Как найти вектор нормали в потоке

Поток векторного поля: теория и примеры

Понятие потока векторного поля и его вычисление как поверхностного интеграла

Своим названием поток векторного поля обязан задачам гидродинамики о потоке жидкости. Поток векторного поля может быть вычислен в виде поверхностного интеграла, который выражает общее количество жидкости, протекающей в единицу времени через некоторую поверхность в направлении вектора скорости течения жидкости в данной точке. Понятие потока векторного поля обобщается также на магнетический поток, поток электричества, поток тепла через заданную поверхность и другие. Поток векторного поля может быть вычислен в виде поверхностного интеграла как первого, так и второго рода и далее мы дадим его вывод через эти интегралы.

Пусть в некоторой области пространства задано векторное поле

и поверхность σ, в каждой точке M которой определён единичный вектор нормали . Пусть также направляющие косинусы этого вектора – непрерывные функции координат x, y, z точки M.

Определение потока векторного поля. Потоком W поля вектора через поверхность σ называется поверхностный интеграл

.

Обозначим как a n проекцию вектора на на единичный вектор . Тогда поток можем записать как поверхностный интеграл первого рода

.

.

поток векторного поля можно вычислить и как поверхностный интеграл второго рода

.

Направление и интенсивность потока векторного поля

Поток векторного поля зависит от местоположения поверхности σ. Если поверхность размещена так, что во всех её точках вектор поля образует с вектором нормали поверхности острый угол, то проекции вектора a n положительны и, таким образом поток W также положителен (рисунок ниже). Если же поверхность размещена так, что во всех её точках вектор образует с вектором нормали поверхности тупой угол, то поток W отрицателен.

Через каждую точку поверхности проходит одна векторная линия, поэтому поверхность σ пересекает бесконечное множество векторных линий. Однако условно можно принять, что поверхность σ пересекает некоторое конечное число векторных линий. Поэтому можно считать, что поток векторного поля – это число векторных линий, пересекающих поверхность σ. Чем интенсивнее поток векторного поля, тем более плотно расположены векторные линии и в результате получается бОльший поток жидкости.

Если поток векторного поля – поле скорости частиц текущей жидкости через поверхность σ, то поверхностный интеграл равен количеству жидкости, протекающей в единицу времени через поверхность σ. Если рассматривать магнетическое поле, которое характеризуется вектором магнетической индукции , то поверхностный интеграл называется магнетическим потоком через поверхность σ и равен общему количеству линий магнетической индукции, пересекающих поверхность σ. В случае электростатического поля интеграл выражает число линий электрической силы, пересекающих поверхность σ. Этот интеграл называется потоком вектора интенсивности электростатического поля через поверхнсть σ. В теории теплопроводности рассматривается стационарный поток тепла через поверхность σ. Если k – коэффициент теплопроводности, а u(M) – температура в данной области, то поток тепла, протекающего через поверхность σ в единицу времени, определяет интеграл .

Вычисление потока векторного поля: примеры

Пример 1. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

1) Поверхностью σ является треугольник ABC , а её проекцией на ось xOy – треугольник AOB .

Координатами вектора нормали данной поверхности являются коэффициенты при переменных в уравнении плоскости:

.

Длина вектора нормали:

.

Единичный вектор нормали:

.

Из выражения единичного вектора нормали следует, что направляющий косинус . Тогда .

Теперь можем выразить поток векторного поля в виде поверхностного интеграла первого рода и начать решать его:

Выразим переменную “зет”:

Продолжаем вычислять интеграл и, таким образом, поток векторного поля:

Получили ответ: поток векторного поля равен 64.

2) Выражая поток векторного поля через поверхностный интеграл второго рода, получаем

.

Представим этот интеграл в виде суммы трёх интегралов и каждый вычислим отдельно. Учитывая, что проекция поверхности на ось yOz является треугольник OCB , который ограничивают прямые y = 0 , z = 0 , y + 3z = 6 или y = 6 − 3z и в точках поверхности 2x = 6 − y − 3 , получаем первый интеграл и вычисляем его:

Проекцией поверхности на ось xOz является треугольник OAC , который ограничен прямыми x = 0 , z = 0 , 2x + 3z = 6 или . По этим данным получаем второй интеграл, который сразу решаем:

Проекцией поверхности на ось xOy является треугольник OAB , который ограничен прямыми x = 0 , y = 0 , 2x + y = 6 . Получаем третий интеграл и решаем его:

Осталось только сложить все три интеграла:

.

Получили ответ: поток векторного поля равен 64. Как видим, он совпадает с ответом, полученным в первом случае.

Пример 2. Вычислить поток векторного поля через верхнюю сторону треугольника, образованного пересечением плоскости с координатными плоскостями. Решить задачу двумя способами: 1) через поверхностный интеграл первого рода; 2) через поверхностный интеграл второго рода.

Решение. Данная поверхность представляет собой треугольник ABC , изображённый на рисунке ниже.

1) Коэффициенты при x , y и z из уравнения плоскости являются координатами вектора нормали плоскости, которые нужно взять с противоположным знаком (так как вектор нормали верхней стороны треугольника образует с осью Oz острый угол, так что третья координата вектора нормали плоскости должна быть положительной). Таким образом, вектор нормали запишется в координатах так:

.

Длина этого вектора:

,

единичный вектор нормали (орт):

.

Скалярное произведение векторного поля и единичного нормального вектора:

Поток векторного поля, таким образом, представим в виде поверхностного интеграла первого рода

.

Выразим “зет” и продифференцируем то, что уже можно продифференцировать:

2) Представим поток векторного поля в виде поверхностного интеграла второго рода:

.

Первый и второй интегралы берём со знаком “минус”, так как вектор нормали поверхности образует с осями Ox и Oy тупой угол.

Вычисляем первый интеграл:

Вычисляем второй интеграл:

Вычисляем третий интеграл:

Складываем три интеграла и получаем тот же самый результат:

.

Пример 3. Вычислить поток векторного поля через внешнюю сторону параболоида в первом октанте, отсечённую плоскостью z = 9 .

Поток векторного поля представим в виде поверхностного интеграла второго рода:

Второй интеграл берём со знаком минус, так как нормальный вектор поверхности образует с осью Oz тупой угол. Вычисляем первый интеграл:

Вычисляем второй интеграл:

В сумме получаем искомый поток векторного поля:

.

Нормальный вектор прямой, координаты нормального вектора прямой

Для изучения уравнений прямой линии необходимо хорошо разбираться в алгебре векторов. Важно нахождение направляющего вектора и нормального вектора прямой. В данной статье будут рассмотрены нормальный вектор прямой с примерами и рисунками, нахождение его координат, если известны уравнения прямых. Будет рассмотрено подробное решение.

Нормальный вектор прямой – определение, примеры, иллюстрации

Чтобы материал легче усваивался, нужно разбираться в понятиях линия, плоскость и определениями, которые связаны с векторами. Для начала ознакомимся с понятием вектора прямой.

Нормальным вектором прямой называют любой ненулевой вектор, который лежит на любой прямой, перпендикулярной данной.

Понятно, что имеется бесконечное множество нормальных векторов, расположенных на данной прямой. Рассмотрим на рисунке, приведенном ниже.

Получаем, что прямая является перпендикулярной одной из двух заданных параллельных прямых, тогда ее перпендикулярность распространяется и на вторую параллельную прямую. Отсюда получаем, что множества нормальных векторов этих параллельных прямых совпадают. Когда прямые a и а 1 параллельные, а n → считается нормальным вектором прямой a , также считается нормальным вектором для прямой a 1 . Когда прямая а имеет прямой вектор, тогда вектор t · n → является ненулевым при любом значении параметра t , причем также является нормальным для прямой a .

Используя определение нормального и направляющего векторов, можно прийти к выводу, что нормальный вектор перпендикулярен направляющему. Рассмотрим пример.

Если задана плоскость О х у , то множеством векторов для О х является координатный вектор j → . Он считается ненулевым и принадлежащим координатной оси О у , перпендикулярной О х . Все множество нормальных векторов относительно О х можно записать, как t · j → , t ∈ R , t ≠ 0 .

Прямоугольная система O x y z имеет нормальный вектор i → , относящийся к прямой О z . Вектор j → также считается нормальным. Отсюда видно, что любой ненулевой вектор, расположенный в любой плоскости и перпендикулярный О z , считается нормальным для O z .

Координаты нормального вектора прямой – нахождение координат нормального вектора прямой по известным уравнениям прямой

При рассмотрении прямоугольной системы координат О х у выявим, что уравнение прямой на плоскости соответствует ей, а определение нормальных векторов производится по координатам. Если известно уравнение прямой, а необходимо найти координаты нормального вектора, тогда необходимо из уравнения A x + B y + C = 0 выявить коэффициенты, которые и соответствуют координатам нормального вектора заданной прямой.

Задана прямая вида 2 x + 7 y – 4 = 0 _, найти координаты нормального вектора.

По условию имеем, что прямая была задана общим уравнением, значит необходимо выписать коэффициенты , которые и являются координатами нормального вектора. Значит, координаты вектора имеют значение 2 , 7 .

Бывают случаи, когда A или В из уравнения равняется нулю. Рассмотрим решение такого задания на примере.

Указать нормальный вектор для заданной прямой y – 3 = 0 .

По условию нам дано общее уравнение прямой, значит запишем его таким образом 0 · x + 1 · y – 3 = 0 . Теперь отчетливо видим коэффициенты, которые и являются координатами нормального вектора. Значит, получаем, что координаты нормального вектора равны 0 , 1 .

Если дано уравнение в отрезках вида x a + y b = 1 или уравнение с угловым коэффициентом y = k · x + b , тогда необходимо приводить к общему уравнению прямой, где можно найти координаты нормального вектора данной прямой.

Найти координаты нормального вектора, если дано уравнение прямой x 1 3 – y = 1 .

Для начала необходимо перейти от уравнения в отрезках x 1 3 – y = 1 к уравнению общего вида. Тогда получим, что x 1 3 – y = 1 ⇔ 3 · x – 1 · y – 1 = 0 .

Отсюда видно, что координаты нормального вектора имеют значение 3 , – 1 .

Ответ: 3 , – 1 .

Если прямая определена каноническим уравнением прямой на плоскости x – x 1 a x = y – y 1 a y или параметрическим x = x 1 + a x · λ y = y 1 + a y · λ , тогда получение координат усложняется. По данным уравнениям видно, что координаты направляющего вектора будут a → = ( a x , a y ) . Возможность нахождения координат нормального вектора n → возможно, благодаря условию перпендикулярности векторов n → и a → .

Имеется возможность получения координат нормального вектора при помощи приведения канонического или параметрического уравнений прямой к общему. Тогда получим:

x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x · ( y – y 1 ) ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ a y · x – a x · y + a x · y 1 – a y · x 1 = 0

Для решения можно выбирать любой удобный способ.

Найти нормальный вектор заданной прямой x – 2 7 = y + 3 – 2 .

Из прямой x – 2 7 = y + 3 – 2 понятно, что направляющий вектор будет иметь координаты a → = ( 7 , – 2 ) . Нормальный вектор n → = ( n x , n y ) заданной прямой является перпендикулярным a → = ( 7 , – 2 ) .

Выясним, чему равно скалярное произведение. Для нахождения скалярного произведения векторов a → = ( 7 , – 2 ) и n → = ( n x , n y ) запишем a → , n → = 7 · n x – 2 · n y = 0 .

Значение n x – произвольное , следует найти n y . Если n x = 1 , отсюда получаем, что 7 · 1 – 2 · n y = 0 ⇔ n y = 7 2 .

Значит, нормальный вектор имеет координаты 1 , 7 2 .

Второй способ решения сводится к тому, что необходимо прийти к общему виду уравнения из канонического. Для этого преобразуем

x – 2 7 = y + 3 – 2 ⇔ 7 · ( y + 3 ) = – 2 · ( x – 2 ) ⇔ 2 x + 7 y – 4 + 7 3 = 0

Полученный результат координат нормального вектора равен 2 , 7 .

Ответ: 2 , 7 или 1 , 7 2 .

Указать координаты нормального вектора прямой x = 1 y = 2 – 3 · λ .

Для начала необходимо выполнить преобразование для перехода в общему виду прямой. Выполним:

x = 1 y = 2 – 3 · λ ⇔ x = 1 + 0 · λ y = 2 – 3 · λ ⇔ λ = x – 1 0 λ = y – 2 – 3 ⇔ x – 1 0 = y – 2 – 3 ⇔ ⇔ – 3 · ( x – 1 ) = 0 · ( y – 2 ) ⇔ – 3 · x + 0 · y + 3 = 0

Отсюда видно, что координаты нормального вектора равны – 3 , 0 .

Рассмотрим способы для нахождения координат нормального вектора при уравнении прямой в пространстве, заданной прямоугольной системой координат О х у z .

Когда прямая задается при помощи уравнений пересекающихся плоскостей A 1 x + B 1 y + C 1 z + D 1 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда нормальный вектор плоскости относится к A 2 x + B 2 y + C 2 z + D 2 = 0 и A 2 x + B 2 y + C 2 z + D 2 = 0 , тогда получаем запись векторов в виде n 1 → = ( A 1 , B 1 , C 1 ) и n 2 → = ( A 2 , B 2 , C 2 ) .

Когда прямая определена при помощи канонического уравнения пространства, имеющего вид x – x 1 a x = y – y 1 a y = z – z 1 a z или параметрического, имеющего вид x = x 1 + a x · λ y = y 1 + a y · λ z = z 1 + a z · λ , отсюда a x , a y и a z считаются координатами направляющего вектора заданной прямой. Любой ненулевой вектор может быть нормальным для данной прямой, причем являться перпендикулярным вектору a → = ( a x , a y , a z ) . Отсюда следует, что нахождение координат нормального с параметрическими и каноническими уравнениями производится при помощи координат вектора, который перпендикулярен заданному вектору a → = ( a x , a y , a z ) .

Нормали и обратное транспонирование, часть 2: сопряжённые пространства

В первой части мы рассмотрели внешнюю алгебру и поняли, что векторы нормали в 3D можно интерпретировать как бивекторы. Для преобразования бивекторов в общем случае нужна матрица отличная от той, которая преобразует обычные векторы. Воспользовавшись каноническим базисом для бивекторов, мы выяснили, что это присоединённая матрица, которая пропорциональна обратной транспонированной. Эти рассуждения хотя бы частично объяснили почему нормали преобразуются обратной транспонированной матрицей.

Но некоторые вопросы были заметены под ковёр.

Мы рассмотрели присоединённые матрицы, но не показали как они связаны с алгебраическим доказательством того, что для преобразования уравнения плоскости нужна обратная транспонированная матрица. Пропорциональность между матрицами была в некотором смысле притянута за уши.

Более того, мы увидели, что -векторы из внешней алгебры снабжают векторные геометрические объекты естественной интерпретацией, в которой они содержат единицы длины, площади и объёма, измкеняющиеся соответствующим образом при масштабировании. Но мы не нашли ничего подобного для плотностей — единиц, обратных к длине, площади и объёму.

В этой статье мы рассмотрим ещё одну геометрическую концепцию, которая понадобится для завершения картины. Слияние этой новой концепции с уже изученной внешней алгеброй прояснит и разрешит оставшиеся вопросы.

Функции как векторы

Большая часть этой статьи будет рассматривать функции, которые принимают и возвращают векторы различных типов. Чтобы её понять, нужно совершить некоторый умственный кувырок, который может показаться контринтуитивным, если вы не встречали его ранее.

Вот он: функции, которые возвращают векторы, сами являются векторами

С первого взгляда это утверждение может показаться бессмысленным. Векторы и функции — это совершенно разные вещи, как например яблоки и… стулья, не так ли? Как функция буквально может быть вектором?

Посмотрев на формальное определение векторного пространства, вы не найдёте в нем ничего конкретного о структуре векторов. Мы часто представляем их себе как стрелки с длиной и направлением, или как упорядоченные наборы чисел (координат). Но всё же, в сухом остатке для создания векторного пространства нужен набор сущностей, которые поддерживают две базовые операции: сложение между собой и умножение на скаляры (здесь это действительные числа). Эти операции должны подчиняться нескольким разумным аксиомам.

Функции тоже можно складывать между собой! Две функции и можно сложить поточечно и получить новую функцию для каждой точки в области определения. Аналогично, функция может быть поточечно умножена на скаляр: . Эти операции удовлетворяют аксиомам векторного пространства, потому любое множество подходящих функций формирует полноправное векторное пространство, называемое функциональным пространством.

Запишем формальнее: пусть есть область определения (любое множество, не обязательно векторное пространство) и область значений — векторное пространство. Тогда множество функций образуют векторное пространство относительно поточечного сложения и умножения на скаляр. Область значений должна быть векторным пространством чтобы в нём работало сложение и перемножение значений функции, но области определения не обязательно быть векторным пространством, и вообще “пространством”. Она может быть хоть дискретным множеством.

Понимание трактовки функций как векторов даёт возможность применять методы линейной алгебры при работе в функциями. Получается большая ветвь математики, называемая функциональным анализом.

Линейные формы и сопряжённое пространство

Отсюда и далее будем рассматривать особый класс функций, называемый линейными формами.

Пусть есть векторное пространство , например трёхмерное , тогда линейная форма на определяется как линейная функция . То есть, это линейная функция которая принимает вектор и возвращает скаляр.

(Замечание для математиков: в этой статье я рассматриваю только конечномерные пространства над , поэтому некоторые утверждения могут быть неверны для векторных пространств в общем случае. Извините!)

Мне нравится визуализировать линейные формы как последовательности параллельных равноотстоящих плоскостей (3D) или линий (2D), то есть линий/поверхностей уровня функции, отстоящих друг от друга на единицу в величинах значений функции. Вот несколько примеров:

Здесь градиенты показывают ориентацию линейной формы — функция возрастает в сторону возрастания непрозрачности градиента. Линии резкого изменения цвета пересекают оси в целых точках. Заметим, что “бо́льшие” линейные формы (в смысле бо́льших выходных значений) соответствуют более плотному размещению линий, и наоборот.

Выше показано, что линейные формы над векторным пространством могут сами трактоваться как векторы в своём собственном функциональном пространстве. Линейные комбинации линейных функций так же являются линейными функциями, потому они образуют полноценное векторное пространство.

Это линейное пространство — множество линейных форм над — достаточно значимо, чтобы иметь отдельное название: сопряжённое (или двойственное) пространство. Оно обозначается через . Элементы двойственного пространства (линейные формы) называются двойственными векторами или ковекторами.

Естественная свёртка

Тот факт, что двойственные векторы — это линейные, а не какие угодно функции из в , сильно ограничивает их поведение. У линейных функций на -мерном векторном пространстве есть только степеней свободы, в отличие от произвольных функций, у которых может быть сколько угодно степеней свободы. Иными словами, у та же размерность, что и у .

Конкретнее, линейная форма на полностью определяется своими значениями при применении к векторам базиса. Значение на любом другом векторе может быть выведено через линейность. Например, если — линейная форма над и — произвольный вектор, то:

Если вы думаете, что это выражение выглядит очень похожим на скалярное произведение и — вы правы!

Действительно, операция применения линейной формы к вектору имеет свойства произведения между сопряжённым пространством и основным: . Это произведение называется естественной свёрткой.

Как и скалярное произведение векторов, естественная свёртка возвращает действительное число, и является билинейной, то есть линейной по обоим аргументам. Тем не менее, здесь мы берём произведение не двух векторов, а двойственного вектора с “обычным” вектором. Линейность по левому аргументу получается из поточечного сложения и умножения линейных форм, а по правому — из того, что линейные формы… линейны на своих векторных аргументах.

Далее будем обозначать естественную свёртку угловыми скобками: . Здесь — двойственный вектор в , а — вектор в . Повторюсь, что это лишь вычисление линейной формы как функции от вектора . Но так как функции это векторы, а двойственные векторы — линейные функции, эта операция имеет свойства произведения.

Вышеприведённая формула выглядит вот так в новой нотации с угловыми скобками:

Обратите внимание, что теперь эта операция выглядит “всего лишь” как навешивание дистрибутивного атрибута, чем она и является.

Двойственный базис

Вышеупомянутую конструкцию можно использовать для определения канонического базиса для данного базиса . Конкретнее, нам нужно сделать числа координатами ковектора в некотором базисе, так же как являются координатами в базисе пространства . Этого можно достичь определением двойственных базисных векторов при условиях:

и аналогичных для . Все девять условий можно записать кратко:

Этот двойственный базис существует и единственный для заданного базиса в .

Геометрически, двойственный базис состоит из линейных форм, которые отмеряют расстояние вдоль каждой из осей, а поверхности уровня этих линейных форм параллельны всем остальным осям. Они не обязаны быть перпендикулярными оси, которую отмеряют. Это происходит, только если базис ортонормированный. Это свойство сыграет важную роль ниже.

Вот пара примеров векторных базисов и соответствующих им двойственных базисов:

А вот пример разложенной по базису линейной формы :

Возьмём двойственный базис из определения выше и выразим двойственный вектор и вектор через соответствующие базисы. Тогда естественная свёртка скукоживается до скалярного произведения:

Преобразования двойственных векторов

В предыдущей статье мы видели, что хотя векторы и бивекторы кажутся структурно одинаковыми (у обоих по три компоненты в трёхмерном случае), они имеют различный геометрический смысл и поведение при преобразованиях, в частности, при масштабировании.

Двойственные векторы становятся третьим примером в этом классе объектов! Двойственные векторы тоже “вектороподобны” (подчиняются аксиомам векторного пространства), структурно схожи с векторами и бивекторами (состоят из трёх компонент в 3D), но имеют другой геометрический смысл (линейные формы). Так давайте же посмотрим на поведение двойственных векторов при трансформациях!

Двойственные векторы — это линейные формы, то есть функции. Как преобразовать функцию?

Можно вообразить это так: значения функций идут вместе с аргументами из области определения. Вообразите, что каждая точка в области определения помечена значением функции. Применим преобразование к точкам: они куда-то передвинутся и перенесут с собой свои метки. (А ещё это можно вообразить как преобразование графика функции, понимаемого как набор точек в пространстве на размерность выше).

Более формально: пусть на векторы действует матрица , и эту же матрицу нужно применить к функции , чтобы получилась новая функция . Для этого нужно лишь чтобы от преобразованного вектора равнялась от исходного вектора:

Иными словами, функцию можно преобразовать, соорудив новую функцию которая применяет обратное преобразование к своему аргументу и подаёт его в исходную функцию.

Заметим, что это работает только для обратимых . В противном случае наша картинка про “перенос значений функции вместе с аргументами” рассыпается: необратимая может схлопнуть несколько различных точек области определения в одну.

Однородное масштабирование

Теперь, когда мы понимаем как преобразовать функцию, давайте посмотрим на однородное масштабирование. Возьмём коэффициент 0$” data-tex=”inline”/>, тогда вектор будет отображаться как . Тогда функции будут преобразованы как согласно предыдущему разделу.

Давайте теперь посмотрим на это с точки зрения двойственного вектора, а не функции. Если для некоторого вектора , то что произойдёт при масштабировании в раз?

Я всего лишь переместил множитель с одной стороны угловых скобок на другую, что допустимо, так как угловые скобки билинейны. Итак, мы показали что двойственный вектор преобразуется следующим образом:

Это интересно! При масштабировании вектора в раз, двойственный вектор масштабируется как . В предыдущей статье мы оправдали назначение единиц “площади” и “объёма” бивекторам и тривекторам через их поведение при масштабировании. Следуя этому принципу заключим, что двойственные векторы несут единицы, обратные длине!

Фактически, двойственные векторы представляют ориентированные линейные плотности. Они предоставляют инструментарий для количественных рассуждений о ситуациях, когда нечто скалярное (например, количество текселей, прозрачность, изменение электрического напряжения/температуры/давления) распределено вдоль какого-то измерения в пространстве. При свёртывании двойственного вектора с вектором (то есть при вычислении линейной формы над вектором), вы по сути спрашиваете “какое количество этого “нечто” данный вектор охватывает?”

При масштабировании мы сохраняем количество “нечто”. Если масштабирование увеличивает, плотность уменьшается, потому что одинаковое количество чего-либо теперь распределяется на большее расстояние, и наоборот. Это свойство воплощается в обратности масштабирования двойственных векторов.

Сдвинутый двойственный вектор и обратное транспонирование

Мы рассмотрели как однородное масштабирование обращается при применении к двойственным векторам. Теперь мы могли бы изучить неоднородное масштабирование, но так получается, что оно не очень интересно — как вы и могли подумать, оно всего лишь применяется как масштабирование на обратную величину к каждой из осей. Куда более показательным будет изучение сдвига.

Для этого нам будет достаточно двумерного случая. Для примера возьмём преобразование, которое немного наклоняет ось в сторону :

Вот как это выглядит:

А что произойдёт если применить это преобразование к двойственному вектору? Визуально всё понятно: изолинии линейной формы наклонятся вслед за сдвигом.

Но как это выразить в виде матрицы, действующий на координаты двойственного вектора? Давайте присмотримся к компоненте . Заметим, что преобразование не повлияло на ось — она отобразилась сама в себя. Но что насчёт ?

Компонента изменяется этим преобразованием, потому что изолинии приобретают наклон! Иными словами, несмотря на то, что расстояния вдоль оси не изменились, “отслеживает” что делают другие оси, потому что ей надо оставаться параллельной этим осям. Это одно из определяющих условий, на которых работает двойственный базис.

Строго говоря, здесь переходит в . Доводя дело до конца, мы увидим, что вся матрица, применяемая к координатам двойственного вектора, имеет вид

А это и есть обратная транспонированная !

Прослеживается некоторая аналогия эффекта обратной транспонированной матрицы, рассмотренной здесь, с воздействием присоединённой матрицы на бивекторы из предыдущей статьи. Как и с бивекторами, каждый элемент двойственного базиса следит за тем, что происходит с другими осями (чтобы сохранять параллельность им), но так же масштабируется на обратную величину вдоль своей оси. Определитель соответствует совокупному масштабированию по всем осям:

Отсюда мы можем перейти к

что соответствует соотношению между обратной транспонированной и присоединённой матрицами.

Здесь я проделываю очень нестрогий трюк, потому что хорошая геометрическая демонстрация заведёт нас в ещё большие дебри, а такой способ даёт хоть немного интуитивного понимания почему обратную транспонированную матрицу правомерно применять к двойственным векторам.

Так что же такое вектор нормали?

Ранее мы увидели, что поверхности уровня линейной формы — это параллельные линии в 2D или плоскости в 3D. Отсюда следует, что мы можем определить плоскость, взяв определённую поверхность уровня данного двойственного вектора:

Двойственный вектор выступает как знаковое поле расстояний плоскости.

Так же мы увидели, что если выразить естественную свёртку в терминах базиса и соответствующего ему двойственного базиса, то она превратится в скалярное произведение . После чего уравнение выше становится обычным уравнением плоскости:

Отсюда видно, что координаты двойственного вектора в двойственном базисе так же являются координатами вектора нормали в стандартном векторном базисе.

Итак, векторы нормали можно интерпретировать как двойственные векторы в двойственном базисе, поэтому они преобразуются обратной транспонированной матрицей.

Но постойте. В предыдущей статье я сказал, что нормали надо понимать как бивекторы, а потому их надо трансформировать присоединённой матрицей, не так ли? Как правильно то?

Мне кажется, на этот вопрос нет единственного правильного ответа. Идея “нормального вектора” слишком расплывчата, и её можно оправдано формализовать как через бивекторы, так и через двойственные векторы. Как было показано, оба способа преобразования эквивалентны в смысле ориентации: и бивекторы и двойственные векторы остаются перпендикулярными определяющей их плоскости, следуя условиям или соответственно. Различаются они только единицами измерения и реакцией на масштабирование: бивекторы это площади и объёмы, а двойственные векторы — это обратные длины.

Это всё что я хотел рассказать о преобразованиях нормальных векторов, но ещё несколько вопросов остались в подвешенном состоянии. В конце первой части я задавал вопрос об отрицательных степенях масштаба. Теперь у нас есть минус первая степень, но что насчёт -2 и -3? Чтобы это понять, нам придётся скомбинировать внешнюю алгебру и двойственные пространства, чем мы и займёмся в третьей части.

[spoiler title=”источники:”]

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/normalnyj-vektor-prjamoj-koordinaty-normalnogo-vek/

http://habr.com/ru/post/529978/

[/spoiler]

Само
понятие «поток» связано с некоторой
гидродинамической задачей. Пусть
задано векторное поле

,

(например,
поле скоростей движения жидкости в
пространстве) и Sнекоторая гладкая или кусочно-гладкая
двусторонняя поверхность, на которой
выбрана положительная сторона.

Выделим
элемент поверхности
,
нормаль кобозначим,
единичный вектор нормали.
(Рис. 1).

Поток
вектора через элемент поверхности
обозначим.

Очевидно,
что

,

где

угол между нормалью ки вектором

проекция
вектора
на направление нормали.

Поток
векторного поля через поверхность
в этом случае естественно определить
как интеграл по поверхности:

Здесь

;

;

.

Это
проекции элементарной
площадкина соответствующие координатные
плоскости. Интеграл принимает вид

.
(2.1)

Поток
векторного поля меняет знак на обратный
при изменении ориентации нормали к
поверхности:

а
также обладает свойствами линейности
и аддитивности:

;

Это
поверхностный
интеграл второго рода.

Рассмотрим
примеры вычисления потока векторного
поля.

Пример
2.1
.

Вычислить
поток векторного поля
гдерадиус-вектор точкит.е.через поверхность цилиндра, ограниченного
поверхностями.
(Рис. 2).

Решение.

Обозначим

боковую поверхность
цилиндра, аиверхнее и нижнее
основания цилиндра. Искомый поток будет
равен сумме потоков через названные
поверхности:

На
боковой поверхности
нормальпараллельна плоскостипоэтому

следовательно,

На
верхнем основании нормаль параллельна
оси Oz , следовательно,

и
.

.

На
нижнем основании вектор
перпендикулярен к нормали

поэтому

и

В
итоге, поток векторного поля через
поверхность цилиндра:

Пример
2.2.

Найти
поток векторного поля
через внешнюю

сторону
конуса
.
(Рис. 3).

Решение.

Уравнение
конуса в полярных координатах
следовательно, радиус основания конуса

– нормаль к основанию конусапараллельна Оz, следова-тельно в качестве
орта можно взять

Поток
векторного поля через основание конуса

Боковая
поверхность конуса
образована лучами, выходящими из начала
координат, векторапринадлежат боковой поверхности
конуса и ортогональны к,
поэтому

В
итоге

Решитьсамостоятельно

1) Найти поток векторного поля через поверхность сферы

Вычисление
потока векторного поля можно производить
различными методами.

а)
Метод проектирования на одну из
координатных плоскостей.

Пусть
поверхность
проецируется взаимно однозначно на
одну из координатных плоскостей,
напримерв область.
Уравнение поверхности,


проекция
элемента площади
на плоскостьследовательно,

.

Поток
векторного поля

.

Здесь
орт нормали к поверхности
можно определить, зная уравнение
касательной плоскости:

,

нормаль
в точке касания,

 орт
нормали к поверхности
,
следовательно,

.

Символ

означает,
что в подынтегральное выражение вместоzнужно подставитьf(x,y).

Пример
2.3.

Найти
поток векторного поля

через
верхнюю сторону треугольника, отсекаемого
от плоскости

координатными
плоскостями. (Рис. 4).

Решение.

Нормаль
к плоскости образует с координатными
осями равные углы

следовательно,
можно взять в качестве нормали вектор

.

Орт
нормали будет:

,

следовательно,

Далее:

следовательно,;

Пример
2.4.

Найти
поток вектора
через часть поверхности параболоидаотсечённую плоскостью.
(Рис. 5).

Решение.

Данная
поверхность проектируется на плоскость
в круг радиуса.

Уравнение
касательной плоскости

Орт
нормали

следовательно,

(поскольку угол между внешней нормалью
к поверхности и осьюOzтупой);

Искомый
поток векторного поля равен:

Введём
полярные координаты:
.
Тогда

.

Решить
самостоятельно

2)
Вычислить поток векторного поля
через внешнюю сторону параболоидаограниченного плоскостью.

3) Вычислить поток векторного поля
через поверхность конуса,
ограниченную плоскостью.

  1. Вычислить
    поток векторного поля
    через поверхность пирамиды, ограниченной
    плоскостями

,

Ответы.

1)
2)3) 0; 4).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Содержание:

  1. Замечание:
  2. Пример 4:

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

Поток вектора через незамкнутую поверхность. Теорема Гаусса—Остроградского

По этой ссылке вы найдёте полный курс лекций по математике:

Укажем некоторые способы вычисления потока вектора через незамкнутые поверхности. 1. . Пусть поверхность 5 однозначно проектируется на область Dxy плоскости хОу. В этом случае поверхность S можно задать уравнением вида Орт п° нормали к поверхности S находится по формуле Если в формуле (1) берется знак« то угол 7 между осью Oz и нормалью острый; если же знак то угол 7 — тупой.

Так как элемент площади этой поверхности равен то вычисление потока П через выбранную сторону поверхности 5 сводится к вычи-слениюдвойного интеграла по формуле Символ Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность.

Теорема Гаусса—Остроградского означает, что при вычислении в подынтегральной функции надо вместо z всюду поставить f(x} у). Пример 1. Найти поток вектора через часть поверхности параболоида z = s2 + y2, отсеченной плоскостью z = 2. По отношению к области, ограниченной параболоидом, берется внешняя нормаль (рис. 15). Данная поверхность проектируется на круг плоскости хОу с центром в начале координат радиуса .

Находим орт п° нормали к параболоиду: Согласно условию задачи вектор п° образует с осью Oz тупой угол 7, поэтому перед дробью следует взять знак минус. Таким образом, Находим скалярное произведение , значит, Согласно формуле (3) Вводя полярные координаты где получаем Если поверхность 5 проектируется однозначно на область плоскости yOz, то ее можно задать уравнением х = г). В этом случае имеем Наконец, если поверхность S проектируется однозначно на область Dxz плоскости xOzy то ее можно задать уравнением и тогда Знак « + » перед дробью в формуле (10) означает, чтоугол /3 между осью Оу и вектором нормали п° — острый, а знак «-», что угол /3 — тупой.

Замечание. Для нахождения потока вектора через поверхность 5, заданную уравнением г = /(х,у), методом проектирования на координатную плоскость хОу, не обязательно находить орт п° нормали, а можно брать вектор Тогда формула (2) для вычисления потока П примет вид: Аналогичные формулы получаются для потоков через поверхности, задэнные уравнениями Пример 2. Вычислить поток вектора а = хг через внешнюю сторону параболоида ограниченного плоскостью.

Имеем Так как угол 7 — острый, следует выбрать знак « + ». Отсюда Искомый поток вычисляется так: Переходя к полярным координатам , получим Метод проектирования на все координатные плоскости. Пусть поверхность S однозначно проектируется на все три координатные плоскости. Обозначим через Dzy, Dxz, Dyz проекции 5 на плоскости хОу, xOz, yOz соответственно. В этом случае уравнение F{x} у, z) = 0 поверхности S однозначно разрешимо относительно каждого из аргументов, т. е.

Возможно вам будут полезны данные страницы:

Тогда погок вектора к через поверхность S, единичный вектор нормали к которой равен можно записать так: Известно, что причем знак в каждой из формул (14) выбирается таким, каков знак на поверхности S. Подставляя соотношения (12) и (14) в формулу (13), получаем, что Пример 3. Вычислить поток векторного поля через треугольник, ограниченный плоскостями 4 Имеем так что Значит, перед всеми интегралами в формуле (15) следует взять знак « + ».

Полагая получим Вычислим первый интеграл в правой части формулы (16). Область Dvz —треугольник ВОС в плоскости yOz, уравнение стороны . Имеем Аналогично получим . Значит, искомый поток равен 3. Метод введения криволинейных координат на поверхности. Если поверхность 5 является частью кругового цилиндра или сферы, при вычислении потока удобно, не применяя проектирования на координатные плоскости, ввести на поверхности криволинейные координаты. А.

Поверхность 5 является частью кругового цилиндра ограниченного поверхностями будем иметь Элемент площади поверхности выражается так: и поток вектора а через внешнюю сторону поверхности 5 вычисляется по формуле: где 4. Найти поток вектора через внешнюю сторону поверхности цилиндра ограниченной плоскостями Так как то скалярное произведение (а, п°) на цилиндре равно: Тогда по формуле (18) получим В.

Поверхность 5 является частью сфсры офаничснной коническими поверхностями, уравнения которых в сферических координатах имеют вид и полуплоскостями.

Точки данной сферы описываются соотношениями где Поэтому элемент площади В этом случае поток векторного поля а через внешнюю часть поверхности 5 вычисляется по формуле где Пример 5. Найти поток вектора через внешнюю часть сферы Положим Тогда скалярное произведение выразится так: По формуле (21) получим. 

Замечание:

Здесь мы воспользовались формулой Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Теорема 4.

Если в некоторой области G пространства R3 координаты вектора непрерывны и имеют непрерывные частные производные , то поток вектора а через любую замкнутую кусочно-гладкую поверхность S, лежащую в области G, равен тройному интегралу от дх ду dz по области V, ограниченной поверхностью S: Здесь — орт внешней нормали к поверхности, а символ означает поток через замкнутую поверхность 5. Эта формула называется формулой Гаусса—Остроградского.

Рассмотрим сначала векгор а, имеющий только одну компоненту а = R(x, у, z)k, и предположим, что гладкая поверхность 5 пересекается каждой прямой, параллельной оси Oz, не более чем в двух точках. Тогда поверхность 5 разбивается на две части 5| и 52, однозначно проектирующиеся на некоторую область D плоскости хОу (рис.21). Внешняя нормаль к поверхности 52 образует острый угол 7 с осью Oz, а внешняя нормаль к поверхности 51 образует тупой угол с осью Oz.

Поэтому cos так что на 52 имеем 7. В силу аддитивности потока имеем Пусть da — элемент площади на поверхности S. Тогда ~ элемент площади области D. Сведем интегралы по поверхности к двойным интегралам по области D плоскости хОу, на которую проектируются поверхности Si и S2. Пусть S2 описывается уравнением — уравнением z = z(x}y). Тогда Так как приращение непрерывно дифференцируемой фунмции можно представить как интеграл от ее производной то для функции R(x, у, z) будем иметь.

Пользуясь этим, получаем из формулы (3) Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Если поверхность S содержит часть цилиндрической поверхности с образующими, параллельными оси Oz (рис. 22), то на этой части поверхности (Як, п°) = 0 и интеграл / da по ней равен нулю.

Поэтому формула (4) остается

справедливой и для поверхностей, содержащих указанные цилиндрические части. Формула (4) переносится и на случай, когда поверхность S пересекается вертикальной прямой более, чем в двух точках (рис. 23). Разрежем область V на части, поверхность каждой из которых пересекается вертикальной прямой не более чем в двух точках, и обозначим через Sp поверхность разреза.

Пусть S и S2 — те части поверхности 5, на которые она разбивается разрезом 5Р, a V и Vj — соответствующие части области V, ограниченные поверхностями . Здесь Sp означает, что вектор нормали к разрезу Sp направлен вверх (образует с осью Oz острый угол), a Sp — что этот вектор нормали направлен вниз (образует с осью Oz тупой угол). Имеем: Складывая полученные равенства и пользуясь аддитивностью потока и тройною интеграла, получим (интегралы по разрезу взаимно уничтожаются).

Рассмотрим, наконец, вектор Для каждой компоненты Лк мы можем написать формулу, аналогичную формуле (4) (все компоненты равноправны). Получим Складывая эти равенства и пользуясь линейностью потока и тройного интеграла, получаем формулу Гаусса—Остро градского Пример 1. Вычислить поток век-гора через замкнутую поверхность по определению, 2) по формуле Остроградского. 4 1)

Поток вектора а равен сумме на поверхности Si), на поверхности S2 К так как Перейдем на цилиндре к криволинейным координатам Тогда 2) По формуле Гаусса—Остроградского имеем Пример 2. Вычислить поток радиус-вектора через сферу радиуса R с центром 8 начале координат: 1) по определению; 2) по формуле Остроградского. Так как для сферы и поэтому 2) Сначала находим Отсюда Пример 3.

Вычислить поток вектора через замкнугую поверхность S, заданную условиями: 1) по определению; 2) по формуле Острогрздя ого (рис.25). Имеем Значит, Поэтому Итак, Имеем Поэтому Переходя к цилиндрическим координатам и замечая,на поверхности 5, имеем Замечание . При вычислении потока через незамкнутую поверхность часто бывает удобно подходящим образом дополнить седо замкнутой и воспользоваться формулой Гаусса—Ос гроградского.

Пример 4:

Вычислить поток вектора Заданная поверхность S есть конус с осыо Оу (рис.26). Замкнем этот конус куском £ плоскости у – I. Тогда, обозначая через П| искомый поток, а через Н2 поток по поверхности будем иметь где V — объем конуса, ограниченного поверхностями S Поток вектора через незамкнутую поверхность метод проектирования на одну из координатных плоскостей Метод проектирования на все координатные плоскости Метод введения криволинейных координат на поверхности Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского Так как на поверхности Е выполняется равенство у = 1. Следовательно, ITj

Лекции:

  • Элементарные преобразования графиков функций
  • Нормальный закон распределения случайной величины
  • Интегральное исчисление функций одной и нескольких переменных
  • Предел сложной функции
  • Нахождение предела функции по таблице значений функции и по графику
  • Степенные ряды
  • Случайные события и вероятность
  • Функции многих переменных
  • Векторное произведение примеры решения
  • Найти производную функцию

Векторный анализ — раздел математики, распространяющий методы математического анализа на векторы, как правило в двух- или трёхмерном пространстве. Объектами приложения векторного анализа являются: Векторные поля — отображения одного векторного пространства в другое.

Скалярное поле. Поверхности и линии уровня. Производная по направлению

Если в каждой точке пространства или части пространства определено значение некоторой величины, то говорят, что задано иоде данной величины. Поле называется скалярным, если рассматриваемая величина скалярна, т.е. вполне характеризуется своим числовым значением. Например, поле температур.

Скалярное поле задается скалярной функцией точки и = f(М). Если в пространстве введена декартова система координат, то и есть функция трех переменных х, у, z — координат точки М:

u = f(x,y,z). (1)

Определение:

Поверхностью уровня скалярного поля называется множество точек, в которых функция f(М) принимает одно и то же значение. Уравнение поверхности уровня

f(x, y, z) = с = const. (2)

Пример:

Найти поверхности уровня скалярного поля

Векторный анализ

Согласно определению уравнением поверхности уровня будет

Векторный анализ

Это уравнение сферы (с ≠ 0) с центром в начале координат.

Скалярное поле называется плоским, если во всех плоскостях, параллельных некоторой плоскости, поле одно и то же. Если указанную плоскость принять за плоскость хОу, го функция поля не будет зависеть от координаты г, т. е. будетфункцией только аргументов х и у,

u=f(x, y). (3)

Плоское поле можно характеризовать с помощью линий уровня — множества точек плоскости, в которых функция f(x, у) имеет одно и то же значение. Уравнение линии уровня —

f(х, у) = с = const. (4)

Пример:

Найти линии уровня скалярного поля

Векторный анализ

Линии уровня задаются уравнениями

Векторный анализ

При с = О получаем пару прямых у = х, у = -х. При с ≠ 0 получаем семейство гипербол (рис. 1).

Векторный анализ

Производная по направлению

Пусть имеется скалярное поле, определяемое скалярной функцией и = f(M). Возьмем точку М0 и выберем направление, определяемое вектором I. Возьмем другую точку М так, чтобы вектор М0М был параллелен вектору 1 (рис.2). Обозначим длину вектора МоМ через ∆l, а приращение функции f(М) — f(Mo), соответствующее перемещению ∆l, через ∆и. Отношение

Векторный анализ

определяет среднюю скорость изменения скалярного поля на единицу длины поданному направлению I.

Пусть теперь ∆l стремится к нулю так, чтобы вектор М0М все время оставался параллельным вектору I.

Векторный анализ

Определение:

Если при ∆l —> 0 существует конечный предел отношения (5), то его называют производной функции и = f(M) в данной точке М0 по данному направлению I и обозначают символом
Векторный анализ

Так что, по определению,
(6)

Векторный анализ

Это определение не связано с выбором системы координат, т. е. Hocит вариантный характер.

Найдем выражение для производной по направлению в декартовой системе координат. Пусть функция f(М) = f(х, у, z) дифференцируема в точке Мо(хо, yо, zо). Рассмотрим значение f(M) в точке М(х0 + ∆х,у0 + ∆y, zo + ∆z). Тогда полное приращение функции можно записать в следующем виде:

Векторный анализ

где ε = 0 при

Векторный анализ

а символы

Векторный анализ

означают, что частные производные вычислены в точке Мо. Отсюда (7)

Векторный анализ

Здесь величины Векторный анализ суть направляющие косинусы вектора МоМ = ∆xi + ∆yj + ∆zk. Так как векторы МоМ и I сонаправлены (М0М ↑↑ I), то их направляющие косинусы одинаковы:

Векторный анализ

где

Векторный анализ

Так как M —» Mo, оставаясь все время на прямой, параллельной вектору I, то углы а, β, γ постоянны, а потому

Векторный анализ

Окончательно из равенств (7) и (8) получаем

Векторный анализ

Замечание:

Частные производные Векторный анализ являются производными функции и по направлениям координатных осей Ox, Оу, Oz соответственно.

Пример:

Найти производную функции

Векторный анализ

в точке Mo(3,0,2) по направлению к точке M1(4,1, 3).
Имеем

Векторный анализ

Вектор МoМ = {1, 1, 1} имеет длину |МоМ| = /3. Его направляющие косинусы: Векторный анализВекторный анализ

По формуле (9) будем иметь

Векторный анализ

Тот факт, что Векторный анализ >0, означает, что скалярное поле в точке М0 в данном направлении возрастает.
Для плоского поля U = f(x, у) производная по направлению 1 в точке Мо(х0, у0) вычисляется по формуле (10)

Векторный анализ

где а — угол, образованный вектором I с осью Ох.

Замечание:

Формула (9) для вычисления производной по направлению I в данной точке М0 остается в силе и тогда, когда точка М стремится к точке Мо по кривой, для которой вектор I является касательным в точке Мо.

Пример:

Вычислить производную скалярного поля

и = arctg(xy)

в точке Mo(1, 1), принадлежащей параболе у = х2, по направлению этой кривой (в направлении возрастания абсциссы).

Направлением I параболы у = х2 в точке Mo{1, 1) считается направление касательной к параболе в этой точке (рис.3).

Векторный анализ

Пусть касательная к параболе в точке Мо образует с осью Ох угол a. Тогда tga =Векторный анализ= 2, откуда направляющие косинусы касательной

Векторный анализ

Вычислим значения Векторный анализв точке Mo(1, 1). Имеем

Векторный анализ

Теперь по формуле (10) получаем

Векторный анализ

Пример:

Найти производную скалярного поля и = In(xy + yz + zx) в точке Mo(0, 1, 1) по направлению окружности

Векторный анализ

Векторное уравнение окружности имеет вид

Векторный анализ

Находим единичный вектор т касательной к окружности

Векторный анализ

Точке Mo(0,1, 1) соответствует значение параметра t= π/2 Значение т в точке Мо будет равно

Векторный анализ

Отсюда получаем направляющие косинусы касательной к окружности в точке Mо: cos a = — 1, cos β = 0, cos γ = 0.

Вычислим значения частных производных данного скалярного поля в точке Mo(0, 1, 1)

Векторный анализ

Значит, искомая производная

Векторный анализ

Градиент скалярного поля

Пусть скалярное поле определяется скалярной функцией

u = f(x, y. z),

которая предполагается дифференцируемой.

Определение:

Градиентом скалярного поля u в данной точке М называется вектор, обозначаемый символом grad и и определяемый равенством
(1)

Векторный анализ

Ясно, что этот вектор зависит от функции f, так и от точки М, в которой вычисляется ее производная.
Пусть I° — единичный вектор в направлении I, т. е.

Векторный анализ

Тогда формулу для производной по направлению можно записать в следующем виде:
(3)

Векторный анализ

тем самым производная от функции и по направлению I равна скалярному произведению градиента функции u(M) на орт I° направления I.

Основные свойства градиента

Теорема:

Градиент скалярного поля перпендикулярен к поверхности уровня (или к линии уровня, если поле плоское).
Проведем через произвольную точку М поверхность уровня и = const и выберем на этой поверхности гладкую кривую L, проходящую через точку М (рис. 4). Пусть 1 — вектор, касательный к кривой L в точке М.

Векторный анализ

Так как на поверхности уровня и(М) = и(М1) для любой точки М1 ∈ L, то

Векторный анализ

С другой стороны, Векторный анализ= (grad и, I°). Поэтому (grad и, I°) = 0. Это означает, что векторы grad и и I° ортогональны, grad u ⊥ I°.

Итак, вектор grad и ортогонален к любой касательной к поверхности уровня в точке М. Тем самым он ортогонален к самой поверхности уровня в точке М.

Теорема:

Градиент направлен в сторону возрастания функции поля.

Ранее мы доказали, что градиент скалярного поля направлен по нормали к поверхности уровня, которая может быть ориентирована либо в сторону возрастания функции и(М), либо в сторону ее убывания.

Обозначим через п нормаль к поверхности уровня, ориентированную в сторону возрастания функции и(М), и найдем производную функции и в направлении этой нормали (рис. 5). Имеем

Векторный анализ
Векторный анализ

Так как по условию и(М1) > и(М), то и(М1) — и(М) > 0, и поэтому

Векторный анализ

т.е. (grad и, п°) ≥ 0.

Отсюда следует, что grad и направлен в ту же сторону, что и выбранная нами нормаль п, т.е. в сторону возрастания функции и(М).

Теорема:

Длина градиента равна наибольшей производной по направлению в данной точке поля,

Векторный анализ

(здесь mах Векторный анализ берется по всевозможным направлениям в данной точке М поля).
Имеем

Векторный анализ

где φ — угол между векторами I и grad n. Так как наибольшее значение cos φ равно 1, то наибольшим значением производнойВекторный анализ как раз и является |grad и|.

Пример:

Найти направление наибольшего изменения скалярного поля

и = ху + yz + zx

в точке Mо(1, 1, 1), а также величину этого наибольшего изменения в указанной точке.

Направление наибольшего изменения скалярного поля указывается вектором grad u(M). Имеем grad u(М) = (у + z)i + (х + г)j + (у + х)к, так что

grad и{Мo) = 2i + 2j + 2k.

Этот вектор определяет направление наибольшего возрастания поля в точке Мо(1,1,1). Величина наибольшего изменения поля в этой точке равна

Векторный анализ

Инвариантное определение градиента

Величины, характеризующие свойства изучаемого объекта и не зависящие от выбора системы координат, называются инвариантами данного объекта. Например, длина кривой — инвариант этой кривой, а угол касательной к кривой с осью Ох — не инвариант.

Основываясь на доказанных выше трех свойствах градиента скалярного поля, можно дать следующее инвариантное определение градиента.

Определение:

Градиент скалярного поля есть вектор, направленный по нормали к поверхности уровня в сторону возрастания функции поля и имеющий длину, равную наибольшей производной по направлению (в данной точке).
Пусть п° — единичный вектор нормали, направленный в сторону возрастания поля. Тогда

Векторный анализ

Пример:

Найти градиент расстояния

Векторный анализ

где Мo(хo,уo,zo) — некоторая фиксированная точка, а М(х,у,z) — текущая.

Имеем

Векторный анализ

где r° — единичный вектор направления MoM.

Правила вычисления градиента

  1. grad си(М) = с grad и{М), где с — постоянное число.
  2. grad(u + v) = grad и + grad v.

Приведенные формулы получаются непосредственно из определения градиента и свойств производных.

3. grad(u v) = v grad и+ и grad v.

По правилу дифференцирования произведения

Векторный анализ

Векторный анализ

Доказательство аналогично доказательству свойства 3.

Пусть F(u) — дифференцируемая скалярная функция. Тогда

grad F(u) = F'(u) grad и.

По определению градиента имеем

Векторный анализ

Применим ко всем слагаемым правой части правило дифференцирования сложной функции. Получим

Векторный анализ

В частности,

grad F(r) = F'(r) • p°. (6)

Формула (6) следует из формулы grad r = r°.

Пример:

Найти производную по направлению радиус-вектора r от функции u = sin r, где r = |r|. По формуле (3)

Векторный анализ

а по формуле (6) grad sin r = cos r • r° . В результате получим, что

Векторный анализ

Пример:

Пусть дано плоское скалярное поле

Векторный анализ

где r1, r2 — расстояния от некоторой точки Р(х,у) плоскости до двух фиксированных точек F1 и F2 этой плоскости, F1 ≠ F2.

Рассмотрим произвольный эллипс с фокусами F1 и F2 и докажем, что всякий луч света, вышедший из одного фокуса эллипса, после отражения от эллипса попадает в другой его фокус.

Линии уровня функции (7) суть

Векторный анализ

Уравнения (8) описывают семейство эллипсов с фокусами в точках F1 и F2.

Согласно результату примера 2 имеем

Векторный анализ

Тем самым градиент заданного поля равен вектору PQ диагонали ромба, построенного на ортах Векторный анализ радиус-векторов, проведенных к точке Р(х,у) из фокусов F1 и F2, и значит, лежит на биссектрисе угла между этими радиус-векторами (рис. 6).

Векторный анализ

По теореме 1 градиент PQ перпендикулярен к эллипсу (8) в точке Р(х,у). Следовательно, нормаль к эллипсу (8) в любой его точке делит пополам угол между радиус-векторами, проведенными в эту точку. Отсюда и из того, что угол падения равен углу отражения, получаем: луч света, вышедший из одного фокуса эллипса, отразившись от него, непременно попадает в другой фокус этого эллипса.

Векторное поле. Векторные линии и их дифференциальные уравнения

Определение:

Если в каждой точке M(x,y,z) пространства или части пространства определена векторная величина

Векторный анализ

то говорят, что там задано векторное поле а.

Задание векторного поля равносильно заданию трех скалярных функций от трех переменных Р(х, у, z), Q(x, у, z), R(x, у, z).

Примерами векторных полей могут служить: силовое поле — поле некоторой силы F, поле скоростей v течения некоторой жидкости и др.

Для геометрической характеристики векторного поля служат векторные линии. Векторной линией векторного поля а называется кривая, касательная к которой в любой точке М имеет то же направление, что и вектор поля а в этой точке (рис. 7).

Векторный анализ

В силовом поле векторные линии называются силовыми линиями‘, в поле скоростей движения жидкости векторные линии называются линиями тока.

Дифференциальные уравнения векторных линий

Пусть векторное поле определяется вектор-функцией

Векторный анализ

где P(x,y,z), Q(x, у, z), R(x,y,z) — непрерывные функции переменных х, у, z, имеющие ограниченные частные производные первого порядка. Пусть

r(t) = x(t)i + y(t)j + z(t)k

— есть радиус-вектор текущей точки векторной линии векторного поля a (t — параметр). Из определения векторной линии следует, что вектор

а = Р(х, у, z)i + Q{x, у, z)j + R(x, у, z)k

и вектор касательной к этой кривой

Векторный анализ

должны быть коллинеарны в каждой точке векторной линии. Условием коллинеарности векторов является пропорциональность их координат:

Векторный анализ

Таким образом, мы получили для векторных линий систему дифференциальных уравнений в симметричной форме.

Допустим, что нам удалось найти два независимых интеграла системы (2): (3)

Векторный анализ

Система уравнений (3) определяет векторную линию как линию пересечения двух поверхностей. Произвольно меняя параметры c1 и c2 мы получаем семейство векторных линий как семейство с двумя степенями свободы.

Пример:

Hайти векторные линии векторного поля

а = хi + уj + 2zk.

Выписываем дифференциальные уравнения векторных линий, dx dy dz

Векторный анализ

или

Векторный анализ

Интегрируя эту систему, получим два уравнения

Векторный анализ

где c1, c2 — произвольные постоянные. Пересечение плоскостей у = c1х с параболическими цилиндрами z = c2x2 дает двухпараметрическое семейство векторных линий поля (рис. 8).

Векторный анализ

Определение:

Векторное поле называется плоским, если все векторы а параллельны одной и той же плоскости и в каждой плоскости, параллельной указанной, векторное поле одно и то же.

Посмотрим, как плоское векторное поле описывается в координатах. Если указанную в определении плоскость (или любую ей параллельную) принять за плоскость хОу, то векторы плоского поля не будут содержать компоненты по оси Oz и координаты векторов не будут зависеть от z:

Векторный анализ

Дифференциальные уравнения векторныхлиний плоского поля можно записать в следующем виде

Векторный анализ

или
(5)

Векторный анализ

Отсюда видно, что векторные линии плоского поля являются плоскими кривыми, лежащими в плоскостях, параллельных плоскости хОу.

Пример:

Найти векторные линии магнитного поля бесконечно длинного прямого провода.

Предположим, что проводник направлен вдоль оси Oz и по нему течет ток силы J, т. е. вектор тока

J = J • k.

Тогда вектор напряженности Н магнитного поля определяется по формуле

Векторный анализ

где

р = xi + yj + zk

— радиус-вектор точки М, р — расстояние от оси провода до точки М. Раскрывая векторное произведение (6), получим

Векторный анализ

Дифференциальные уравнения векторных линий:

Векторный анализ

Отсюда x = const, Векторный анализ или xdx + ydy = 0. Окончательно имеем

Векторный анализ

т.е. векторные линии являются окружностями с центрами на оси Oz (рис.9).

Пример:

Найти векторные линии поля сил тяготения, образованного притягивающей материальной точкой массы т, расположенной в начале координат.

В данном случае сила F определяется так:

Векторный анализ

Дифференциальные уравнения векторных линий:

Векторный анализ

откуда, умножая каждую из дробей на Векторный анализ получим

Векторный анализ

Чтобы получить уравнения векторных линий в параметрической форме, приравняем каждую из дробей величине Векторный анализ. Имеем

Векторный анализ

Это — полупрямые, выходящие из начала координат.

Векторный анализ

Чтобы из семейства векторных линий выделить одну, надо задать точку М0(хо, yo, zо). через которую эта векторная линия должна проходить, и по координатам заданной точки определить величины С1, C2, C3.

Пусть, например, точка Мо имеет координаты хо = 3, yо = 5, zо = 7. Уравнение векторной линии, проходящей через точку Mo(3, 5, 7), можно записать так:

x = 3t, у — 5t, z = 7t.

Сама точка Мо получается при значении параметра t = 1.

Поток вектора через поверхность и его свойства

Рассмотрим сначала частный случай поля скоростей v течения жидкости. Выделим в поле некоторую поверхность Σ. Потоком жидкости через поверхность Σ называется количество жидкости, протекающее через поверхность Σ за единицу времени.

Этот поток легко вычислить, если скорость течения постоянна (v = const), а поверхность Σ —плоская. В этом случае поток жидкости равен объему цилиндрического тела с параллельными основаниями и образующими длины |v|, так как за единицу времени каждая частица перемещается на величину v (рис. 10),

П =Sh,

где S — площадь основания, h = npnv = (v, n°) — высота цилиндра и n — нормаль к его основанию, |п°| = 1.

Итак, при постоянной скорости v поток жидкости через плоскую поверхность Σ равен
(1)

Векторный анализ

Если скорость v изменяется непрерывно, а поверхность Σ — гладкая, то можно разбить поверхность Σ на столь малые части Σk (k = 1, 2,…, п), чтобы каждую часть Σk можно было приближенно считать плоской и вектор v на ней постоянным.

Векторный анализ

Так как поток жидкости через поверхность Σ равен сумме потоков жидкости через все ее части Σk, то мы получаем для вычисления потока приближенную формулу (2)

Векторный анализ

где п — общее число частей Σk, на которые разбита поверхность Σ, Рк — точка, лежащая на k-ой части, ∆σk — площадь части Σk поверхности, ( v, n°)pk означает скалярное произведение векторов v и п° в точке Pk ∈ Σk (рис. 11).

Векторный анализ

Назовем потоком жидкости через поверхность Σ предел суммы (2) при стремлении к нулю наибольшего из диаметров площадок Σk,

Векторный анализ

где d — наибольший из диаметров частей Σk (k= 1,2,…,п). Интеграл (3), определяющий поток жидкости, берется от скалярной функции (v, п°) по площади поверхности Σ.

Понятие потока произвольного вектора а через поверхность Σ вводится п о аналогии с введенным выше понятием потока жидкости через поверхность.

Определение:

Потоком вектора (векторного поля) а через поверхность Σ называется интеграл по поверхности Σ от проекции вектора а на нормаль к поверхности

Векторный анализ

Векторный анализ

Ясно, что интеграл (4) существует, если вектор а = Pi+Qj+Rk непрерывен, т. е. непрерывны его координаты Р(x, у, z), Q(x, у, z), R(x, y,z), и поверхность Σ — гладкая, т. е. имеет непрерывно меняющуюся касательную плоскость

Пример:

Поле создается точечным зарядом (электричесkое поле) или точечной маcсой (поле тяготения), помещенными в начале координат. Тогда вектор напряженности поля в любой точке Р будет равен

Векторный анализ

где q — величина заряда (массы), r = ОР — радиус-вектор точки Р. Требуется найти поток вектора напряженности Е через SR — сферу радиуса R с центром в начале координат.

Так как направление нормали к сфере совпадает с направлением радиус-вектора r, то п° = r° и поэтому

Векторный анализ

На сфере SR радиуса R имеем r = R, так что (Е, n°) = Векторный анализ = const. Поэтому поток вектора через SR равен

Векторный анализ

Свойства потока вектора через поверхность

1. Линейность.
(5)

Векторный анализ

где λ и μ — постоянные числа.

2. Аддитивность. Если поверхность Σ разбита кусочно-гладкой кривой на две части Σ1 и Σ2, то поток через поверхность Σ равен сумме потоков через поверхности Σ1 и Σ2,
(6)

Векторный анализ

Это свойство позволяет распространить понятие потока на кусочно-гладкие поверхности Σ.

Понятие ориентации поверхности

Взяв, к примеру, цилиндрическую поверхность, замечаем, что если в некоторой ее точке М выбрать определенный (один из двух) единичный вектор нормали и непрерывно перемещаться затем по поверхности вместе с соответствующим вектором нормали по любому пути, не переходящему через край повержюсти, то при возвращении в точку М единичный вектор нормали совпадает с исходным (рис. 12).

Векторный анализ

Вместе с тем, существуют поверхности, для которых это не так. Примером такой поверхности может служить лист Мёбиуса (рис. 13). Существует путь (отмеченная на рисунке пунктиром средняя линия листа), перемещаясь по которому, мы возвратимся в начальную точку с единичным вектором нормали, противоположным исходному.

Векторный анализ

Описанное свойство разбивает все поверхности на два класса — двусторонние, или ориентируемые (плоскость, сфера, поверхность куба и т.п.), и односторонние, или неориентируемые (лист Мёбиуса).

3. Зависимость потока от ориентации поверхности (от ориентации вектора нормали к поверхности). Понятие потока вводится только для двусторонних поверхностей. Будем считать, что если в одной точке такой поверхности направление вектора нормали уже выбрано, то в любой другой ее точке берется тот вектор нормали, который получается из выбранного при непрерывном перемещении точки по поверхности (без перехода через границу). В частности, на замкнутой поверхности во всех точках берется либо внешняя нормаль, либо внутренняя (внутренняя нормаль направлена внутрь тела, ограниченного замкнутой поверхностью).

Обозначим через Σ+ ту сторону поверхности Σ, на которой выбран вектор нормали п+ = п, а через Σ- — сторону поверхности Σ, на которой берется вектор нормали (п_ = -п). Тогда получим
(7)

Векторный анализ

где п°_ = -п°+. Таким образом, при изменении ориентации поверхности (при изменении направления вектора нормали п° к поверхности Σ) поток вектора меняет знак на противоположный.

Пример:

Вычислить поток радиус-вектора r = хi + yj + zk через поверхность прямого кругового цилиндра высоты Н с радиусом основания R и осью Oz.

Векторный анализ

Поверхность Σ состоит из трех частей: боковой поверхности Σ1, верхнего основания Σ2 и нижнего основания Σ3 цилиндра. Искомый поток П в силу свойства аддитивности равен

П = П1 +П2 + П3,

где П1, П2, П3 — потоки данного поля через Σ1, Σ2 и Σ3 соответственно.

На боковой поверхности цилиндра вектор внешней нормали п°1 параллелен плоскости хОу, и поэтому

Векторный анализ

(см. рис. 14). Следовательно,

Векторный анализ

На верхнем основании Σ2 вектор нормали п°2 параллелен оси Оz, и поэтому можно положить п°2 = k. Тогда имеем

Векторный анализ

так что

Векторный анализ

На нижнем основании Σ3 вектор г перпендикулярен к вектору нормали п°3 = -k. Поэтому (r, п°3) = (r, -k) = 0 и

Векторный анализ

Значит, искомый поток

Векторный анализ

Здесь символ Векторный анализозначает двойной интеграл по замкнутой поверхности.

Поток вектора через незамкнутую поверхность

Укажем некоторые способы вычисления потока вектора через незамкнутые поверхности.

Метод проектирования на одну из координатных плоскостей

Пусть поверхность S однозначно проектируется на область Dxy плоскости хОу. В этом случае поверхность S можно задать уравнением вида

z = f(x, у).

Орт п° нормали к поверхности S находится по формуле

Векторный анализ

Если в формуле (1) берется знак « -», то угол γ между осью Oz и нормалью п° —острый; если же знак «+», то угол γ — тупой.

Так как элемент площади dσ этой поверхности равен

Векторный анализ

то вычисление потока П через выбранную сторону поверхности S сводится к вычислению двойного интеграла по формуле
(3)

Векторный анализ

Символ

Векторный анализ

означает, что при вычислении в подынтегральной функции надо вместо z всюду поставить f(i, у).

Пример:

Найти поток вектора

Векторный анализ

через часть поверхности параболоида

Векторный анализ

отсеченной плоскостью z = 2. По отношению к области, ограниченной параболоидом, берется внешняя нормаль (рис. 15).

Векторный анализ

Данная поверхность проектируется на круг Dxy плоскости хОу с центром в начале координат радиуса R =Векторный анализ. Находим орт п° нормали к параболоиду:

Векторный анализ

Согласно условию задачи вектор п° образует с осью Oz тупой угол γ, поэтому перед дробью следует взять знак минус. Таким образом,

Векторный анализ

Находим скалярное произведение

Векторный анализ

Векторный анализ

Векторный анализ

Если поверхность S проектируется однозначно на область Dyz плоскости yOz, то ее можно задать уравнением х = φ{у, z). В этом случае имеем

Векторный анализ

(6)

Векторный анализ

где

Векторный анализ

Знак «+» в последней формуле соответствует тому, что угол а между осью Ох и вектором нормали п° острый, и знак «-», если указанный угол тупой.

Наконец, если поверхность S проектируется однозначно на область Dxz плоскости xOz, то ее можно задать уравнением у = ψ(x, z) и тогда

Векторный анализ

Знак «+» перед дробью в формуле (10) означает, что угол β между осью Оу и вектором нормали п° — острый, а знак «—», что угол β — тупой.

Замечание:

Для нахождения потока вектора

а = Р(х, у, z)i + Q(z, у, z)j + R(х, у, k)

к через поверхность S, заданную уравнением z = f(x, у), методом проектирования на координатную плоскость хОу, не обязательно находить орт п° нормали, а можно брать вектор

Векторный анализ

Тогда формула (2) для вычисления потока П примет вид:
(11)

Векторный анализ

Аналогичные формулы получаются для потоков через поверхности, заданные уравнениями х = φ(у, z) или у = ψ(х, z).

Векторный анализ

Пример:

Вычислить поток вектора

а = хzi

через внешнюю сторону параболоида

Векторный анализ

ограниченного плоскостью z = 0 (рис. 16).
Имеем

n = ±(2ri + 2yj+k).

Так как угол γ — острый, следует выбрать знак «+». Отсюда

Векторный анализ

Искомый поток вычисляется так:

Векторный анализ

Переходя к полярным координатам х = р cos φ, y = p sin φ, 0 ≤ р ≤ 1. 0 ≤ φ < 2π, получим

Векторный анализ

Метод проектирования на все координатные плоскости

Пусть поверхность S однозначно проектируется на все три координатные плоскости. Обозначим через Dxy, Dxz, Dyz проекции S на плоскости хОу, xOz, yOz соответственно. В этом случае уравнение F(x, y, z) = 0 поверхности S однозначно разрешимо относительно каждого из аргументов, т. е.

x = x(y,z), y = y(x,z), z = z(x,y). (12)

Тогда поток вектора

а = Р(х, у, z)i + Q(x, у, z)j + R(x, у, z)k

через поверхность S, единичный вектор нормали к которой равен

Векторный анализ

можно записать так:

Векторный анализ

Известно, что

Векторный анализ

причем знак в каждой из формул (14) выбирается таким, каков знак cos a, cos β, cos γ на поверхности S. Подставляя соотношения (12) и (14) в формулу (13), получаем, что (15)

Векторный анализ
Векторный анализ

Пример:

Вычислить поток векторного поля

а = yi + zj + zk

через треугольник, ограниченный плоскостями z + y+ z = l (l>0), x=0, у — 0, z = 0 (угол γ — острый) (рис. 17).
Имеем

Векторный анализ

так что

Векторный анализ

Значит, перед всеми интегралами в формуле (15) следует взять знак « + ». Полагая Р = у, Q = z, R = х, получим

Векторный анализ

Вычислим первый интеграл в правой части формулы (16). Область Dyz — треугольник ВОС в плоскости yOz, уравнение стороны ВС: y+z = l, 0 ≤ у ≤ I. Имеем

Векторный анализ

Аналогично получим

Векторный анализ

Значит, искомый лоток равен

Векторный анализ

Метод введения криволинейных координат на поверхности

Если поверхность S является частью кругового цилиндра или сферы, при вычислении потока удобно, не применяя проектирования на координатные плоскости, ввести на поверхности криволинейные координаты.

Векторный анализ

А. Поверхность S является частью кругового цилиндра

Векторный анализ

ограниченного поверхностями z = f1(x,y) и z = f2(х. у), где f1(x. y) ≤ f2(x, y) (рис. 18). Полагая х = R cos φ, у = R sin φ, z = z, будем иметь

Векторный анализ

Элемент площади поверхности выражается так:

Векторный анализ

и поток вектора а через внешнюю сторону поверхности S вычисляется по формуле:

Векторный анализ

Пример:

Найти поток вектора

Векторный анализ

через внешнюю сторону поверхности цилиндра

Векторный анализ

ограниченной плоскостями

Векторный анализ

Имеем

Векторный анализ

Так как

Векторный анализ

то скалярное произведение (а, п°) на цилиндре (х = 2 cos φ, у = 2 sin φ, z = z) равно:

Векторный анализ

Тогда по формуле (18) получим

Векторный анализ

В. Поверхность S является частью сферы

Векторный анализ

ограниченной коническими поверхностями, уравнения которых в сферических координатах имеют вид Векторный анализ и полуплоскостями Векторный анализ (рис. 19).Точки данной сферы описываются соотношениями

Векторный анализ

где Векторный анализ Поэтому элемент площади

Векторный анализ

В этом случае поток векторного поля а через внешнюю часть поверхности S вычисляется по формуле

Векторный анализ
Векторный анализ

Пример:

Найти поток вектора

Векторный анализ

через внешнюю часть сферы

Векторный анализ

отсеченную плоcкостью z = 2 (рис. 20).

В данном случае имеем

Векторный анализ

Положим

Векторный анализ

Тогда скалярное произведение (а, п°) выразится так:

Векторный анализ

По формуле (21) получим

Векторный анализ

Замечание:

Здесь мы воспользовались формулой

Векторный анализ
Векторный анализ

Поток вектора через замкнутую поверхность. Теорема Гаусса—Остроградского

Теорема:

Если в некоторой области G пространства R3 координаты вектора

а = Р(х, у, z)i + Q(x, у, z)j + R(x, у, z)k

непрерывны и имеют непрерывные частные производные Векторный анализ, то поток вектора а через любую замкнутую кусочно-гладкую поверхность S, лежащую в области G, равен тройному интегралу от

Векторный анализ

по области V, ограниченной поверхностью S:

Векторный анализ

Здесь п0 — орт внешней нормали к поверхности, а символ Векторный анализозначает поток через замкнутую поверхность S. Эта формула называется формулой Гаусса—Остроградского.

Рассмотрим сначала вектор а, имеющий только одну компоненту а = R(x, у, z)k, и предположим, что гладкая поверхность S пересекается каждой прямой, параллельной оси Oz, не более чем в двух точках. Тогда поверхность S разбивается на две части S1 и S2, однозначно проектирующиеся на некоторую область D плоскости хОу (рис.21).

Внешняя нормаль к поверхности S2 образует острый угол γ с осью Oz, а внешняя нормаль к поверхности S1 образует тупой угол с осью Oz. Поэтому cos γ = (п°, к) > 0 на S2 и cos γ < 0 на S1, так что на S2 имеем cos γ = |cos γ|, а на S1 cos γ = —| cos γ|. В силу аддитивности потока имеем

Векторный анализ

Векторный анализ

Пусть dσ — элемент площади на поверхности S. Тогда

Векторный анализ

где dS — элемент площади области D. Сведем интегралы по поверхности к двойным интеграл ам по области D плоскости хОу, на которую проектируются поверхности S1 и S2. Пусть S2 описывается уравнением z = z2(x, у), а S, — уравнением z = z1(x, у). Тогда

Векторный анализ

Так как приращение непрерывно дифференцируемой функции можно представить как интеграл от ее производной

Векторный анализ

то для функции R(x, у, z) будем иметь

Векторный анализ

Пользуясь этим, получаем из формулы (3)

Векторный анализ

Если поверхность S содержит часть цилиндрической поверхности с образующими, параллельными оси Oz (рис. 22), то на этой части поверхности (Rk, п°) = 0 и интеграл ∫∫ (Rk, n°) dσ по ней равен нулю. Поэтому формула (4) остается справедливой и для поверхностей, содержащих указанные цилиндрические части.

Векторный анализ

Формула (4) переносится и на случай, когда поверхность 5 пересекается вертикальной прямой более, чем в двух точках (рис. 23).

Векторный анализ

Разрежем область V на части, поверхность каждой из которых пересекается вертикальной прямой не более чем в двух точках, и обозначим через Sp поверхность разреза. Пусть S1 и S2 — те части поверхности S, на которые она разбивается разрезом Sp,a V1 и V2 — соответствующие части области V, ограниченные поверхностями Векторный анализ

Здесь Sp+ означает, что вектор нормали к разрезу Sp направлен вверх (образует с осью Oz острый угол), a Sp — что этот вектор нормали направлен вниз (образует с осью Oz тупой угол). Имеем:

Векторный анализ

Складывая полученные равенства и пользуясь аддитивностью потока и тройного интеграла, получим

Векторный анализ

(интегралы по разрезу Sp взаимно уничтожаются). Рассмотрим, наконец, вектор

а = Р{х, у, z)i + Q(x, у, z)j + R(x, у, z)k.

Для каждой компоненты Pi, Qj, Rк мы можем написать формулу, аналогичную формуле (4) (все компоненты равноправны). Получим

Векторный анализ

Складывая эти равенства и пользуясь линейностью потока и тройного интеграла, получаем формулу Гаусса—Остроградского

Векторный анализ
Векторный анализ

Пример:

Вычислить поток вектора

а = 2xi — (z — 1)k

через замкнутую поверхность

Векторный анализ

1) по определению, 2) по формуле Остроградского.

1) Поток вектора а равен сумме

Векторный анализ

(рис. 24), где

Векторный анализ

Перейдем на цилиндре к криволинейным координатам

Векторный анализ

Тогда

Векторный анализ

Следовательно, П = -4π + 0 + 8π = 4π.

2) По формуле Гаусса—Остроградского имеем

Векторный анализ

Пример:

Вычислить поток радиус-вектора

r = xi + yj + zk

через сферу радиуса R с центром в начале координат:

1) по определению; 2) по формуле Остроградского.

1) Так как для сферы

Векторный анализ

2) Сначала находим

Векторный анализ

Отсюда

Векторный анализ

Пример:

Вычислить поток вектора

Векторный анализ

через замкнутую поверхность S, заданную условиями:

Векторный анализ

1) по определению; 2) по формуле Остроградстого (рис.25).

Векторный анализ

1} Имеем

Векторный анализ

где

Векторный анализ

(на S1 имеем z = 0),

Векторный анализ

Поэтому

Векторный анализ

Имеем

Векторный анализ

Поэтому

Векторный анализ

Переходя к цилиндрическим координатам

Векторный анализ

и замечая, что z = 9 — р на поверхности S, имеем

Векторный анализ

Замечание:

При вычислении потока через незамкнутую поверхность часто бывает удобно подходящим образом дополнить ее до замкнутой и воспользоваться формулой Гаусса—Оcтроградского.

Пример:

Вычислить поток вектора

Векторный анализ

через поверхность S:

Векторный анализ

Заданная поверхность S есть конус с осью Оу (рис. 26).

Векторный анализ

Замкнем этот конус куском Σ плоскости у = I. Тогда, обозначая через П1 искомый поток, а через П2 поток по поверхности Σ, будем иметь

Векторный анализ

где V — объем конуса, ограниченного поверхностями S и Σ.
Так как

Векторный анализ

Векторный анализ

т.к. на поверхности Σ выполняется равенство у = 1. Следовательно, П1 = π.

Дивергенция векторного поля. Соленоидальные (трубчатые) поля

Пусть S — замкнутая поверхность. Рассмотрим поле скоростей v течения жидкости и вычислим поток жидкости через поверхность 5. Если он положителен, то это означает, что из той части пространства, которая ограничена поверхностью S, вытекает больше жидкости, чем втекает в нее. В этом случае говорят, что внутри S имеются источники (выделяющие жидкость). Напротив, если поток отрицателен, то внутрь S втекает больше жидкости, чем вытекает из нее. В этом случае говорят, что внутри S имеются стоки (поглощающие жидкость).

Тем самым, величина

Векторный анализ

позволяет судить о природе части векторного поля, заключенного внутри поверхности S, а именно, о наличии источников или стоков внутри нее и их производительности (мощности).

Понятие о потоке вектора через замкнутую поверхность приводит к понятию дивергенции, или расходимости поля, которое дает некоторую количественную характеристику поля в каждой его точке.

Пусть М — изучаемая точка поля. Окружим ее поверхностью S произвольной формы, например, сферой достаточно малого радиуса. Область, ограниченную поверхностью 5, обозначим через (V), а ее объем через V.

Вычислим поток вектора а через поверхность S. Имеем

Векторный анализ

Составим отношение этого потока П к величине объема V,

Векторный анализ

Так как числитель представляет собой производительность источников (стоков) внутри области (V), то отношение (1) дает среднюю производительность единицы объема.

Определение:

Если отношение (1) имеет конечный предел, когда область (V) стягивается в точку М, то этот предел называют дивергенцией векторного поля (дивергенцией вектора а) в точке М и обозначают div а(М). То есть по определению

Векторный анализ

Дивергенция векторного поля есть скалярная величина (числитель и знаменатель дроби (2) суть скалярные величины).

Если diva(M) > 0, то в точке М расположен источник, если diva(M) < 0, то в точке М — сток.

Формула (2) позволяет сделать следующее заключение: дивергенция поля а в точке М есть объемная плотность потока вектора а в этой точке. Эта формула дает инвариантное определение дивергенции, не связанное с выбором систем координат — все величины, входящие в формулу (2), определяются непосредственно самим полем и от координатной системы не зависят.

Покажем, как вычисляется дивергенция в декартовых координатах при условии, что координаты вектора

а = Р(х, у, z)i + Q(x, у, z)j + R(x, y, z)k

непрерывны и имеют непрерывные частные производные Векторный анализ в окрестности точки М. Тогда к потоку вектора а через любую замкнутую поверхность 5, расположенную в окрестности точки М, можно применить формулу Гаусса—Остроградского

Векторный анализ

Пользуясь теоремой о среднем для тройного интеграла, получим

Векторный анализ

Подставляя это выражение в формулу (2), определяющую дивергенцию, найдем

Векторный анализ

Когда область (V) стягивается в точку М, то и точка Мcp стремится к точке М и, в силу предположенной непрерывности частных производных, получаем

Векторный анализ

или, короче,
(3)

Векторный анализ

(все величины в формуле (3) вычисляются водной и той же точке).

Формула (3) дает выражение дивергенции в декартовых координатах. Попутно доказано само существование дивергенции вектора а при условии, что производные Векторный анализ непрерывны.

Используя формулу (3) для дивергенции, запишем формулу Гаусса—Остроградского в векторной форме. Имеем
(4)

Векторный анализ

— поток вектора а через замкнутую поверхность S равен тройному интегралу от дивергенции вектора а по области (V), ограниченной поверхностью S.

Правила вычисления дивергенции

1, Дивергенция обладает свойством линейности
(5)

Векторный анализ

где С1,…, Сп — постоянные числа.

Пусть

а = Р(х, у, z)i + Q(x, у, z)j + R(x, у, z)k

и С — постоянное число. Тогда

Векторный анализ

Если

Векторный анализ

то

Векторный анализ

2. Дивергенция постоянного вектора с равна нулю

div e = 0. (6)

3. Дивергенция произведения скалярной функции и(М) на вектор а(М) вычисляется по формуле

div(ua) = u diva + (gprad u,a). (7)

В самом деле,

Векторный анализ

Пример:

Найти дивергенцию вектора

Векторный анализ

где r = |r| — расстояние от начала координат до переменной точки М(х,у,z),

Векторный анализ

По формуле (7) имеем

Векторный анализ

Так как r = xi + уj + zk. то

Векторный анализ

Векторный анализ

Трубчатое (соленоидальное) поле

Если во всех точках некоторой области G дивергенция векторного поля, заданного в этой области, равна нулю

div а ≡ 0, (8)

то говорят, что в этой области поле соленоидальное (или трубчатое).

Из формулы Гаусса—Остроградского вытекает, что в трубчатом поле поток вектора через любую замкнутую поверхность S, лежащую в этом поле, равен нулю
(9)

Векторный анализ

Свойства трубчатого поля

Рассмотрим в области, где задано поле вектора а, какую-нибудь площадку Σ (рис.27). Назовем векторной трубкой совокупность векторных линий, проходящих через границу γ = θΣ этой площадки. Пусть Σ1 — некоторое сечение векторной трубки. Выберем вектор нормали щ к сечению Σ1 так, чтобы он был направлен в ту же сторону, что и вектор а поля.

Векторный анализ

Теорема:

В трубчатом поле поток вектора а через любое сечение векторной трубки один и тот же.

Пусть Σ1 и Σ2 —непересекающиеся сечения одной и той же векторной трубки. Надо доказать, что

Векторный анализ

Обозначим через Σ3 часть поверхности векторной трубки, заключенную между сечениями Σ1 и Σ2. Поверхности Σ1, Σ2, Σ3 вместе образуют замкнутую поверхность Σ (рис.28).

Векторный анализ

Так как по условию поле вектора а — трубчатое, то

Векторный анализ

В силу аддитивности потока соотношение (10) можно переписать так:

Векторный анализ

В точках поверхности Σ3, составленной из векторных линий, имеем Векторный анализ, так что (а, п°3) = 0 на Σз, и значит, последний интеграл в левой части (11) равен нулю. Таким образом, из (11) находим

Векторный анализ

Пусть поверхность Σ имеет ориентированный замкнутый контур L своей границей. Будем говорить, что поверхность Σ натянута на контур L. Вектор нормали п к поверхности Σ будем ориентировать так, чтобы из конца нормали обход контура L был виден против часовой стрелки (рис. 29).

Векторный анализ

Теорема:

В трубчатом поле поток вектора а через любую поверхность, натянутую на данный контур, один и тот же:

Векторный анализ

Замечание:

В трубчатом поле векторные линии могут быть либо замкнутыми кривыми, либо иметь концы на границе области, где поле задано.

Пример:

Рассмотрим силовое поле, создаваемое точечным зарядом q, помешенным в начале координат. Вычислим дивергенцию вектора Е напряженности

Векторный анализ

Имеем

Векторный анализ

где

Векторный анализ

Пользуясь формулой (7), получим

Векторный анализ

для r ≠ 0. Таким образом, поле вектора Σ, заданного формулой (13), будет трубчатым в любой области G, не содержащей точки O(0,0,0).

Вычислим поток вектора Σ через сферу Sr радиуса R с центром в начале координат O(0,0,0) (рис.30).

Векторный анализ

Имеем

Векторный анализ

Замечание:

Можно показать, что поток вектора (13) через любую замкнутую поверхность Σ, охватывающую точку O(0,0,0), всегда равен 4 πg.

Циркуляция векторного поля. Ротор вектора. Теорема Стокса

Пусть в некоторой области G задано непрерывное векторное поле

а(М) = Р(х, у, х)i + Q(x, у, z)j + R(х, у, z)k

и замкнутый ориентированный контур L.

Определение:

Циркуляцией вектора а по замкнутому контуру L называется криволинейный интеграл 2-го рода от вектора а по контуру L

Векторный анализ

Здесь dr — вектор, длина которого равна дифференциалу дуги L, а направление совпадаете направлением касательной к L, определяемым ориентацией контура (рис. 31) символ Векторный анализозначает, что интеграл берется по замкнутому контуру L.

Векторный анализ

Пример:

Вычислить циркуляцию векторного поля

Векторный анализ

вдоль эллипса L:

Векторный анализ

По определению циркуляции имеем

Векторный анализ

Параметрические уравнения данного эллипса имеют вид:

Векторный анализ

и, значит, dx = -a sin tdt, dy = b cos tdt. Подставляя эти выражения в формулу (2), найдем

Векторный анализ

Ротор (вихрь) векторного поля

Рассмотрим поле вектора

а(М) = Р(х, у, z)i + Q(x, у, z)j + R(х, у, z)k,

Р, Q, R которого непрерывны и имеют непрерывные частные производные первого порядка по всем своим аргументам.

Определение:

Ротором вектора а(M) называется вектор, обозначаемый символом rot а и определяемый равенством

Векторный анализ

или, в символической, удобной для запоминания форме,

Векторный анализ

Этот определитель раскрывают по элементам первой строки, при этом операции умножения элементов второй строки на элементы третьей строки понимаются как операции дифференцирования, например,

Векторный анализ

Определение:

Если в некоторой области G имеем rot а = 0, то поле вектора а в области G называется безвихревым.

Пример:

Найти ротор вектора

Векторный анализ

Согласно формуле (3) имеем

Векторный анализ

Так как rot а — вектор, то мы можем рассматривать векторное поле — поле ротора вектора а. Предполагая, что координаты вектора а имеют непрерывные частные производные второго порядка, вычислим дивергенцию вектора rot а. Получим

Векторный анализ

т. е.

div rot a = 0. (3′)

Таким образом, поле вектора rot а соленоидально.

Теорема Стокса:

Циркуляция вектора а вдоль ориентированного замкнутого контура L равна потоку ротора этого вектора через любую поверхность Е, натянутую на контур L,

Векторный анализ

При этом предполагается, что координаты вектора а имеют непрерывные частные производные в некоторой области G пространства, содержащей поверхность Σ, и что ориентация орта нормали п° к поверхности Σ С G согласована с ориентацией контура L так, что из конца нормали обход контура в заданном направлении виден совершающимся против часовой стрелки.

Учитывая, что а = Pi + Qj + Rk, n° = cos ai + cos βj + cos γk, и пользуясь определением ротора (3), перепишем формулу (4) в следующем виде:

Векторный анализ

Рассмотрим сначала случай, когда гладкая поверхность Σ и ее контур L однозначно проектируются на область D плоскости хОу и ее границу — контур λ соответственно (рис. 32). Ориентация контура L порождает определенную ориентацию контура λ. Для определенности будем считать, что контур L ориентирован так, что поверхность Σ остается слева, так что веkтор нормали п к поверхности Σ составляет с осью Oz острый угол γ (cos γ > 0).

Пусть z = φ{х,у) — уравнение поверхности Σ и функция ф(х,у) непрерывна и имеет непрерывные частные производные Векторный анализ в замкнутой области D. Рассмотрим интеграл

Векторный анализ

Линия L лежит на поверхности Σ. Поэтому, пользуясь уравнением этой поверхности z = φ(х, у),мы можем заменить z под знаком интеграла на φ(x, у). Координаты (х, у)

Векторный анализ

переменной точки кривой λ равны координатам соответствующей точки на кривой L, а потому интегрирование по L можно заменить интегрированием по λ,

Векторный анализ

Применим к интегралу, стоящему справа, формулу Грина. Имеем

Векторный анализ

Перейдем теперь от интеграла по области D к интегралу по поверхности Σ. Так как dS = cos γ • dσ,то из формулы (8) получим, что

Векторный анализ

Вектор нормали n° к поверхности Σ определяется выражением

Векторный анализ

или n° = cos a • i + cos β • j + cos γ • k. Отсюда видно, что

Векторный анализ

Поэтому равенство (9) можно переписать так:

Векторный анализ

Считая Σ гладкой поверхностью, однозначно проектирующейся на все три координатные плоскости, аналогично убеждаемся в справедливости формул

Векторный анализ

Складывая равенства (10), (11) и (12) почленно, получим формулу Стокса (5), или, короче,

Векторный анализ

Замечание:

Мы показали, что поле вектора rota — соленоидальное, и потому поток вектора rota не зависит от вида поверхности Σ, натянутой на контур L.

Замечание:

Формула (4) выведена в предположении, что поверхность Σ однозначно проектируется на все три координатные плоскости. Ecли это условие не выполнено, то разбиваем Σ на части так, чтобы каждая часть указан ному условию удовлетворяла, а затем пользуемся аддитивностью интегралов.

Пример:

Вычислить циркуляцию вектора

а = yi — xj + k

по линии L:

Векторный анализ

1) пользуясь определением; 2) по теореме Стокса.

1) Зададим линию L параметрически:

Векторный анализ

Тогда dx = -R sin t dt, dy = R cos t dt, H dz = 0, так что

Векторный анализ

2) Найдем rot a:

Векторный анализ

Натянем на контур L кусок плоскости z = H, так что п° = k. Тогда

Векторный анализ

Инвариантное определение ротора поля

Из теоремы Стокса можно получить инвариантное определение ротора поля, не связанное с выбором системы координат.

Теорема:

Проекция ротора а на любое направление не зависит от выбора системы координат и равна поверхностной плотности циркуляции вектора а по контуру площадки, перпендикулярной этому направлению,

Векторный анализ

Здесь ( Σ ) — плоская площадка, перпендикулярная вектору п; S — площадь этой площадки; L — контур площадки, ориентированный так, чтобы обход контура был виден из конца вектора п против хода часовой стрелки; ( Σ ) М означает, что площадка ( Σ ) стягиваетcя к точке М, в которой рассматривается вектор rot а, причем вектор нормали п к этой площадке остается все время одним и тем же (рис. 33).

Векторный анализ

Применим сначала к циркуляции

Векторный анализ

вектора а теорему Стокса, а затем к полученному двойному интегралу — теорему о среднем значении:

Векторный анализ

(скалярное произведение (rot a, n°) берется в некоторой средней точке Mср площадки ( Σ )).

При стягивании площадки ( Σ ) к точке М средняя точка Мср тоже стремится к точке М и, в силу предполагаемой непрерывности частных производных от координат вектора а (а значит, и непрерывности rot а), мы получаем

Векторный анализ

Поскольку проекция вектора rot а на произвольное направление не зависит от выбора системы координат, то сам вектор rota инвариантен относительно этого выбора. Отсюда получаем следующее инвариантное определение ротора поля: ротор поля есть вектор, длина которого равна наибольшей поверхностной плотности циркуляции в данной точке, направленный перпендикулярно той площадке, на которой эта наибольшая плотность циркуляции достигается; при этом ориентация вектора rot a согласуется с ориентацией контура, при которой циркуляция положительна, по правилу правого винта.

Физический смысл ротора поля

Пусть твердое тело вращается вокруг неподвижной оси l с угловой скоростью w. Не нарушая общности, можно считать, что ось l совпадает с осью Oz (рис. 34). Пусть М(г) — изучаемая точка тела, где

r = xi + уj + zk.

Вектор угловой скорости в нашем случае равен w ≡ wk, вычислим вектор v линейной скорости точки М,

Векторный анализ

Отсюда

Векторный анализ

Итак, вихрь поля скоростей вращающегося твердого тела одинаков во всех точках поля, параллелен оси вращения и равен удвоенной угловой скорости вращения.

Векторный анализ

Правила вычисления ротора

1, Ротор постоянного вектора с равен нулевому вектору,

rot e = 0.

2. Ротор обладает свойством линейности

Векторный анализ

где c1, c2,…, cn — постоянные числа.

3. Ротор произведения скалярной функции и(М) на векторную а(М) вычисляется по формуле

rot(wa) = и rot а + [grad и, а].

В самом деле,

Векторный анализ

Независимость криволинейного интеграла от пути интегрирования

Определение:

Область G трехмерного пространства называется поверхностно односвязной, если на любой замкнутый контур, лежащий в этой области, можно натянуть поверхность, целиком лежащую в области G.

Например, внутренность сферы или все трехмерное пространство являются поверхностно односвязными областями; внутренность тора или трехмерное пространство, из которого исключена прямая, поверхностно односвязными областями не являются.

Пусть в поверхностно односвязной области G задано непрерывное векторное поле

а (М) = Р(М)i + Q(M)j + R(M) k.

Тогда имеет место следующая теорема.

Теорема:

Для того чтобы криволинейный интеграл

Векторный анализ

в поле вектора а не зависел от пути интегрирования, а зависел только от начальной и конечной точек пути (А и В), необходимо и достаточно, чтобы циркуляция вектора a вдаль любого замкнутого контура L, расположенного в области G, была равна нулю.

Необходимость. Пусть интеграл

Векторный анализ

не зависит от пути интегрирования. Покажем, что тогда

Векторный анализ

по любому замкнутому контуру L равен нулю.

Рассмотрим произвольный замкнутый контур L в поле вектора а и возьмем на нем произвольно точки A и В (рис.35).

Векторный анализ

По условию имеем

Векторный анализ

где L1 и L2 — различные пути, соединяющие точки А и В; откуда

Векторный анализ

Но L1 U L2 как раз и есть выбранный замкнутый контур L. Достаточность. Пусть

Векторный анализ

для любого замкнутого контура L. Покажем, что в этом случае интеграл

Векторный анализ

не зависит от пути интегрирования.

Возьмем в поле вектора а две точки А и В, соединим их произвольными линиями L1 и L2 к покажем, что

Векторный анализ

Для простоты ограничимся случаем, когда линии L1 и L2 не пересекаются. В этом случае объединение L1 ∪ L2 образует простой замкнутый контур L (рис. 36).

Векторный анализ

По условию

Векторный анализ

а по свойству аддитивности

Векторный анализ

Следовательно,

Векторный анализ

откуда справедливость равенства (2) и вытекает.

Теорема 9 выражает необходимое и достаточное условия независимости криволинейного интеграла от формы пути, однако эти условия трудно проверяемы. Приведем более эффективный критерий.

Теорема:

Для того, чтобы криволинейный интеграл

Векторный анализ

не зависел от пути интегрирования L, необходимо и достаточно, чтобы векторное поле а(М) = Р(X, у, z)i + Q(x, у, z)j + R(x, у, z)k было безвихревым,

rot a(M) = 0. (3)

Здесь предполагается, что координаты Р(х, у, z), Q(x, у, z), R(x, у, z) вектора а(М) имеют непрерывные частные производные первого порядка и область определения вектора а(М) поверхностно односвязна.
Замечание:

В силу теоремы 9 независимость криволинейного интеграла от пути интегрирования равносильна равенству нулю циркуляции вектора а вдоль любого замкнутого контура. Это обстоятельство мы используем при доказательстве теоремы.

Необходимость. Пусть криволинейный интеграл не зависит от формы пути, или, что то же, циркуляция вектора а по любому замкнутому контуру L равна нулю. Тогда

Векторный анализ

т. е. в каждой точке поля проекция вектора rot а на любое направление равна нулю. Это означает, что сам вектор rot а равен нулю во всех точках поля,

rot а ≡ 0.

Достаточность. Достаточность условия (3) вытекает из формулы Стокса, так как если rot а ≡ 0, то и циркуляция вектора по любому замкнутому контуру L равна нулю:

Векторный анализ

Ротор плоского поля a = P(x, y)i + Q(x, y)j равен

Векторный анализ

что позволяет сформулировать для плоского поля следующую теорему.

Теорема:

Для того, чтобы криволинейный интеграл

Векторный анализ

в односвязном плоском поле не зависел от формы линии L, необходимо и достаточно, чтобы соотношение

Векторный анализ

выполнялось тождественно во всей рассматриваемой области.

Если область неодносвязна, то выполнение условия

Векторный анализ

вообще говоря, не обеспечивает независимости криволинейного интеграла от формы линии.

Пример:

Пусть

Векторный анализ

Рассмотрим интеграл

Векторный анализ

Ясно, что подынтегральное выражение не имеет смысла в точке 0(0,0). Поэтому исключим эту точку. В остальной части плоскости (это будет уже не сщносвязная область!) координаты вектора а непрерывны, имеют непрерывные частные производные и

Векторный анализ

Рассмотрим интеграл (6) вдоль замкнутой кривой L — окружности радиуса R с центром в начале координат

Векторный анализ

Векторный анализ

Отличие циркуляции от нуля показывает, что интеграл (6) зависит от формы пути интегрирования.

Потенциальное поле

Определение:

Поле вектора а(М) называется потенциальным, если существует скалярная функция и{М) такая, что

grad и = a. (1)

При этом функция и{М) называется потенциалом поля ее поверхности уровня называются эквипотенциальными поверхностями.
Пусть

а = Р(х, у, z)i + Q(x, у, z)j + R(x, у, z)k.

Так как

Векторный анализ

то соотношение (1) равносильно следующим трем скалярным равенствам:

Векторный анализ

Заметим, что потенциал поля определяется с точностью до постоянного слагаемого: если grad и = а и grad v = а, то

Векторный анализ

и, следовательно, и = v + с, где с — постоянное число.

Пример:

Поле радиус-вектора г является потенциальным, так как

Векторный анализ

(напомним, что Векторный анализ). Потенциалом поля радиус-вектора является, следовательно,

Векторный анализ

Пример:

Поле вектора

Векторный анализ

является потенциальным.

Пусть функция φ(r) такая, что

Векторный анализ

найдена. Тогда

Векторный анализ

и

Векторный анализ

откуда

Векторный анализ

Значит,

Векторный анализ

— потенциал поля.

Теорема:

Для того чтобы поле вектора а было потенциальным, необходимо и достаточно, чтобы оно было безвихревым,

rot а0, (2)

т. е. чтобы его ротор равнялся нулю во всех точках поля. При этом предполагается непрерывность всех частных производных от координат вектора а и поверхностная односвязность области, в которой задан вектор а.
Необходимость. Необходимость условия (2) устанавливается непосредственным подсчетом: если поле потенциально, т. е. а = grad и, то

Векторный анализ

в силу независимости смешанных производных от порядка дифференцирования.

Достаточность. Пусть поле вектора безвихревое (2). Для того чтобы доказать потенциальность этого поля, построим его потенциал и(М). Из условия (2) следует, что криволинейный интеграл

Векторный анализ

не зависит от формы линии L, а зависит только от ее начальной и конечной точек. Зафиксируем начальную точку Мо(xo, yо, zo), а конечную точку М(х, y, z) будем менять. Тогда интеграл (3) будет функцией точки М(х, у, z). Обозначим эту функцию через и(М) и докажем, что

grad u = а.

В дальнейшем будем записывать интеграл (3), указывая лишь начальную и конечную точку пути интегрирования,

Векторный анализ

Равенство grad и = а равносильно трем скалярны м равенства м

Векторный анализ

Докажем первое из них,

Векторный анализ

второе и третье равенства доказываются аналогично.

По определению частной производной имеем

Векторный анализ

Рассмотрим точку М1(х + ∆х, у, z), близкую к точке M(x,y,z). Так как функция и(М) определяется соотношением (4), в котором криволинейный интеграл не зависит от пути интегрирования, то выберем путь интегрирования так, как указано на рис.37.

Векторный анализ

Тогда

Векторный анализ

Отсюда

Векторный анализ

Последний интеграл берется вдоль отрезка прямой ММ1, параллельной оси Ох. На этом отрезке в качестве параметра можно принять координату х:

x = х, у = const, z = const.

Тогда dx = dx,dy = 0, dz = 0, так что

Векторный анализ

Применяя к интегралу в правой части (6) теорему о среднем, получаем

Векторный анализ

где величина ξ заключена между х и х + ∆х. Из формулы (7) вытекает, что

Векторный анализ

Так как ξ —► x при ∆x —» 0, то в силу непрерывности функции Р(х, у, z) получаем

Векторный анализ

Аналогично доказывается, что

Векторный анализ

Следствие:

Векторное поле является потенциальным тогда и только тогда, когда криволинейный интеграл в нем не зависит от пути.

Вычисление криволинейного интеграла в потенциальном поле

Теорема:

Интеграл Векторный анализ в потенциальном поле а(М) равен разности значений, потенциала и(М) поля в конечной и начальной точках пути интегрирования,

Векторный анализ

Ранее былодоказано, что функция

Векторный анализ

является потенциалом поля.

В потенциальном поле криволинейный интеграл

Векторный анализ

не зависит от пути интегрирования. Поэтому, выбирая путь отточки М1 к точке М2 так, чтобы он прошел через точку Mo (рис. 38), получаем

Векторный анализ

или, меняя ориентацию пути в первом интеграле справа,

Векторный анализ

Так как потенциал поля определяется с точностью до постоянного слагаемого, то любой потенциал рассматриваемого поля можетбыть записан в виде

v(M) = u(M) + c, (10)

где с — постоянная.

Делая в формуле (10) замену u(M2) = v(M2) — с, и(М1) = v(M1) — с, получим для произвольного потенциала v(M) требуемую формулу

Векторный анализ

Пример:

В примере 1 было показано, что потенциалом поля радиус-вектора г является функция

Векторный анализ

Поэтому

Векторный анализ

где ri (i = 1,2) — расстояние от точки Mi(i = 1,2) до начала координат.

Вычисление потенциала в декартовых координатах

Пусть задано потенциальное поле

а(М) = Р(х, у, г)i + Q(x, у, z)j + R(x, у, z)k.

Ранее было показано, что потенциальная функция и(М) может быть найдена по формуле

Векторный анализ

Интеграл (11) удобнее всего вычислять так: зафиксируем начальную точку Мо(хо, yо, zо) и соединим ее с достаточно близкой текущей точкой M(x,y,z) ломаной М0М1М2М, звенья которой параллельны координатным осям, М0М1,||Ох, M1М2||Оу, М2М|| Oz (рис.39).

Векторный анализ

При этом на каждом звене ломаной изменяется только одна координата, что позволяет существенно упростить вычисления. В самом деле, на отрезке М0М1 имеем:

Векторный анализ

На отрезке М1М2:

х = const, dx = 0, у = у, dy = dy, z = z0 и dz = 0.

На отрезке M1M:

x = const, dx = 0, у = const, dy = 0, z = z и dz = dz.

Следовательно, потенциал u(M) равен

Векторный анализ

где x, у, z — координаты текущей точки на звеньях ломаной, вдоль которых ведется интегрирование.

Пример:

Доказать, что векторное поле

а = {у + z)i + (х + z)j + (х + y)k

является потенциальным, и найти его потенциал.

Проверим, будет ли поле вектора а(М) потенциально. С этой целью вычислим ротор поля. Имеем

Векторный анализ

Поле является потенциальным. Потенциал этого поля найдем с помощью формулы (12). Возьмем за начальную точку Mо начало координат О (так обычно поступают, если поле а(М) определено в начале координат). Тогда получим

Векторный анализ

Итак,

u(z, у, z) = ху + xz + yz + с,

где с — произвольная постоянная.

Потенциал этого поля можно найти и по-иному. По определению потенциал и(х, у, г) есть скалярная функция, для которой grad и = а. Это векторное равенство равносильно трем скалярным равенствам:

Векторный анализ

Интегрируя (13) по х, получим

Векторный анализ

где f(y,z) — произвольная дифференцируемая функция от у и z. Продифференцируем (16) по у:

Векторный анализ

откуда, учитывая (14), будем иметь

Векторный анализ

или

Векторный анализ

Проинтегрировав (17) по у, найдем

Векторный анализ

где F(z) — некоторая функция х. Подставив (18) в (16), получим

и(х, у, z) = ху + xz + у z + F(z).

Дифференцируя последнее равенство по z и учитывая соотношение (15), получим уравнение для F(z),

Векторный анализ

откуда Векторный анализ= 0, так что F(z) = с = const. Итак,

u(x,y,z) = ху +yz + zx +с.

Оператор Гамильтона

Мы рассмотрели три основные операции векторного анализа: вычисление grad и для скалярного поля и = и(х, у, z) и div а и rot а для векторного поля а = а(x, у, z). Эти операции могут быть записаны в более простом виде с помощью символического оператора ∇ («набла»): (1)

Векторный анализ

Оператор ∇ (оператор Гамильтона) обладает как дифференциальными, так и векторными свойствами. Формальное умножение, например, умножение Векторный анализна функцию и(х, у), будем понимать как частное дифференцирование:

Векторный анализ

В рамках векторной алгебры формальные операции над оператором ∇ будем проводить так, как если бы он был вектором. Используя этот формализм, получим следующие основные формулы:

1, Если и = и(х, у, z) — скалярная дифференцируемая функция, то по правилу умножения вектора на скаляр получим

Векторный анализ

2. Если

a = P(x, y, z)i + Q(x, y, z)j + (x, y, z)k,

где P, Q, R — дифференцируемые функции, то по формуле для нахождения скалярного произведения получим

Векторный анализ

3. Вычисляя векторное произведение [ ∇, а], получим

Векторный анализ

Для постоянной функции и = с получим

∇c = 0,

а для постоянного вектора с будем иметь

( ∇, с) = 0 и [ ∇, с] = 0.

Из распределительного свойства для скалярного и векторного произведений получаем

( ∇, a + b) = ( ∇, а) + ( ∇, b),

Векторный анализ

Замечание:

Формулы (5) и (6) можно трактовать так же как проявление дифференциальных свойств оператора «набла»( ∇ — линейный дифференциальный оператор). Условились считать, что оператор ∇ действует на все величины, написанные за ним. В этом смысле, например,

( ∇, а) ≠ (а, ∇ ),

ибо ( ∇, а) = div а есть функция Векторный анализ в то время как

Векторный анализ

— скалярный дифференциальный оператор.

Применяя оператор ∇ к произведению каких-либо величин, надо иметь в виду обычное правило дифференцирования произведения.

Пример:

Доказать, что

grad(u v) = v Brad и + u grad v. (7)

По формуле (2) с учетом замечания 1 получаем

∇(uv) = v∇u + u ∇v,

или

grad(uv) = v grad u + u grad v.

Чтобы отметить тот факт, что «набла» не действует на какую-либо величину, входящую в состав сложной формулы, эту величину отмечают индексом с («const»), который в окончательном результате опускается.

Пример:

Пусть и(x,y,z) — скалярная дифференцируемая функция, a(x,y,z) — векторная дифференцируемая функция. Доказать, что

div(ua) =u diva + (a, grad u). (8)

Перепишем левую часть (8) в символическом виде

div(ua) = ( ∇, ua).

Учитывая дифференциальный характер оператора ∇, получаем

Векторный анализ

Так как ис — постоянный скаляр, то его можно вынести за знак скалярного произведения, так что

Векторный анализ

(на последнем шаге мы опустили индекс с).

В выражении ( ∇, иас) оператор ∇ действует только на скалярную функцию и, поэтому

Векторный анализ

В итоге получаем

div(ua) = u div а + (a, grad и).

Замечание:

Используя формализм действий с оператором ∇ как с вектором, надо помнить, что ∇ не является обычным вектором — он не имеет ни длины, ни направления, так что, например, вектор ( ∇, а} не будет, вообще говоря, перпендикулярным вектору а (впрочем, для плоского поля а = Р(х, y)i + Q(x, y)j вектор

Векторный анализ

перпендикулярен плоскости хОу, а значит, и вектору а).

Не имеет смысла и понятие коллинеарности по отношению к символическому вектору ∇. Например, выражение [∇ φ, ∇ ψ] где φ и ψ — скалярные функции, формально напоминает векторное произведение двух кoллинеарных векторов, которое всегда равно нулю. Однако в общем случае это не имеет места. В самом деле, вектор ∇ φ = grad φ направлен по нормали к поверхности уровня φ = const, а вектор ∇ ψ = grad ψ определяет нормаль к поверхности уровня ψ = const. В общем случае эти нормали не обязаны быть коллинеарными (рис. 40). С другой стороны, в любом дифференцируемом скалярном поле φ (х, у, z) имеем [∇ φ, ∇ ψ] = 0.

Эта примеры показывают, что с оператором «набла» нужно обращаться с большой осторожностью и при отсутствии уверенности в полученном результате его следует проверить аналитическими методами.

Дифференциальные операции второго порядка. Оператор Лапласа

Дифференциальные операции второго порядка получаются в результате двукратного применения оператора ∇.

1, Пусть имеем скалярное поле и = и(x,y,z). В этом поле оператор ∇ порождает векторное поле

∇u = grad и.

В векторном поле grad и можно определить две операции:

( ∇, ∇u) = div grad u, (1)

что приводит к скалярному полю, и

[ ∇, ∇m] = rot grad u, (2)

что приводит к векторному полю.

2. Пусть задано векторное поле а = Pi + Qj + Rk. Тогда оператор (2) порождает в нем скалярное поле

(∇, а) = div a.

В скалярном поле div а оператор ∇ порождает векторное поле

∇ (∇,a) = grad div а. (3)

3. В векторном поле а = Pi + Qj + Rк оператор ∇ порождает также векторное поле

[∇, а] = rot a.

Применяя к этому полю снова оператор ∇, получим:

а) скалярное поле

(∇, [∇, а]) = div rot а, (4).

б) векторное поле

(∇, [∇, а]) = rot rot а. (5)

Формулы (1)-(5) определяют так называемые дифференциальные операции второго порядка.

Выберем в пространстве прямоугольную декартову систему координат Oxyz и рассмотрим каждую из формул (1)-(5) более подробно.

1, Предполагая, что функция и(х, у, z) имеет непрерывные вторые частные производные по х, у и z, получим

Векторный анализ

Символ

Векторный анализ

называется оператором Лапласа, или лапласианом. Его можно представить как скалярное произведение оператора Гамильтона ∇ на самого себя, т.е.

Векторный анализ

Оператор ∆ (дельта) играет важную роль в математической физике. Уравнение (6)

Векторный анализ

называется уравнением Лапласа. С его помощью описывается, например, стационарное распределение тепла.

Скалярное поле и(х, у, z), удовлетворяющее условию ∆и = 0, называется лапла-совым или гармоническим полем.

Например, скалярное поле и = 2х2 + Зу — 2x2 является гармоническим во всем трехмерном пространстве: из того, что

Векторный анализ

2. Пусть функция u(z, у, z) имеет непрерывные частные производные второго порядка включительно. Тогда

rot grad u0. (7)

В самом деле, действуя формально, получим

rot grad и = [∇, ∇u] = [ ∇, ∇ ] u = 0,

ибо [∇, ∇] = 0 как векторное произведение двух одинаковых «векторов».

Тот же результат можно получить, используя выражения градиента и ротора в декартовых координатах

Векторный анализ

3. Пусть задано векторное поле

а = Р(х, у, z)i + Q(x, у, z)j + R(x, у, z)k,

координаты которого P, Q, R имеют непрерывные частные производные второго порядка. Тогда получим

Векторный анализ

4. При тех же условиях, что и в пункте 3, имеем (9)

Векторный анализ

Это соотношение уже было доказано ранее путем непосредственных вычислений. Здесь мы приведем его формальное доказательство, используя известную формулу из векторной алгебры

(А, [В, С]) = (С,[А,В])= (В, [С, А]).

Имеем

div rot а = (∇, [∇, а]) = (а, [∇, ∇]) = О,

так как [∇, ∇] = 0 как векторное произведение двух одинаковых «векторов».

5. Покажем, наконец, что при тех же условиях, что и ранее,

rot rot а = grad div а — ∆а. (10)

Так как

rot rot а = [ ∇, [∇,a]),

то, полагая в формуле для двойного векторного произведения [А, [В, С]] = В(А, С) — (А, В)С,

А = ∇, B = ∇, С = а,

получим

Векторный анализ

Но ( ∇, а) = div а и ( ∇, ∇) = ∆. Поэтому окончательно будем иметь

rot rot а = grad div а — ∆а,

где grad div а выражается по формуле (8), а ∆а для вектора а = Pi + Qj + Rk надо понимать так:

∆а = ∆Р • i + ∆Q • j + ∆R • k.

В заключение приведем таблицу дифференциальных операций второго порядка.

Векторный анализ

Заштрихованные прямоугольники означают, что соответствующая операция не имеет смысла (например, градиент от rot а).

Понятие о криволинейных координатах

Во многих задачах бывает удобно определять положение точки простр анства не декартовыми координатами (х, у, z), а тремя другими числами (q1, q2, q3), более естественно связанными с рассматриваемой частной задачей.

Если задано правило, согласно которому каждой точке М пространства отвечает определенная тройка чисел (q1, q2, q3) и, обратно, каждой такой тройке чисел отвечает единственная точка М, то говорят, что в пространстве задана криволинейная координатная система. В этом случае величины q1, q2, q3 называют криволинейными координатами точки М.

Координатными поверхностями в системе криволинейных координат q1, q2, q3 называются поверхности

Векторный анализ

На координатных поверхностях одна из координат сохраняет постоянное значение. Линии пересечения двух координатных поверхностей называются координатными линиями.

В качестве примеров криволинейных координат рассмотрим цилиндрические и сферические координаты.

Цилиндрические координаты

В цилиндрических координатах положение точки М в пространстве определяется тремя координатами:

Векторный анализ

Координатные поверхности:

р = const — круговые цилиндры с осью Оz;

φ = const — полуплоскости, примыкающие к оси Oz;

z = const — плоскости, перпендикулярные оси Oz (рис. 41).

Координатные линии:

1) линии (р) — лучи, перпендикулярные оси Oz и имеющие начало на этой оси, т. е. линии пересечения координатных поверхностей φ = const, z = const;

2) линии (φ) — окружности с центрами на оси Oz, лежащие в плоскостях, перпендикулярных оси Oz;

3) линии (z) — прямые, параллельные оси Oz.

Связь декартовых координат точки (х, у, z) с цилиндрическими координатами (р, φ, z) задается формулами

x = p cos φ, y = p sin φ, z = z. (2)

Векторный анализ

Сферические координаты

В сферических координатах положение точки М в пространстве определяется следующими координатами:

Векторный анализ

Координатные поверхности (рис. 42):

r = const — сферы с центром в точке О;

θ = const — круговые полуконусы с осью Oz;

φ = const — полуплоскости, примыкающие к оси Oz.

Координатные линии:

1) линии (г) — лучи, выходящие из точки О;

2) линии (θ) — меридианы на сфере;

3) линии (φ) — параллели на сфере.

Связь декартовых координат (х, у, z) точки М с ее сферическими координатами (r, θ, φ) задается формулами

х = r cos φ sin θ,

у = r sin φ sin θ, (4)

z = r cos θ.

Введем единичные векторы e1, е2, е3 (орты), направленные по касательным к координатным линиям(q1),(q2),(q3)в тoчке М в сторону возрастания переменных q1,q2,q3 соответственно.

Определение:

Система криволинейных координат называется ортогональной, если в каждой точке М орты e1, е2, е3 попарно ортогональны.
В такой системе ортогональны и координатные линии, и координатные поверхности.
Примерами ортогональных криволинейных координат служат системы цилиндрических и сферических координат. Мы ограничимся рассмотрением только ортогональных систем координат.

Пусть r = r(q1, q2, q3) — радиус-вектор точки М. Тогда можно показать, что
(5)

Векторный анализ

где

Векторный анализ

— коэффициенты Ламэ данной криволинейной системы координат. Вычислим коэффициенты Ламэ для цилиндрических координат

Векторный анализ

Так как х = р cos φ, у = р sin φ, z = z, то
(6)

Векторный анализ

Аналогично для сферических координат имеем
(7)

Векторный анализ

Величины

Векторный анализ

являются дифференциалами длин дуг соответствующих координатных линий.

Основные операции векторного анализа в криволинейных координатах

Дифференциальные уравнения векторных линий

Рассмотрим поле вектора

Векторный анализ

Уравнения векторных линий в криволинейных координатах q1,q2, q3 имеют вид

Векторный анализ

В цилиндрических координатах (q1 = р, q2= φ, q3 = z)
(1)

Векторный анализ

в сферических координатах (q1 = r, q2 = θ, q3 = φ)
(2)

Векторный анализ

Градиент в ортогональных координатах

Пусть и = u(q1, q2, q3) — скалярное пoле. Тогда

Векторный анализ

В цилиндрических координатах (q1 = р, q2 = φ, q3 = z)
(3)

Векторный анализ

в сферических координатах (q1 = r, q2 = θ, q3 = φ) (4)

Векторный анализ

Ротор в ортогональных координатах

Рассмотрим векторное поле

Векторный анализ

и вычислим rot а. Имеем

Векторный анализ

В цилиндрических координатах

Векторный анализ

(5)

Векторный анализ

в сферических координатах

Векторный анализ

(6)

Векторный анализ

Дивергенция в ортогональных координатах

Дивергенция div а векторного поля

Векторный анализ

вычисляется по формуле
(7)

Векторный анализ

В цилиндрических координатах

Векторный анализ

Векторный анализ

в цилиндрических координатах

Векторный анализ

в сферических координатах

Векторный анализ

Применяя формулу (7) к единичным векторам е1, е2, е3, получим

Векторный анализ

Вычисление потока в криволинейных координатах

Пусть S — часть координатной поверхности q1 = с = const, ограниченная координатными линиями

Векторный анализ

Тогда поток вектора

Векторный анализ

через поверхность S в направлении вектора e1 вычисляется по формуле
(8)

Векторный анализ

Аналогично вычисляется поток через часть поверхности q2 = с, а также через часть поверхности д3 = с, где с = const.

Пример:

Найти поток П векторного поля

Векторный анализ

через внешнюю сторону верхней полусферы S радиуса R с центром в начале координат.
Полусфера S есть часть координатной поверхности r = const, а именно r = R. На полусфере S имеем

Векторный анализ

Учитывая, что в сферических координатах

Векторный анализ

по формуле (8) найдем

Векторный анализ

Вычисление потенциала в криволинейных координатах

Пусть в некоторой области Ω задано потенциальное векторное поле

Векторный анализ

т. e. rot а = 0 в области Ω.

Для нахождения потенциала и = и(q1, q2, q3) этого векторного поля запишем равенство а(М) = grad u(M) в следующем виде:

Векторный анализ

Отсюда следует, что
(9)

Векторный анализ

Интегрируя систему дифференциальных уравнений с частными производными (9), найдем искомый потенциал

Векторный анализ

где с — произвольная постоянная.

В цилиндрических координатах

Векторный анализ

система (9) принимает вид

Векторный анализ

В сферических координатах

Векторный анализ

система (9) имеет вид

Векторный анализ

Пример:

Найти потенциал векторного поля, заданного в цилиндрических координатаx

Векторный анализ

Убедимся, что rot a = 0. По формуле (S) получим

Векторный анализ

т.е. данное поле потенциально.

Искомый потенциал u = и(р, φ, z) является решением следующей системы дифференциальных уравнений с частными производными (см. формулу (10)):

Векторный анализ

Интегрированием по р из первого уравнения находим

Векторный анализ

Дифференцируя соотношение (11) no φ и используя второе уравнение, получим

Векторный анализ

или Векторный анализ= 0, откуда с = c1(z). Таким образом,

Векторный анализ

Дифференцируя это соотношение по z и используя третье уравнение, получим

Векторный анализ

или c1`(z) =0, откуда c1(z) = с. Итак, потенциал данного поля

Векторный анализ

Линейный интеграл и циркуляция в ортогональных криволинейных координатах

Пусть векторное поле

Векторный анализ

определено и непрерывно в области Ω изменения ортогональных криволинейных координат q1, q2, q3. Так как дифференциал радиус-вектора r любой точки M(q1, q2, q3) ∈ Ω выражается формулой

Векторный анализ

то криволинейный интеграл вектора а(М) по ориентированной гладкой или кусочно-гладкой кривой L ⊂ Ω будет равен
(13)

Векторный анализ

В частности, для цилиндрических координат (q1 = р, q2 = φ, q3 = z, Н1 = 1, Н2 = р, Н3=1) будем иметь

Векторный анализ

Отсюда по формуле (13) получим
(14)

Векторный анализ

Аналогично для сферических координат (q1 = r, q2 = θ, q3 = φ, Н1 = 1, Н2 = r, H3 = r sin θ будем иметь

Векторный анализ

Отсюда по формуле (13) получим
(15)

Векторный анализ

Если кривая L замкнута (начальная и конечная точки кривой L совпадают), то циркуляция Ц векторного поля а (М) в криволинейных координатах q1, q2, q3 вычисляется по формуле (13), а в случае цилиндрических или сферических координат — по формулам (14) или (15) соответственно.

Пример:

Вычислить циркуляцию векторного поля, заданного в цилиндрических координатах

Векторный анализ

по замкнутой кривой L,

Векторный анализ

Координаты данного вектора равны соответственно

Векторный анализ

Контур L представляет собой замкнутую кривую, расположенную в плоскости z = 0 (рис. 43).

Векторный анализ

Подставляя координаты данного вектора в формулу .(14), получим

Векторный анализ

На кривой L имеем

Векторный анализ

Искомая циркуляция будет равна

Векторный анализ

Оператор Лапласа в ортогональных координатах

Векторный анализ

Используя формулы (16) и (17), для оператора Лапласа ∆ получим следующее выражение:

Векторный анализ

В цилиндрических координатах

Векторный анализ

1) получим

Векторный анализ

В сферических координатах

Векторный анализ

будем иметь

Векторный анализ

Пример:

Найти все решения уравнения Лапласа ∆и = 0, зависящие только от расстояния r.

Так как искомое решение и должно зависеть только от расстояния точки М от начала координат г, т. е. и = и (r), то уравнение Лапласа ∆и = 0 в сферических координатах будет иметь вид

Векторный анализ

Отсюда Векторный анализ так что

Векторный анализ

где С1 и С2 — постоянные.

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторная алгебра
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Пото́к ве́кторного по́ля — термин, используемый в математике для двух различных понятий:

  • поток векторного поля через поверхность, это понятие широко используется и в физике, особенно в электродинамике;

Ниже представлено первое из названных понятий (второму посвящена отдельная статья).

Поток векторного поля через поверхность[править | править код]

Поток векторного поля через поверхность — поверхностный интеграл второго рода по поверхности S. По определению,

{displaystyle {{Phi }_{F}}=iint limits _{S}{mathbf {F} cdot mathbf {n} ,dS}},

где {mathbf  {F}}={mathbf  {F(X)}} — векторное поле (вектор-функция векторного аргумента — точки пространства), mathbf {n} — единичный вектор положительной нормали к поверхности (положительное направление выбирается для ориентируемой поверхности условно, но одинаково для всех точек — то есть для дифференцируемой поверхности — так, чтобы mathbf {n} было непрерывно; для неориентируемой поверхности это не важно, так как поток через неё всегда ноль), dS — элемент поверхности.

В трёхмерном случае {mathbf  {X}}=(x,y,z),{mathbf  {F}}={mathbf  {F(X)}}=left(F_{{x}}({mathbf  {X}}),F_{{y}}({mathbf  {X}}),F_{{z}}({mathbf  {X}})right), а поверхностью является обычная двумерная поверхность.

Иногда применяется обозначение

{displaystyle dmathbf {S} =mathbf {n} ,dS}.

тогда поток записывается в виде

{{Phi }_{{F}}}=iint limits _{{S}}{{mathbf  {F}}cdot d{mathbf  {S}}}.

Размерность потока — это размерность величины mathbf {F} , домноженная на квадратный метр (в СИ).

Некоторые физические примеры[править | править код]

Из гидродинамики

Пусть движение несжимаемой жидкости единичной плотности в пространстве задано векторным полем скорости течения {mathbf  {v}}={mathbf  {v}}(x,y,z). Тогда объём жидкости, который протечёт за единицу времени через поверхность S, будет равен потоку векторного поля mathbf{v}.

Если плотность равна rho , то масса жидкости, которая протечёт за единицу времени через поверхность будет равна потоку величины {displaystyle rho mathbf {v} }:

{displaystyle {frac {dM}{dt}}={{Phi }_{rho mathbf {v} }}=iint limits _{S}{rho mathbf {v} cdot dmathbf {S} }}.
Из электродинамики

В основных уравнениях электродинамики — уравнениях Максвелла — фигурируют потоки вектора электрической индукции и вектора магнитной индукции

{displaystyle {{Phi }_{D}}=iint limits _{S}{mathbf {D} cdot dmathbf {S} }quad } и {displaystyle quad {{Phi }_{B}}=iint limits _{S}{mathbf {B} cdot dmathbf {S} }}.

А именно, эти потоки, если они вычислены для замкнутой поверхности, равны заряду внутри поверхности:

{displaystyle oint limits _{S}{mathbf {D} cdot dmathbf {S} }=Qquad } и {displaystyle quad oint limits _{S}{mathbf {B} cdot dmathbf {S} }=0},

где Q — электрический заряд, а поток вектора mathbf {B} нулевой, так как магнитные заряды не существуют.

Ещё пример из электродинамики. Электрический ток представляет собой поток векторного поля плотности тока:

{displaystyle I=iint limits _{S}mathbf {j} cdot dmathbf {S} }

через поперечное сечение токоведущего проводника.

О понятии плотности потока

Если векторным полем mathbf {F} , поток которого вычисляется, характеризуется перенос какой-либо скалярной величины (например, массы в примере с жидкостью или заряда в примере с током; другие возможные случаи — перенос энергии, перенос спина), то такое поле в данном контексте называется плотностью потока. В таких случаях mathbf {F} имеет структуру {displaystyle mathbf {F} =rho _{f}mathbf {v} }, где {displaystyle rho _{f}} обозначает плотность переносимой величины (массы в кг/м3, заряда в Кл/м3, энергии в Дж/м3 и т.д.), а mathbf{v} — скорость переноса. Если не переносится ничего (как для потока mathbf {D} , mathbf {B} ), подобное название не имеет смысла.

См. также[править | править код]

  • Плотность потока
  • Теорема Гаусса
  • Векторная трубка

Добавить комментарий