежит в данной плоскости.

На втором шаге из уравнения плоскости «снимаем» вектор нормали: . Поскольку векторы  параллельны плоскости, а вектор  ей перпендикулярен, то должны иметь место следующие факты: . Ортогональность векторов элементарно проверяется с помощью скалярного произведения:

Вывод: уравнение плоскости найдено правильно.

В ходе проверки я фактически процитировал следующее утверждение теории: вектор  параллелен плоскости  в том и только том случае, когда .

Итак, с «выуживанием» нормального вектора разобрались, теперь ответим на противоположный вопрос:

5.2.4. Как составить уравнение плоскости по точке и вектору нормали?

5.2.2. Как составить уравнение плоскости по трём точкам?

| Оглавление |



Автор: Aлeксaндр Eмeлин

Автор статьи

Елена Борисовна Калюжная

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Нормальный вектор плоскости – наиболее компактный и наглядный способ определить плоскость в трехмерной системе координат.

Определение 1

Вектор нормали к плоскости – любой ненулевой вектор, принадлежащий прямой, перпендикулярной к рассматриваемой плоскости. По отношению к такой прямой нормальный вектор является направляющим.

Для каждой плоскости существует бесконечное множество коллинеарных друг по отношению к другу нормальных векторов.

В качестве примера плоскостей, задаваемых нормальными векторами, можно рассматривать координатные плоскости системы координат $Oxyz$: $Oxy$, $Oxz$, $Oyz$. Для них нормальными векторами будут, векторы, направляющие оси, т.е., соответственно, $Oz$, $Oy$ и $Ox$ ($vec{k}, vec{j}, vec{i}$).

Векторы в трехмерной системе координат. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Векторы в трехмерной системе координат. Автор24 — интернет-биржа студенческих работ

Рассмотрим основные математические закономерности, показываюшие как найти вектор нормали к плоскости.

Формула нормального вектора выводится из общего уравнения плоскости, которое имеет вид $Ax + By + Cz + D = 0$.

Плоскости, в уравнениях которых один из коэффициентов равен $0$, соответствуют базовым плоскостям системы координат ($Oxy, Oxz, Oyz$).

Уравнения вида

$Ax + D = 0 \ By + D = 0 \ Cz + D = 0$

описывают плоскости, параллельные $Oxy, Oxz, Oyz$ и отстоящие от них на расстояние, равное отношению свободного члена $D$ к соответствующему коэффициенту, например:

$x = frac{D}{A}$

Нормальный вектор плоскости $Ax + By + Cz + D = 0$ можно выразить как $bar{n}(A; B; C)$. Существует бесконечное множество плоскостей, перпендикулярных данному вектору. Для определения плоскости нужна еще точка на ней. Через любую точку также можно провести бесконечное количество плоскостей (их совокупность называется связкой). Нормальный вектор и точка взаимодополняют друг друга, определяя единственную плоскость.

«Нормальный вектор плоскости» 👇

Точку на плоскости можно обозначить как $M_1(x; y; z)$. Вектор, соединяющий ее с любой другой точкой $M$ данной плоскости, при скалярном умножении на вектор нормали к плоскости $N$ дает ноль:

$overline{M_1M} cdot N = 0$

Переписав уравнение через проекции, получим

$overline{M_1M} cdot N = A(x – x_1) + B(y – y_1) + C(z – z_1) = 0$

Это дает нам возможность выводить уравнение плоскости через координаты точки и параметры нормального вектора плоскости.

Замечание 1

Определить плоскость в пространстве можно и другими способами, например, с помощью указания координат трех ее точек, не лежащих на одной прямой, двух неколлинеарных векторов и точки и т.д. Однако форма записи с помощью нормального вектора плоскости и точки наиболее компактна. К ней другие методы задания плоскости можно привести путем алгебраических преобразований.

С помощью нормального вектора плоскости как ее определителя могут быть решены задачи на доказательство параллельности или перпендикулярности плоскостей, на составление уравнения плоскости, на нахождение угла между прямой и плоскостью, на нахождение угла между плоскостями.

Пример 1

Сформулируем уравнение плоскости, проходящей через точку с координатами $M(1; -2; 3)$ и перпендикулярной вектору $N = 2i + 4k$.

Для начала найдем коэффициенты, соответствующие координатам:

$A = 2 \ B = 0 \ C = 4$

Заметим, что $B = 0$ следует из того, что направляющий вектор $vec{j}$ оси $Oy$ в исходном уравнении не упоминается.

Подставим значения в формулу:

$2(x – 1) + 0(y + 2) + 4(z – 3) = 0$

После стандартных преобразований получим ответ:

$x + 2z – 7 = 0$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Как найти нормаль плоскости

Нормаль плоскости n (вектор нормали к плоскости) – это любой направленный перпендикуляр к ней (ортогональный вектор). Дальнейшие выкладки по определении нормали зависят от способа задания плоскости.

Как найти нормаль плоскости

Инструкция

Если задано общее уравнение плоскости – AX+BY+CZ+D=0 или его форма A(x-x0)+B(y-y0)+C(z-z0)=0, то можно сразу записать ответ – n(А, В, С). Дело в том, что это уравнение было получено, как задача определения уравнения плоскости по нормали и точке.

Для получения общего ответа, вам понадобится векторное произведение векторов из-за того, что последнее всегда перпендикулярно исходным векторам. Итак, векторным произведением векторов, является некоторый вектор, модуль которого равен произведению модуля первого (а) на модуль второго (b) и на синус угла между ними. При этом этот вектор (обозначьте его через n) ортогонален a и b – это главное. Тройка этих векторов правая, то есть из конца n кратчайший поворот от a к b совершается против часовой стрелки.
[a,b] – одно из общепринятых обозначений векторного произведения. Для вычисления векторного произведения в координатной форме, используется вектор-определитель (см. рис.1)

Как найти нормаль плоскости

Для того чтобы не путаться со знаком «-», перепишите результат в виде: n={nx, ny, nz}=i(aybz-azby)+j(azbx-axbz)+k(axby-aybx), и в координатах: {nx, ny, nz}={(aybz-azby), (azbx-axbz), (axby-aybx)}.
Более того, дабы не путаться с численными примерами выпишете все полученные значения по отдельности: nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx.

Вернитесь к решению поставленной задачи. Плоскость можно задать различными способами. Пусть нормаль к плоскости определяется двумя неколлинеарными векторами, причем сразу численно.
Пусть даны векторы a(2, 4, 5) и b(3, 2, 6). Нормаль к плоскости совпадает с их векторным произведением и, как только что было выяснено будет равна n(nx, ny, nz),
nx=aybz-azby, ny=azbx-axbz, nz=axby-aybx. В данном случае ax=2, ay=4, az=5, bx=3, by=2, bz=6. Таким образом,
nx=24-10=14, ny=12-15=-3, nz=4-8=-4. Нормаль найдена – n(14, -3, -4). При этом она является нормалью к целому семейству плоскостей.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добавить комментарий